
Math 365 – Monday 3/18/19 – 8.2: Solving linear recurrence relations

Warmup. Recall that a solution for a sequence defined recursively is a closed formula that satisfies

the recursion relation and the initial conditions. For example, the sequence

an = nan�1, a0 = 1 has solution an = n!.

(1) Consider the recurrence relation an = 7an�1.

(a) Choose three di↵erent initial conditions (specific values for a0), and find the corre-

sponding solutions.

(b) Write a general solution to this recurrence relation in terms of a0 (without picking a

specific value for a0).
(2) For each of the following recursion relations, how many initial conditions are needed to

determine a specific solution?

(a) an = 5an�1

(b) an = 3

(c) an = 9an�2

(d) an = a2n�1
(e) an = �2an�1 � an�2

(f) an = 7an�1 � 6an�2

(g) an = 8an�3

(h) an = 3an�1 + 4an�2 � 12an�3

(i) an = an�1/n
(j) an = an�1 + an�2 + n+ 3

(3) Factor the following polynomials

(a) x2 � 2x+ 1

(b) x2 + 5x+ 6

(c) x2 � 9

(d) x2 + 2x+ 5

(e) x3 � 3x2 + 3x� 1

(f) x3 � 8

(g) x3 + 5x2 + 8x+ 4

(h) x3 � 3x2 � 4x+ 12

(i) x4 � 2x2 + 1



Exercise 31. For each of the following, decide if the recurrence relation is linear, homogeneous, and

constant coe�cient. If not, explain why it fails. If so, (i) give its degree, (ii) give its characteristic

equation, and (iii) give the characteristic roots and their multiplicities.

(a) an = 5an�1

(b) an = 3

(c) an = 9an�2

(d) an = a2n�1
(e) an = �2an�1 � an�2

(f) an = 7an�1 � 6an�2

(g) an = 8an�3

(h) an = 3an�1 + 4an�2 � 12an�3

(i) an = an�1/n
(j) an = an�1 + an�2 + n+ 3

Exercise 32. For each of the recursion relations in Exercise 31 that were linear, homogeneous,

and constant coe�cient, decide which have characteristic equations with k distinct roots. For those

that do,

(i) write a general solution;

(ii) choose an example of initial conditions, and solve for specific ↵i’s; and

(iii) check your answer to the previous part by computing the first 5 terms of the sequence in two

ways (recursively, and using your closed formula).

Exercise 33. For each of the recursion relations in Exercise 31 that were linear, homogeneous,

and constant coe�cient, but had characteristic equations with repeated roots,

(i) write a general solution;

(ii) choose an example of initial conditions, and solve for specific ↵i,j ’s; and

(iii) check your answer to the previous part by computing the first 5 terms of the sequence in two

ways (recursively, and using your closed formula).

Exercise 34. Adapt the proof of Theorem 1 for k = 2 to prove Theorem 2 for k = 2. Namely,

show that if

an = c1an�1 + c2an�2

has a characteristic equation with a repeated root r0, then an = ↵rn0 +�nrn0 is the general solution.

Outline/hints:

• Establish that the characteristic equation is r2 � c1r � c2 = 0.

• Justify that if r0 is the only root of this equation, then actually c1 = 2r0 and c2 = �r20.
• Use a similar computation as in class to show that an = ↵rn0 + �nrn0 is a solution to the

recurrence for any constants ↵ and �.
• Use a similar computation as in class to show that if {an}n2N is a solution, then it must be

of the form an = ↵rn0 + �nrn0 (i.e. there are some ↵ and � that match your solution).



8.2: Solving linear recurrence relations

A linear homogeneous recurrence relation of degree k with

constant coe�cients is a recurrence relation of the form

an “ c1an´1 ` c2an´2 ` ¨ ¨ ¨ ` ckan´k,

where c1, c2, . . . , ck are real numbers, and ck ‰ 0.

Examples:

1. an “ an´1 ` an´2 (i.e. c1 “ c2 “ 1.)

2. an “ 3an´1 ´ an´3 (i.e. c1 “ 3, c2 “ 0, c3 “ ´1.)

Non-examples:

1. an “ an´1an´2 3. an “ a2n´1

2. an “ an´1 ` 1 4. an “ nan´1

Solving recurrences in general is hard (i.e. no deterministic way to

do it). We take the same approach as in solving integrals and

di↵erential equations: look at the form the recurrence takes, make

an educated guess, and solve for unknowns.

Analogy to di↵erential equations
For those who have taken 391 - otherwise ignore this slide!

In DE’s, the only way we know to solve most equations is basically

educated guessing. In particular, we have good guesses for linear
homogeneous constant-coe�cient equations of order k, i.e. equations of
the form

ypkq “ c1y
pk´1q ` c2y

pk´2q ` ¨ ¨ ¨ ` ck´2y
1 ` ck´1y.

(where ypiq “ diy
dti

)

To solve, we plug in y “ ert and solve for r.
Ex. Suppose

y2 “ 5y1 ´ 6y.

Plugging in y “ ert gives dy
dt “ rert and d2y

dt2 “ r2ert, so that

r2ert “ 5rert ´ 6ert.

But since ert ‰ 0, dividing through gives

r2 “ 5r ´ 6. So 0 “ r2 ´ 5r ´ 3 “ pr ´ 2qpr ´ 3q.
(“Characteristic equation”)

Thus y1 “ e2t and y2 “ e3t are both solutions.

Linearity further gives us that y “ a1y1 ` a2y2 is also a solution for any

constants a1 and a2.



Back to solving recurrence relations: Educated guessing

Note that an “ rn is a solution of the recurrence relation

an “ c1an´1 ` c2an´2 ` ¨ ¨ ¨ ` ckan´k,

if and only if (plug in an “ rn)

rn “ c1r
n´1 ` c2r

n´2 ` ¨ ¨ ¨ ` ckr
n´k.

So long as r ‰ 0 (which is always a solution), this is equivalent to

rk ´ c1r
k´1 ´ c2r

k´2 ´ ¨ ¨ ¨ ´ ck´1r ´ ck “ 0 (˚)

(subtract the RHS from both sides, and remove as many factors of

r as possible).

We call this last equation the characteristic equation for the

recurrence relation (same as for di↵erential equations). The

solutions to this equation are the characteristic roots.

Char. eqn.: rk ´ c1r
k´1 ´ c2r

k´2 ´ ¨ ¨ ¨ ´ ck´1r ´ ck “ 0

For example, consider the Fibonacci sequence:

an “ an´1 ` an´2.

Plugging in an “ rn gives rn “ rn´1 ` rn´2. So

0 “ rn ´ rn´1 ´ rn´2 “ rn´2pr2 ´ r ´ 1q.
So the characteristic equation for this recursion relation is

r2 ´ r ´ 1 “ 0.

Recall the quadratic formula:

ax2 ` bx ` c “ 0 if and only if x “ ´b ˘
?
b2 ´ 4ac

2a
.

This gives that the characteristic roots are

r1 “ 1
2

´
1 `

?
5

¯
and r2 “ 1

2

´
1 ´

?
5

¯

(each with multiplicity 1).



Char. eqn.: rk ´ c1r
k´1 ´ c2r

k´2 ´ ¨ ¨ ¨ ´ ck´1r ´ ck “ 0

As another example, consider the recursion relation

an “ ´an´1 ` an´2 ` an´3.

You try: plug in an “ rn and simplify.

r3 ` r2 ´ r ´ 1 “ 0

Characteristic equation:

Notice,

r3 ` r2 ´ r ´ 1 “ r2pr ` 1q ´ pr ` 1q “ pr ` 1qpr2 ´ 1q “ pr ` 1q2pr ´ 1q.
So the characteristic roots are r1 “ 1 (with multiplicity 1) and

r2 “ ´1 (with multiplicity 2).

You try: Exercise 31.



Theorem 1: Solving linear homogeneous with distinct roots
Let c1, c2, . . . , ck be real numbers. Suppose that the characteristic

equation has k distinct roots r1, r2, . . . , rk. Then a sequence

tanunPN is a solution of the recurrence relation

an “ c1an´1 ` c2an´2 ` ¨ ¨ ¨ ` ckan´k if and only if

an “ ↵1r
n
1 ` ↵2r

n
2 ` ¨ ¨ ¨ ` ↵kr

n
k

for n “ 0, 1, 2, . . . , where ↵1,↵2, . . . ,↵k are constants.

Example: For an “ an´1 ` an´2, we found characteristic roots

r1 “ 1
2

`
1 `

?
5
˘

and r2 “ 1
2

`
1 ´

?
5

˘
,

each with multiplicity 1. So the general solution is

an “ ↵1

´
1
2

´
1 `

?
5
¯¯n

` ↵2

´
1
2

´
1 ´

?
5
¯¯n

.

Example: For an “ ´an´1 ` an´2 ` an´3, r2 “ ´1 had

multiplicity 2, so this theorem does not apply!

Incorporating initial conditions: specific solutions

Now, we have a general solution to the recurrence relation

an “ an´1 ` an´2:

an “ ↵1

´
1
2

´
1 `

?
5
¯¯n

` ↵2

´
1
2

´
1 ´

?
5
¯¯n

.

Initial conditions: For example, suppose we have a0 “ 0 and

a1 “ 1. To solve for the specific solution, just plug those values

into the general solution and solve for the unknowns.

0 “ a0 “ ↵1

´
1
2

´
1 `

?
5

¯¯0
` ↵2

´
1
2

´
1 ´

?
5

¯¯0
“ ↵1 ` ↵2;

1 “ a1 “ ↵1

´
1
2

´
1 `

?
5

¯¯1
` ↵2

´
1
2

´
1 ´

?
5

¯¯1

“ ↵1

´
1
2

´
1 `

?
5

¯¯
´ ↵1

´
1
2

´
1 ´

?
5

¯¯
“ ↵1

?
5.

So ↵1 “ 1{
?
5 and ↵2 “ ´1{

?
5. Therefore

an “ 1?
5

ˆ
1 `

?
5

2

˙n

´ 1?
5

ˆ
1 ´

?
5

2

˙n

. You try Exercise 32



Theorem 2: Solving linear homogeneous with repeated roots
Let c1, c2, . . . , ck be real numbers. Suppose that the characteristic

equation has roots r1, r2, . . . , r` with multiplicities m1,m2, . . . ,m`.

Then a sequence tanunPN is a solution of the recurrence relation

an “ c1an´1 ` c2an´2 ` ¨ ¨ ¨ ` ckan´k if and only if

an “ p1pnqrn1 ` p2pnqrn2 ` ¨ ¨ ¨ ` p`pnqrn` ,
where pipnq are polynomials in n of degree mi ´ 1.

Example: an “ ´an´1 ` an´2 ` an´3.

Characteristic equation:

0 “ r3 ` r2 ´ r ´ 1 “ pr ` 1q2pr ´ 1q1.
General solution:

an “ p↵0 ` ↵1nqp´1qn ` �p1qn.

Theorem 2: Solving linear homogeneous with repeated roots
Let c1, c2, . . . , ck be real numbers. Suppose that the characteristic

equation has roots r1, r2, . . . , r` with multiplicities m1,m2, . . . ,m`.

Then a sequence tanunPN is a solution of the recurrence relation

an “ c1an´1 ` c2an´2 ` ¨ ¨ ¨ ` ckan´k if and only if

an “ p1pnqrn1 ` p2pnqrn2 ` ¨ ¨ ¨ ` p`pnqrn` ,
where pipnq are polynomials in n of degree mi ´ 1.

Think of Theorems 1 and 2 as recipes for cooking up solutions!

Goal: You need k servings of solutions.

1. If you have enough ingredients from the char. eq., then just

use those. (Thm 1)

2. If the char. eq. didn’t give you enough, you’ll need to make

some more first: (Thm 2)

§ if a root r was repeated m times, you’ll need to stretch it for

m servings by multiplying it by n successively until you have

enough.



Goal: You need k servings of solutions.

1. If you have enough ingredients from the char. eq., then just use those.

2. If the char. eq. didn’t give you enough, you’ll need to make some

more first:

§ if a root r was repeated m times, you’ll need to stretch it for m
servings by multiplying it by n successively until you have enough.

Example: an “ 5an´1 ` 5an´2 ´ 25an´3 ´ 40an´4 ´ 16an´5.

Characteristic equation:

0 “ r5 ´ 5r4 ´ 5r3 ` 25r2 ` 40r ` 16 “ pr ´ 4q2pr ` 1q3.
Here, r1 “ 4 needs to cover two solutions, so we’ll stretch it by

using solutions

4n and n4n;

and r2 “ ´1 needs to cover three solutions, so we’ll stretch it by

using solutions

p´1qn, np´1qn, and n2p´1qn.
General solution: (simplified)

an “ p↵0 ` ↵1nqp4qn ` p�0 ` �1n ` �2n2qp´1qn.
You try Exercise 33

Let’s see why:

Proof of Theorem 1 for k “ 2. Consider the recurrence relation

an “ c1an´1 ` c2an´2,
and suppose the corresponding characteristic equation

r2 ´ c1r ´ c2 “ 0 has distinct roots r1 and r2. Note that this

means that

r21 “ c1r1 ` c2 and r22 “ c1r2 ` c2.
First let’s see that an “ ↵1rn1 ` ↵2rn2 is a solution for any ↵1,↵2:

c1an´1 ` c2an´2 “ c1p↵1r
n´1
1 ` ↵2r

n´1
2 q ` c2p↵1r

n´2
1 ` ↵2r

n´2
2 q

“ ↵1r
n´2
1 pc1r1 ` c2q ` ↵2r

n´2
2 pc1r2 ` c2q

“ ↵1r
n´2
1 pr21q ` ↵2r

n´2
2 pr22q

“ ↵1r
n
1 ` ↵2r

n
2

“ an. X



Proof of Theorem 1 for k “ 2 continued:
Now, we have to show that every solution to an “ c1an´1 ` c2an´2

is of the form an “ ↵1rn1 ` ↵2rn2 . To do this, note that

the recurrence relation, together with “enough” initial conditions

totally determines the sequence!
So, take any solution tanunPN to this recursion relation. Whatever

a0 and a1 are, those are the initial conditions.

To do*: show that there is some ↵1 and ↵2 such that

a0 “ ↵1r01 ` ↵2r02 and a1 “ ↵1r11 ` ↵2r12.
Conclusion: Thus, since ↵1rn1 ` ↵2rn2 is a solution (by what we

just did) and satisfies the same initial conditions, it must be the

same solution as the one we picked.

*: Solve

a0 “ ↵1 ` ↵2 and a1 “ ↵1r1 ` ↵2r2

for ↵1 and ↵2.

*: Solve

a0 “ ↵1 ` ↵2 and a1 “ ↵1r1 ` ↵2r2

for ↵1 and ↵2:

The first equation gives ↵2 “ a0 ´ ↵1.

Substitute this into the second equation to get

a1 “ ↵1r1 ` pa0 ´ ↵1qr2 “ ↵1pr1 ´ r2q ` a0r2.

So as long as r1 ‰ r2, we have

↵1 “ a1 ´ a0r2
r1 ´ r2

and ↵2 “ a0 ´ a1 ´ a0r2
r1 ´ r2

.

This completes our proof of Theorem 1 for k “ 2.


