Last time:
Using recurrence relations to model counting problems.

Today:
Solving those recurrence relations!

Try Warmup

8.2: Solving linear recurrence relations

A linear homogeneous recurrence relation of degree k with constant coefficients is a recurrence relation of the form

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k} a_{n-k}
$$

where $c_{1}, c_{2}, \ldots, c_{k}$ are real numbers, and $c_{k} \neq 0$.

8.2: Solving linear recurrence relations

A linear homogeneous recurrence relation of degree k with constant coefficients is a recurrence relation of the form

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k} a_{n-k}
$$

where $c_{1}, c_{2}, \ldots, c_{k}$ are real numbers, and $c_{k} \neq 0$.

Examples:

1. $a_{n}=a_{n-1}+a_{n-2}$ (i.e. $c_{1}=c_{2}=1$.)
2. $a_{n}=3 a_{n-1}-a_{n-3}$ (i.e. $c_{1}=3, c_{2}=0, c_{3}=-1$.)

8.2: Solving linear recurrence relations

A linear homogeneous recurrence relation of degree k with constant coefficients is a recurrence relation of the form

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k} a_{n-k}
$$

where $c_{1}, c_{2}, \ldots, c_{k}$ are real numbers, and $c_{k} \neq 0$.

Examples:

1. $a_{n}=a_{n-1}+a_{n-2}$ (i.e. $c_{1}=c_{2}=1$.)
2. $a_{n}=3 a_{n-1}-a_{n-3}$ (i.e. $c_{1}=3, c_{2}=0, c_{3}=-1$.)

Non-examples:

1. $a_{n}=a_{n-1} a_{n-2}$
2. $a_{n}=a_{n-1}+1$
3. $a_{n}=a_{n-1}^{2}$
4. $a_{n}=n a_{n-1}$

8.2: Solving linear recurrence relations

A linear homogeneous recurrence relation of degree k with constant coefficients is a recurrence relation of the form

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k} a_{n-k}
$$

where $c_{1}, c_{2}, \ldots, c_{k}$ are real numbers, and $c_{k} \neq 0$.

Examples:

$$
\begin{aligned}
& \text { 1. } a_{n}=a_{n-1}+a_{n-2}\left(\text { i.e. } c_{1}=c_{2}=1 .\right) \\
& \text { 2. } a_{n}=3 a_{n-1}-a_{n-3}\left(\text { i.e. } c_{1}=3, c_{2}=0, c_{3}=-1 .\right)
\end{aligned}
$$

Non-examples:

1. $a_{n}=a_{n-1} a_{n-2}$
2. $a_{n}=a_{n-1}+1$
3. $a_{n}=a_{n-1}^{2}$
4. $a_{n}=n a_{n-1}$

Solving recurrences in general is hard (i.e. no deterministic way to do it). We take the same approach as in solving integrals and differential equations: look at the form the recurrence takes, make an educated guess, and solve for unknowns.

Analogy to differential equations

For those who have taken 391 - otherwise ignore this slide!
In DE's, the only way we know to solve most equations is basically educated guessing.

Analogy to differential equations

For those who have taken 391 - otherwise ignore this slide!
In DE's, the only way we know to solve most equations is basically educated guessing. In particular, we have good guesses for linear homogeneous constant-coefficient equations of order k, i.e. equations of the form

$$
\begin{array}{r}
y^{(k)}=c_{1} y^{(k-1)}+c_{2} y^{(k-2)}+\cdots+c_{k-2} y^{\prime}+c_{k-1} y . \\
\quad\left(\text { where } y^{(i)}=\frac{d^{i} y}{d t^{i}}\right)
\end{array}
$$

Analogy to differential equations

For those who have taken 391 - otherwise ignore this slide!
In DE's, the only way we know to solve most equations is basically educated guessing. In particular, we have good guesses for linear homogeneous constant-coefficient equations of order k, i.e. equations of the form

$$
y^{(k)}=c_{1} y^{(k-1)}+c_{2} y^{(k-2)}+\cdots+c_{k-2} y^{\prime}+c_{k-1} y
$$

$$
\left(\text { where } y^{(i)}=\frac{d^{i} y}{d t^{i}}\right)
$$

To solve, we plug in $y=e^{r t}$ and solve for r.

Analogy to differential equations

For those who have taken 391 - otherwise ignore this slide!
In DE's, the only way we know to solve most equations is basically educated guessing. In particular, we have good guesses for linear homogeneous constant-coefficient equations of order k, i.e. equations of the form

$$
y^{(k)}=c_{1} y^{(k-1)}+c_{2} y^{(k-2)}+\cdots+c_{k-2} y^{\prime}+c_{k-1} y
$$

$$
\left(\text { where } y^{(i)}=\frac{d^{i} y}{d t^{i}}\right)
$$

To solve, we plug in $y=e^{r t}$ and solve for r.
Ex. Suppose

$$
y^{\prime \prime}=5 y^{\prime}-6 y
$$

Analogy to differential equations

For those who have taken 391 - otherwise ignore this slide!
In DE's, the only way we know to solve most equations is basically educated guessing. In particular, we have good guesses for linear homogeneous constant-coefficient equations of order k, i.e. equations of the form

$$
y^{(k)}=c_{1} y^{(k-1)}+c_{2} y^{(k-2)}+\cdots+c_{k-2} y^{\prime}+c_{k-1} y
$$

$$
\left(\text { where } y^{(i)}=\frac{d^{i} y}{d t^{i}}\right)
$$

To solve, we plug in $y=e^{r t}$ and solve for r.
Ex. Suppose

$$
y^{\prime \prime}=5 y^{\prime}-6 y
$$

Plugging in $y=e^{r t}$ gives $\frac{d y}{d t}=r e^{r t}$ and $\frac{d^{2} y}{d t^{2}}=r^{2} e^{r t}$,

Analogy to differential equations

For those who have taken 391 - otherwise ignore this slide!
In DE's, the only way we know to solve most equations is basically educated guessing. In particular, we have good guesses for linear homogeneous constant-coefficient equations of order k, i.e. equations of the form

$$
y^{(k)}=c_{1} y^{(k-1)}+c_{2} y^{(k-2)}+\cdots+c_{k-2} y^{\prime}+c_{k-1} y
$$

$$
\left(\text { where } y^{(i)}=\frac{d^{i} y}{d t^{i}}\right)
$$

To solve, we plug in $y=e^{r t}$ and solve for r.
Ex. Suppose

$$
y^{\prime \prime}=5 y^{\prime}-6 y
$$

Plugging in $y=e^{r t}$ gives $\frac{d y}{d t}=r e^{r t}$ and $\frac{d^{2} y}{d t^{2}}=r^{2} e^{r t}$, so that

$$
r^{2} e^{r t}=5 r e^{r t}-6 e^{r t}
$$

Analogy to differential equations

For those who have taken 391 - otherwise ignore this slide!
In DE's, the only way we know to solve most equations is basically educated guessing. In particular, we have good guesses for linear homogeneous constant-coefficient equations of order k, i.e. equations of the form

$$
y^{(k)}=c_{1} y^{(k-1)}+c_{2} y^{(k-2)}+\cdots+c_{k-2} y^{\prime}+c_{k-1} y
$$

$$
\left(\text { where } y^{(i)}=\frac{d^{i} y}{d t^{i}}\right)
$$

To solve, we plug in $y=e^{r t}$ and solve for r.
Ex. Suppose

$$
y^{\prime \prime}=5 y^{\prime}-6 y
$$

Plugging in $y=e^{r t}$ gives $\frac{d y}{d t}=r e^{r t}$ and $\frac{d^{2} y}{d t^{2}}=r^{2} e^{r t}$, so that

$$
r^{2} e^{r t}=5 r e^{r t}-6 e^{r t}
$$

But since $e^{r t} \neq 0$, dividing through gives

$$
r^{2}=5 r-6
$$

Analogy to differential equations

For those who have taken 391 - otherwise ignore this slide!
In DE's, the only way we know to solve most equations is basically educated guessing. In particular, we have good guesses for linear homogeneous constant-coefficient equations of order k, i.e. equations of the form

$$
y^{(k)}=c_{1} y^{(k-1)}+c_{2} y^{(k-2)}+\cdots+c_{k-2} y^{\prime}+c_{k-1} y
$$

$$
\left(\text { where } y^{(i)}=\frac{d^{i} y}{d t^{i}}\right)
$$

To solve, we plug in $y=e^{r t}$ and solve for r.
Ex. Suppose

$$
y^{\prime \prime}=5 y^{\prime}-6 y
$$

Plugging in $y=e^{r t}$ gives $\frac{d y}{d t}=r e^{r t}$ and $\frac{d^{2} y}{d t^{2}}=r^{2} e^{r t}$, so that

$$
r^{2} e^{r t}=5 r e^{r t}-6 e^{r t}
$$

But since $e^{r t} \neq 0$, dividing through gives

$$
r^{2}=5 r-6 . \quad \text { So } 0=r^{2}-5 r-3=(r-2)(r-3)
$$

("Characteristic equation")

Analogy to differential equations

For those who have taken 391 - otherwise ignore this slide!
In DE's, the only way we know to solve most equations is basically educated guessing. In particular, we have good guesses for linear homogeneous constant-coefficient equations of order k, i.e. equations of the form

$$
y^{(k)}=c_{1} y^{(k-1)}+c_{2} y^{(k-2)}+\cdots+c_{k-2} y^{\prime}+c_{k-1} y
$$

$$
\left(\text { where } y^{(i)}=\frac{d^{i} y}{d t^{i}}\right)
$$

To solve, we plug in $y=e^{r t}$ and solve for r.
Ex. Suppose

$$
y^{\prime \prime}=5 y^{\prime}-6 y
$$

Plugging in $y=e^{r t}$ gives $\frac{d y}{d t}=r e^{r t}$ and $\frac{d^{2} y}{d t^{2}}=r^{2} e^{r t}$, so that

$$
r^{2} e^{r t}=5 r e^{r t}-6 e^{r t}
$$

But since $e^{r t} \neq 0$, dividing through gives

$$
r^{2}=5 r-6 . \quad \text { So } 0=r^{2}-5 r-3=(r-2)(r-3)
$$

("Characteristic equation")
Thus $y_{1}=e^{2 t}$ and $y_{2}=e^{3 t}$ are both solutions.

Analogy to differential equations

For those who have taken 391 - otherwise ignore this slide!
In DE's, the only way we know to solve most equations is basically educated guessing. In particular, we have good guesses for linear homogeneous constant-coefficient equations of order k, i.e. equations of the form

$$
y^{(k)}=c_{1} y^{(k-1)}+c_{2} y^{(k-2)}+\cdots+c_{k-2} y^{\prime}+c_{k-1} y
$$

$$
\left(\text { where } y^{(i)}=\frac{d^{i} y}{d t^{i}}\right)
$$

To solve, we plug in $y=e^{r t}$ and solve for r.
Ex. Suppose

$$
y^{\prime \prime}=5 y^{\prime}-6 y
$$

Plugging in $y=e^{r t}$ gives $\frac{d y}{d t}=r e^{r t}$ and $\frac{d^{2} y}{d t^{2}}=r^{2} e^{r t}$, so that

$$
r^{2} e^{r t}=5 r e^{r t}-6 e^{r t}
$$

But since $e^{r t} \neq 0$, dividing through gives

$$
r^{2}=5 r-6 . \quad \text { So } 0=r^{2}-5 r-3=(r-2)(r-3)
$$

("Characteristic equation")
Thus $y_{1}=e^{2 t}$ and $y_{2}=e^{3 t}$ are both solutions.
Linearity further gives us that $y=a_{1} y_{1}+a_{2} y_{2}$ is also a solution for any constants a_{1} and a_{2}.

Back to solving recurrence relations: Educated guessing

Note that $a_{n}=r^{n}$ is a solution of the recurrence relation

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k} a_{n-k}
$$

if and only if

$$
\left(\text { plug in } a_{n}=r^{n}\right)
$$

$$
r^{n}=c_{1} r^{n-1}+c_{2} r^{n-2}+\cdots+c_{k} r^{n-k}
$$

Back to solving recurrence relations: Educated guessing

Note that $a_{n}=r^{n}$ is a solution of the recurrence relation

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k} a_{n-k},
$$

if and only if

$$
\text { (plug in } a_{n}=r^{n} \text {) }
$$

$$
r^{n}=c_{1} r^{n-1}+c_{2} r^{n-2}+\cdots+c_{k} r^{n-k} .
$$

So long as $r \neq 0$ (which is always a solution), this is equivalent to

$$
\begin{equation*}
r^{k}-c_{1} r^{k-1}-c_{2} r^{k-2}-\cdots-c_{k-1} r-c_{k}=0 \tag{*}
\end{equation*}
$$

(subtract the RHS from both sides, and remove as many factors of r as possible).

Back to solving recurrence relations: Educated guessing

Note that $a_{n}=r^{n}$ is a solution of the recurrence relation

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k} a_{n-k}
$$

if and only if

$$
\text { (plug in } a_{n}=r^{n} \text {) }
$$

$$
r^{n}=c_{1} r^{n-1}+c_{2} r^{n-2}+\cdots+c_{k} r^{n-k} .
$$

So long as $r \neq 0$ (which is always a solution), this is equivalent to

$$
\begin{equation*}
r^{k}-c_{1} r^{k-1}-c_{2} r^{k-2}-\cdots-c_{k-1} r-c_{k}=0 \tag{*}
\end{equation*}
$$

(subtract the RHS from both sides, and remove as many factors of r as possible).

We call this last equation the characteristic equation for the recurrence relation (same as for differential equations). The solutions to this equation are the characteristic roots.

Char. eqn.: $\quad r^{k}-c_{1} r^{k-1}-c_{2} r^{k-2}-\cdots-c_{k-1} r-c_{k}=0$
For example, consider the Fibonacci sequence:

$$
a_{n}=a_{n-1}+a_{n-2}
$$

Char. eqn.: $\quad r^{k}-c_{1} r^{k-1}-c_{2} r^{k-2}-\cdots-c_{k-1} r-c_{k}=0$
For example, consider the Fibonacci sequence:

$$
a_{n}=a_{n-1}+a_{n-2}
$$

Plugging in $a_{n}=r^{n}$ gives $r^{n}=r^{n-1}+r^{n-2}$.

Char. eqn.: $\quad r^{k}-c_{1} r^{k-1}-c_{2} r^{k-2}-\cdots-c_{k-1} r-c_{k}=0$
For example, consider the Fibonacci sequence:

$$
a_{n}=a_{n-1}+a_{n-2}
$$

Plugging in $a_{n}=r^{n}$ gives $r^{n}=r^{n-1}+r^{n-2}$. So

$$
0=r^{n}-r^{n-1}-r^{n-2}
$$

Char. eqn.: $\quad r^{k}-c_{1} r^{k-1}-c_{2} r^{k-2}-\cdots-c_{k-1} r-c_{k}=0$
For example, consider the Fibonacci sequence:

$$
a_{n}=a_{n-1}+a_{n-2}
$$

Plugging in $a_{n}=r^{n}$ gives $r^{n}=r^{n-1}+r^{n-2}$. So

$$
0=r^{n}-r^{n-1}-r^{n-2}=r^{n-2}\left(r^{2}-r-1\right) .
$$

Char. eqn.: $\quad r^{k}-c_{1} r^{k-1}-c_{2} r^{k-2}-\cdots-c_{k-1} r-c_{k}=0$
For example, consider the Fibonacci sequence:

$$
a_{n}=a_{n-1}+a_{n-2}
$$

Plugging in $a_{n}=r^{n}$ gives $r^{n}=r^{n-1}+r^{n-2}$. So

$$
0=r^{n}-r^{n-1}-r^{n-2}=r^{n-2}\left(r^{2}-r-1\right)
$$

So the characteristic equation for this recursion relation is

$$
r^{2}-r-1=0
$$

Char. eqn.: $\quad r^{k}-c_{1} r^{k-1}-c_{2} r^{k-2}-\cdots-c_{k-1} r-c_{k}=0$
For example, consider the Fibonacci sequence:

$$
a_{n}=a_{n-1}+a_{n-2}
$$

Plugging in $a_{n}=r^{n}$ gives $r^{n}=r^{n-1}+r^{n-2}$. So

$$
0=r^{n}-r^{n-1}-r^{n-2}=r^{n-2}\left(r^{2}-r-1\right)
$$

So the characteristic equation for this recursion relation is

$$
r^{2}-r-1=0
$$

Recall the quadratic formula:

$$
a x^{2}+b x+c=0 \quad \text { if and only if } x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} .
$$

Char. eqn.: $\quad r^{k}-c_{1} r^{k-1}-c_{2} r^{k-2}-\cdots-c_{k-1} r-c_{k}=0$
For example, consider the Fibonacci sequence:

$$
a_{n}=a_{n-1}+a_{n-2}
$$

Plugging in $a_{n}=r^{n}$ gives $r^{n}=r^{n-1}+r^{n-2}$. So

$$
0=r^{n}-r^{n-1}-r^{n-2}=r^{n-2}\left(r^{2}-r-1\right)
$$

So the characteristic equation for this recursion relation is

$$
r^{2}-r-1=0
$$

Recall the quadratic formula:

$$
a x^{2}+b x+c=0 \quad \text { if and only if } x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

This gives that the characteristic roots are

$$
r_{1}=\frac{1}{2}(1+\sqrt{5}) \quad \text { and } \quad r_{2}=\frac{1}{2}(1-\sqrt{5})
$$

(each with multiplicity 1).

Char. eqn.: $\quad r^{k}-c_{1} r^{k-1}-c_{2} r^{k-2}-\cdots-c_{k-1} r-c_{k}=0$
As another example, consider the recursion relation

$$
a_{n}=-a_{n-1}+a_{n-2}+a_{n-3}
$$

Char. eqn.: $\quad r^{k}-c_{1} r^{k-1}-c_{2} r^{k-2}-\cdots-c_{k-1} r-c_{k}=0$
As another example, consider the recursion relation

$$
a_{n}=-a_{n-1}+a_{n-2}+a_{n-3}
$$

You try: plug in $a_{n}=r^{n}$ and simplify.
Characteristic equation:

Char. eqn.: $\quad r^{k}-c_{1} r^{k-1}-c_{2} r^{k-2}-\cdots-c_{k-1} r-c_{k}=0$
As another example, consider the recursion relation

$$
a_{n}=-a_{n-1}+a_{n-2}+a_{n-3}
$$

You try: plug in $a_{n}=r^{n}$ and simplify.
Characteristic equation:

$$
r^{3}+r^{2}-r-1=0
$$

Char. eqn.: $\quad r^{k}-c_{1} r^{k-1}-c_{2} r^{k-2}-\cdots-c_{k-1} r-c_{k}=0$
As another example, consider the recursion relation

$$
a_{n}=-a_{n-1}+a_{n-2}+a_{n-3}
$$

You try: plug in $a_{n}=r^{n}$ and simplify.
Characteristic equation:

$$
r^{3}+r^{2}-r-1=0
$$

Notice,

$$
r^{3}+r^{2}-r-1=r^{2}(r+1)-(r+1)
$$

Char. eqn.: $\quad r^{k}-c_{1} r^{k-1}-c_{2} r^{k-2}-\cdots-c_{k-1} r-c_{k}=0$
As another example, consider the recursion relation

$$
a_{n}=-a_{n-1}+a_{n-2}+a_{n-3}
$$

You try: plug in $a_{n}=r^{n}$ and simplify.
Characteristic equation:

$$
r^{3}+r^{2}-r-1=0
$$

Notice,

$$
r^{3}+r^{2}-r-1=r^{2}(r+1)-(r+1)=(r+1)\left(r^{2}-1\right)
$$

Char. eqn.: $\quad r^{k}-c_{1} r^{k-1}-c_{2} r^{k-2}-\cdots-c_{k-1} r-c_{k}=0$
As another example, consider the recursion relation

$$
a_{n}=-a_{n-1}+a_{n-2}+a_{n-3}
$$

You try: plug in $a_{n}=r^{n}$ and simplify.
Characteristic equation:

$$
r^{3}+r^{2}-r-1=0
$$

Notice,

$$
r^{3}+r^{2}-r-1=r^{2}(r+1)-(r+1)=(r+1)\left(r^{2}-1\right)=(r+1)^{2}(r-1)
$$

Char. eqn.: $\quad r^{k}-c_{1} r^{k-1}-c_{2} r^{k-2}-\cdots-c_{k-1} r-c_{k}=0$
As another example, consider the recursion relation

$$
a_{n}=-a_{n-1}+a_{n-2}+a_{n-3}
$$

You try: plug in $a_{n}=r^{n}$ and simplify.
Characteristic equation:

$$
r^{3}+r^{2}-r-1=0
$$

Notice, $r^{3}+r^{2}-r-1=r^{2}(r+1)-(r+1)=(r+1)\left(r^{2}-1\right)=(r+1)^{2}(r-1)$.
So the characteristic roots are $r_{1}=1$ (with multiplicity 1) and $r_{2}=-1$ (with multiplicity 2).

Char. eqn.: $\quad r^{k}-c_{1} r^{k-1}-c_{2} r^{k-2}-\cdots-c_{k-1} r-c_{k}=0$
As another example, consider the recursion relation

$$
a_{n}=-a_{n-1}+a_{n-2}+a_{n-3}
$$

You try: plug in $a_{n}=r^{n}$ and simplify.
Characteristic equation:

$$
r^{3}+r^{2}-r-1=0
$$

Notice, $r^{3}+r^{2}-r-1=r^{2}(r+1)-(r+1)=(r+1)\left(r^{2}-1\right)=(r+1)^{2}(r-1)$.
So the characteristic roots are $r_{1}=1$ (with multiplicity 1) and $r_{2}=-1$ (with multiplicity 2).

You try: Exercise 31.

Theorem 1: Solving linear homogeneous with distinct roots Let $c_{1}, c_{2}, \ldots, c_{k}$ be real numbers. Suppose that the characteristic equation has k distinct roots $r_{1}, r_{2}, \ldots, r_{k}$. Then a sequence $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ is a solution of the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k} a_{n-k}$ if and only if

$$
a_{n}=\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{n}+\cdots+\alpha_{k} r_{k}^{n}
$$

for $n=0,1,2, \ldots$, where $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ are constants.

Theorem 1: Solving linear homogeneous with distinct roots Let $c_{1}, c_{2}, \ldots, c_{k}$ be real numbers. Suppose that the characteristic equation has k distinct roots $r_{1}, r_{2}, \ldots, r_{k}$. Then a sequence $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ is a solution of the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k} a_{n-k}$ if and only if

$$
a_{n}=\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{n}+\cdots+\alpha_{k} r_{k}^{n}
$$

for $n=0,1,2, \ldots$, where $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ are constants.
Example: For $a_{n}=a_{n-1}+a_{n-2}$, we found characteristic roots

$$
r_{1}=\frac{1}{2}(1+\sqrt{5}) \quad \text { and } \quad r_{2}=\frac{1}{2}(1-\sqrt{5})
$$

each with multiplicity 1 .

Theorem 1: Solving linear homogeneous with distinct roots Let $c_{1}, c_{2}, \ldots, c_{k}$ be real numbers. Suppose that the characteristic equation has k distinct roots $r_{1}, r_{2}, \ldots, r_{k}$. Then a sequence $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ is a solution of the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k} a_{n-k}$ if and only if

$$
a_{n}=\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{n}+\cdots+\alpha_{k} r_{k}^{n}
$$

for $n=0,1,2, \ldots$, where $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ are constants.
Example: For $a_{n}=a_{n-1}+a_{n-2}$, we found characteristic roots

$$
r_{1}=\frac{1}{2}(1+\sqrt{5}) \quad \text { and } \quad r_{2}=\frac{1}{2}(1-\sqrt{5})
$$

each with multiplicity 1 . So the general solution is

$$
a_{n}=\alpha_{1}\left(\frac{1}{2}(1+\sqrt{5})\right)^{n}+\alpha_{2}\left(\frac{1}{2}(1-\sqrt{5})\right)^{n}
$$

Theorem 1: Solving linear homogeneous with distinct roots Let $c_{1}, c_{2}, \ldots, c_{k}$ be real numbers. Suppose that the characteristic equation has k distinct roots $r_{1}, r_{2}, \ldots, r_{k}$. Then a sequence $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ is a solution of the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k} a_{n-k}$ if and only if

$$
a_{n}=\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{n}+\cdots+\alpha_{k} r_{k}^{n}
$$

for $n=0,1,2, \ldots$, where $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ are constants.
Example: For $a_{n}=a_{n-1}+a_{n-2}$, we found characteristic roots

$$
r_{1}=\frac{1}{2}(1+\sqrt{5}) \quad \text { and } \quad r_{2}=\frac{1}{2}(1-\sqrt{5})
$$

each with multiplicity 1 . So the general solution is

$$
a_{n}=\alpha_{1}\left(\frac{1}{2}(1+\sqrt{5})\right)^{n}+\alpha_{2}\left(\frac{1}{2}(1-\sqrt{5})\right)^{n}
$$

Example: For $a_{n}=-a_{n-1}+a_{n-2}+a_{n-3}, r_{2}=-1$ had multiplicity 2 , so this theorem does not apply!

Incorporating initial conditions: specific solutions

Now, we have a general solution to the recurrence relation
$a_{n}=a_{n-1}+a_{n-2}$:

$$
a_{n}=\alpha_{1}\left(\frac{1}{2}(1+\sqrt{5})\right)^{n}+\alpha_{2}\left(\frac{1}{2}(1-\sqrt{5})\right)^{n}
$$

Incorporating initial conditions: specific solutions

Now, we have a general solution to the recurrence relation $a_{n}=a_{n-1}+a_{n-2}$:

$$
a_{n}=\alpha_{1}\left(\frac{1}{2}(1+\sqrt{5})\right)^{n}+\alpha_{2}\left(\frac{1}{2}(1-\sqrt{5})\right)^{n}
$$

Initial conditions: For example, suppose we have $a_{0}=0$ and $a_{1}=1$.

Incorporating initial conditions: specific solutions

Now, we have a general solution to the recurrence relation $a_{n}=a_{n-1}+a_{n-2}$:

$$
a_{n}=\alpha_{1}\left(\frac{1}{2}(1+\sqrt{5})\right)^{n}+\alpha_{2}\left(\frac{1}{2}(1-\sqrt{5})\right)^{n} .
$$

Initial conditions: For example, suppose we have $a_{0}=0$ and $a_{1}=1$. To solve for the specific solution, just plug those values into the general solution and solve for the unknowns.

Incorporating initial conditions: specific solutions

Now, we have a general solution to the recurrence relation $a_{n}=a_{n-1}+a_{n-2}$:

$$
a_{n}=\alpha_{1}\left(\frac{1}{2}(1+\sqrt{5})\right)^{n}+\alpha_{2}\left(\frac{1}{2}(1-\sqrt{5})\right)^{n}
$$

Initial conditions: For example, suppose we have $a_{0}=0$ and $a_{1}=1$. To solve for the specific solution, just plug those values into the general solution and solve for the unknowns.

$$
\begin{aligned}
& 0=a_{0}=\alpha_{1}\left(\frac{1}{2}(1+\sqrt{5})\right)^{0}+\alpha_{2}\left(\frac{1}{2}(1-\sqrt{5})\right)^{0} \\
& 1=a_{1}=\alpha_{1}\left(\frac{1}{2}(1+\sqrt{5})\right)^{1}+\alpha_{2}\left(\frac{1}{2}(1-\sqrt{5})\right)^{1}
\end{aligned}
$$

Incorporating initial conditions: specific solutions

Now, we have a general solution to the recurrence relation $a_{n}=a_{n-1}+a_{n-2}$:

$$
a_{n}=\alpha_{1}\left(\frac{1}{2}(1+\sqrt{5})\right)^{n}+\alpha_{2}\left(\frac{1}{2}(1-\sqrt{5})\right)^{n}
$$

Initial conditions: For example, suppose we have $a_{0}=0$ and $a_{1}=1$. To solve for the specific solution, just plug those values into the general solution and solve for the unknowns.

$$
\begin{aligned}
& 0=a_{0}=\alpha_{1}\left(\frac{1}{2}(1+\sqrt{5})\right)^{0}+\alpha_{2}\left(\frac{1}{2}(1-\sqrt{5})\right)^{0}=\alpha_{1}+\alpha_{2} \\
& 1=a_{1}=\alpha_{1}\left(\frac{1}{2}(1+\sqrt{5})\right)^{1}+\alpha_{2}\left(\frac{1}{2}(1-\sqrt{5})\right)^{1}
\end{aligned}
$$

Incorporating initial conditions: specific solutions

Now, we have a general solution to the recurrence relation $a_{n}=a_{n-1}+a_{n-2}$:

$$
a_{n}=\alpha_{1}\left(\frac{1}{2}(1+\sqrt{5})\right)^{n}+\alpha_{2}\left(\frac{1}{2}(1-\sqrt{5})\right)^{n}
$$

Initial conditions: For example, suppose we have $a_{0}=0$ and $a_{1}=1$. To solve for the specific solution, just plug those values into the general solution and solve for the unknowns.

$$
\begin{aligned}
& 0=a_{0}=\alpha_{1}\left(\frac{1}{2}(1+\sqrt{5})\right)^{0}+\alpha_{2}\left(\frac{1}{2}(1-\sqrt{5})\right)^{0}=\alpha_{1}+\alpha_{2} \\
& 1=a_{1}=\alpha_{1}\left(\frac{1}{2}(1+\sqrt{5})\right)^{1}+\alpha_{2}\left(\frac{1}{2}(1-\sqrt{5})\right)^{1}
\end{aligned}
$$

Incorporating initial conditions: specific solutions

Now, we have a general solution to the recurrence relation
$a_{n}=a_{n-1}+a_{n-2}$:

$$
a_{n}=\alpha_{1}\left(\frac{1}{2}(1+\sqrt{5})\right)^{n}+\alpha_{2}\left(\frac{1}{2}(1-\sqrt{5})\right)^{n}
$$

Initial conditions: For example, suppose we have $a_{0}=0$ and $a_{1}=1$. To solve for the specific solution, just plug those values into the general solution and solve for the unknowns.

$$
\begin{aligned}
0 & =a_{0}=\alpha_{1}\left(\frac{1}{2}(1+\sqrt{5})\right)^{0}+\alpha_{2}\left(\frac{1}{2}(1-\sqrt{5})\right)^{0}=\alpha_{1}+\alpha_{2} \\
1 & =a_{1}=\alpha_{1}\left(\frac{1}{2}(1+\sqrt{5})\right)^{1}+\alpha_{2}\left(\frac{1}{2}(1-\sqrt{5})\right)^{1} \\
& =\alpha_{1}\left(\frac{1}{2}(1+\sqrt{5})\right)-\alpha_{1}\left(\frac{1}{2}(1-\sqrt{5})\right)
\end{aligned}
$$

Incorporating initial conditions: specific solutions

Now, we have a general solution to the recurrence relation
$a_{n}=a_{n-1}+a_{n-2}$:

$$
a_{n}=\alpha_{1}\left(\frac{1}{2}(1+\sqrt{5})\right)^{n}+\alpha_{2}\left(\frac{1}{2}(1-\sqrt{5})\right)^{n}
$$

Initial conditions: For example, suppose we have $a_{0}=0$ and $a_{1}=1$. To solve for the specific solution, just plug those values into the general solution and solve for the unknowns.

$$
\begin{aligned}
0 & =a_{0}=\alpha_{1}\left(\frac{1}{2}(1+\sqrt{5})\right)^{0}+\alpha_{2}\left(\frac{1}{2}(1-\sqrt{5})\right)^{0}=\alpha_{1}+\alpha_{2} \\
1 & =a_{1}=\alpha_{1}\left(\frac{1}{2}(1+\sqrt{5})\right)^{1}+\alpha_{2}\left(\frac{1}{2}(1-\sqrt{5})\right)^{1} \\
& =\alpha_{1}\left(\frac{1}{2}(1+\sqrt{5})\right)-\alpha_{1}\left(\frac{1}{2}(1-\sqrt{5})\right)=\alpha_{1} \sqrt{5} .
\end{aligned}
$$

Incorporating initial conditions: specific solutions

Now, we have a general solution to the recurrence relation

$$
a_{n}=a_{n-1}+a_{n-2}
$$

$$
a_{n}=\alpha_{1}\left(\frac{1}{2}(1+\sqrt{5})\right)^{n}+\alpha_{2}\left(\frac{1}{2}(1-\sqrt{5})\right)^{n} .
$$

Initial conditions: For example, suppose we have $a_{0}=0$ and $a_{1}=1$. To solve for the specific solution, just plug those values into the general solution and solve for the unknowns.

$$
\begin{aligned}
0 & =a_{0}=\alpha_{1}\left(\frac{1}{2}(1+\sqrt{5})\right)^{0}+\alpha_{2}\left(\frac{1}{2}(1-\sqrt{5})\right)^{0}=\alpha_{1}+\alpha_{2} \\
1 & =a_{1}=\alpha_{1}\left(\frac{1}{2}(1+\sqrt{5})\right)^{1}+\alpha_{2}\left(\frac{1}{2}(1-\sqrt{5})\right)^{1} \\
& =\alpha_{1}\left(\frac{1}{2}(1+\sqrt{5})\right)-\alpha_{1}\left(\frac{1}{2}(1-\sqrt{5})\right)=\alpha_{1} \sqrt{5} .
\end{aligned}
$$

So $\alpha_{1}=1 / \sqrt{5}$

Incorporating initial conditions: specific solutions

Now, we have a general solution to the recurrence relation
$a_{n}=a_{n-1}+a_{n-2}$:

$$
a_{n}=\alpha_{1}\left(\frac{1}{2}(1+\sqrt{5})\right)^{n}+\alpha_{2}\left(\frac{1}{2}(1-\sqrt{5})\right)^{n} .
$$

Initial conditions: For example, suppose we have $a_{0}=0$ and $a_{1}=1$. To solve for the specific solution, just plug those values into the general solution and solve for the unknowns.

$$
\begin{aligned}
0 & =a_{0}=\alpha_{1}\left(\frac{1}{2}(1+\sqrt{5})\right)^{0}+\alpha_{2}\left(\frac{1}{2}(1-\sqrt{5})\right)^{0}=\alpha_{1}+\alpha_{2} \\
1 & =a_{1}=\alpha_{1}\left(\frac{1}{2}(1+\sqrt{5})\right)^{1}+\alpha_{2}\left(\frac{1}{2}(1-\sqrt{5})\right)^{1} \\
& =\alpha_{1}\left(\frac{1}{2}(1+\sqrt{5})\right)-\alpha_{1}\left(\frac{1}{2}(1-\sqrt{5})\right)=\alpha_{1} \sqrt{5}
\end{aligned}
$$

So $\alpha_{1}=1 / \sqrt{5}$ and $\alpha_{2}=-1 / \sqrt{5}$.

Incorporating initial conditions: specific solutions

Now, we have a general solution to the recurrence relation
$a_{n}=a_{n-1}+a_{n-2}$:

$$
a_{n}=\alpha_{1}\left(\frac{1}{2}(1+\sqrt{5})\right)^{n}+\alpha_{2}\left(\frac{1}{2}(1-\sqrt{5})\right)^{n} .
$$

Initial conditions: For example, suppose we have $a_{0}=0$ and $a_{1}=1$. To solve for the specific solution, just plug those values into the general solution and solve for the unknowns.

$$
\begin{aligned}
0 & =a_{0}=\alpha_{1}\left(\frac{1}{2}(1+\sqrt{5})\right)^{0}+\alpha_{2}\left(\frac{1}{2}(1-\sqrt{5})\right)^{0}=\alpha_{1}+\alpha_{2} \\
1 & =a_{1}=\alpha_{1}\left(\frac{1}{2}(1+\sqrt{5})\right)^{1}+\alpha_{2}\left(\frac{1}{2}(1-\sqrt{5})\right)^{1} \\
& =\alpha_{1}\left(\frac{1}{2}(1+\sqrt{5})\right)-\alpha_{1}\left(\frac{1}{2}(1-\sqrt{5})\right)=\alpha_{1} \sqrt{5}
\end{aligned}
$$

So $\alpha_{1}=1 / \sqrt{5}$ and $\alpha_{2}=-1 / \sqrt{5}$. Therefore

$$
a_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n} .
$$

Incorporating initial conditions: specific solutions

Now, we have a general solution to the recurrence relation
$a_{n}=a_{n-1}+a_{n-2}$:

$$
a_{n}=\alpha_{1}\left(\frac{1}{2}(1+\sqrt{5})\right)^{n}+\alpha_{2}\left(\frac{1}{2}(1-\sqrt{5})\right)^{n} .
$$

Initial conditions: For example, suppose we have $a_{0}=0$ and $a_{1}=1$. To solve for the specific solution, just plug those values into the general solution and solve for the unknowns.

$$
\begin{aligned}
0 & =a_{0}=\alpha_{1}\left(\frac{1}{2}(1+\sqrt{5})\right)^{0}+\alpha_{2}\left(\frac{1}{2}(1-\sqrt{5})\right)^{0}=\alpha_{1}+\alpha_{2} \\
1 & =a_{1}=\alpha_{1}\left(\frac{1}{2}(1+\sqrt{5})\right)^{1}+\alpha_{2}\left(\frac{1}{2}(1-\sqrt{5})\right)^{1} \\
& =\alpha_{1}\left(\frac{1}{2}(1+\sqrt{5})\right)-\alpha_{1}\left(\frac{1}{2}(1-\sqrt{5})\right)=\alpha_{1} \sqrt{5} .
\end{aligned}
$$

So $\alpha_{1}=1 / \sqrt{5}$ and $\alpha_{2}=-1 / \sqrt{5}$. Therefore

$$
a_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n} . \quad \text { You try Exercise } 32
$$

Theorem 2: Solving linear homogeneous with repeated roots Let $c_{1}, c_{2}, \ldots, c_{k}$ be real numbers. Suppose that the characteristic equation has roots $r_{1}, r_{2}, \ldots, r_{\ell}$ with multiplicities $m_{1}, m_{2}, \ldots, m_{\ell}$. Then a sequence $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ is a solution of the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k} a_{n-k}$ if and only if

$$
a_{n}=p_{1}(n) r_{1}^{n}+p_{2}(n) r_{2}^{n}+\cdots+p_{\ell}(n) r_{\ell}^{n},
$$

where $p_{i}(n)$ are polynomials in n of degree $m_{i}-1$.

Theorem 2: Solving linear homogeneous with repeated roots Let $c_{1}, c_{2}, \ldots, c_{k}$ be real numbers. Suppose that the characteristic equation has roots $r_{1}, r_{2}, \ldots, r_{\ell}$ with multiplicities $m_{1}, m_{2}, \ldots, m_{\ell}$. Then a sequence $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ is a solution of the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k} a_{n-k}$ if and only if

$$
a_{n}=p_{1}(n) r_{1}^{n}+p_{2}(n) r_{2}^{n}+\cdots+p_{\ell}(n) r_{\ell}^{n},
$$

where $p_{i}(n)$ are polynomials in n of degree $m_{i}-1$.
Example: $a_{n}=-a_{n-1}+a_{n-2}+a_{n-3}$.

Theorem 2: Solving linear homogeneous with repeated roots Let $c_{1}, c_{2}, \ldots, c_{k}$ be real numbers. Suppose that the characteristic equation has roots $r_{1}, r_{2}, \ldots, r_{\ell}$ with multiplicities $m_{1}, m_{2}, \ldots, m_{\ell}$. Then a sequence $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ is a solution of the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k} a_{n-k}$ if and only if

$$
a_{n}=p_{1}(n) r_{1}^{n}+p_{2}(n) r_{2}^{n}+\cdots+p_{\ell}(n) r_{\ell}^{n},
$$

where $p_{i}(n)$ are polynomials in n of degree $m_{i}-1$.
Example: $a_{n}=-a_{n-1}+a_{n-2}+a_{n-3}$.
Characteristic equation:

$$
0=r^{3}+r^{2}-r-1=(r+1)^{2}(r-1)^{1} .
$$

Theorem 2: Solving linear homogeneous with repeated roots Let $c_{1}, c_{2}, \ldots, c_{k}$ be real numbers. Suppose that the characteristic equation has roots $r_{1}, r_{2}, \ldots, r_{\ell}$ with multiplicities $m_{1}, m_{2}, \ldots, m_{\ell}$. Then a sequence $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ is a solution of the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k} a_{n-k}$ if and only if

$$
a_{n}=p_{1}(n) r_{1}^{n}+p_{2}(n) r_{2}^{n}+\cdots+p_{\ell}(n) r_{\ell}^{n},
$$

where $p_{i}(n)$ are polynomials in n of degree $m_{i}-1$.
Example: $a_{n}=-a_{n-1}+a_{n-2}+a_{n-3}$.
Characteristic equation:

$$
0=r^{3}+r^{2}-r-1=(r+1)^{2}(r-1)^{1} .
$$

General solution:

$$
a_{n}=\left(\alpha_{0}+\alpha_{1} n\right)(-1)^{n}+\beta(1)^{n} .
$$

Theorem 2: Solving linear homogeneous with repeated roots Let $c_{1}, c_{2}, \ldots, c_{k}$ be real numbers. Suppose that the characteristic equation has roots $r_{1}, r_{2}, \ldots, r_{\ell}$ with multiplicities $m_{1}, m_{2}, \ldots, m_{\ell}$. Then a sequence $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ is a solution of the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k} a_{n-k}$ if and only if

$$
a_{n}=p_{1}(n) r_{1}^{n}+p_{2}(n) r_{2}^{n}+\cdots+p_{\ell}(n) r_{\ell}^{n},
$$

where $p_{i}(n)$ are polynomials in n of degree $m_{i}-1$.
Example: $a_{n}=-a_{n-1}+a_{n-2}+a_{n-3}$.
Characteristic equation:

$$
0=r^{3}+r^{2}-r-1=(r+1)^{2}(r-1)^{1} .
$$

General solution:

$$
a_{n}=\left(\alpha_{0}+\alpha_{1} n\right)(-1)^{n}+\beta(1)^{n} .
$$

Theorem 2: Solving linear homogeneous with repeated roots Let $c_{1}, c_{2}, \ldots, c_{k}$ be real numbers. Suppose that the characteristic equation has roots $r_{1}, r_{2}, \ldots, r_{\ell}$ with multiplicities $m_{1}, m_{2}, \ldots, m_{\ell}$. Then a sequence $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ is a solution of the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k} a_{n-k}$ if and only if

$$
a_{n}=p_{1}(n) r_{1}^{n}+p_{2}(n) r_{2}^{n}+\cdots+p_{\ell}(n) r_{\ell}^{n},
$$

where $p_{i}(n)$ are polynomials in n of degree $m_{i}-1$.
Example: $a_{n}=-a_{n-1}+a_{n-2}+a_{n-3}$.
Characteristic equation:

$$
0=r^{3}+r^{2}-r-1=(r+1)^{2}(r-1)^{1} .
$$

General solution:

$$
a_{n}=\left(\alpha_{0}+\alpha_{1} n\right)(-1)^{n}+\beta(1)^{n} .
$$

Theorem 2: Solving linear homogeneous with repeated roots Let $c_{1}, c_{2}, \ldots, c_{k}$ be real numbers. Suppose that the characteristic equation has roots $r_{1}, r_{2}, \ldots, r_{\ell}$ with multiplicities $m_{1}, m_{2}, \ldots, m_{\ell}$. Then a sequence $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ is a solution of the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k} a_{n-k}$ if and only if

$$
a_{n}=p_{1}(n) r_{1}^{n}+p_{2}(n) r_{2}^{n}+\cdots+p_{\ell}(n) r_{\ell}^{n}
$$

where $p_{i}(n)$ are polynomials in n of degree $m_{i}-1$.
Think of Theorems 1 and 2 as recipes for cooking up solutions!

Theorem 2: Solving linear homogeneous with repeated roots Let $c_{1}, c_{2}, \ldots, c_{k}$ be real numbers. Suppose that the characteristic equation has roots $r_{1}, r_{2}, \ldots, r_{\ell}$ with multiplicities $m_{1}, m_{2}, \ldots, m_{\ell}$. Then a sequence $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ is a solution of the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k} a_{n-k}$ if and only if

$$
a_{n}=p_{1}(n) r_{1}^{n}+p_{2}(n) r_{2}^{n}+\cdots+p_{\ell}(n) r_{\ell}^{n}
$$

where $p_{i}(n)$ are polynomials in n of degree $m_{i}-1$.
Think of Theorems 1 and 2 as recipes for cooking up solutions!
Goal: You need k servings of solutions.

Theorem 2: Solving linear homogeneous with repeated roots Let $c_{1}, c_{2}, \ldots, c_{k}$ be real numbers. Suppose that the characteristic equation has roots $r_{1}, r_{2}, \ldots, r_{\ell}$ with multiplicities $m_{1}, m_{2}, \ldots, m_{\ell}$. Then a sequence $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ is a solution of the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k} a_{n-k}$ if and only if

$$
a_{n}=p_{1}(n) r_{1}^{n}+p_{2}(n) r_{2}^{n}+\cdots+p_{\ell}(n) r_{\ell}^{n}
$$

where $p_{i}(n)$ are polynomials in n of degree $m_{i}-1$.
Think of Theorems 1 and 2 as recipes for cooking up solutions!
Goal: You need k servings of solutions.

1. If you have enough ingredients from the char. eq., then just use those.
(Thm 1)

Theorem 2: Solving linear homogeneous with repeated roots Let $c_{1}, c_{2}, \ldots, c_{k}$ be real numbers. Suppose that the characteristic equation has roots $r_{1}, r_{2}, \ldots, r_{\ell}$ with multiplicities $m_{1}, m_{2}, \ldots, m_{\ell}$. Then a sequence $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ is a solution of the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k} a_{n-k}$ if and only if

$$
a_{n}=p_{1}(n) r_{1}^{n}+p_{2}(n) r_{2}^{n}+\cdots+p_{\ell}(n) r_{\ell}^{n}
$$

where $p_{i}(n)$ are polynomials in n of degree $m_{i}-1$.
Think of Theorems 1 and 2 as recipes for cooking up solutions!
Goal: You need k servings of solutions.

1. If you have enough ingredients from the char. eq., then just use those.
(Thm 1)
2. If the char. eq. didn't give you enough, you'll need to make some more first:
(Thm 2)

Theorem 2: Solving linear homogeneous with repeated roots Let $c_{1}, c_{2}, \ldots, c_{k}$ be real numbers. Suppose that the characteristic equation has roots $r_{1}, r_{2}, \ldots, r_{\ell}$ with multiplicities $m_{1}, m_{2}, \ldots, m_{\ell}$. Then a sequence $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ is a solution of the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k} a_{n-k}$ if and only if

$$
a_{n}=p_{1}(n) r_{1}^{n}+p_{2}(n) r_{2}^{n}+\cdots+p_{\ell}(n) r_{\ell}^{n}
$$

where $p_{i}(n)$ are polynomials in n of degree $m_{i}-1$.
Think of Theorems 1 and 2 as recipes for cooking up solutions!
Goal: You need k servings of solutions.

1. If you have enough ingredients from the char. eq., then just use those.
(Thm 1)
2. If the char. eq. didn't give you enough, you'll need to make some more first:
(Thm 2)

- if a root r was repeated m times, you'll need to stretch it for m servings by multiplying it by n successively until you have enough.

Goal: You need k servings of solutions.

1. If you have enough ingredients from the char. eq., then just use those.
2. If the char. eq. didn't give you enough, you'll need to make some more first:

- if a root r was repeated m times, you'll need to stretch it for m servings by multiplying it by n successively until you have enough.

Example: $a_{n}=5 a_{n-1}+5 a_{n-2}-25 a_{n-3}-40 a_{n-4}-16 a_{n-5}$.

Goal: You need k servings of solutions.

1. If you have enough ingredients from the char. eq., then just use those.
2. If the char. eq. didn't give you enough, you'll need to make some more first:

- if a root r was repeated m times, you'll need to stretch it for m servings by multiplying it by n successively until you have enough.

Example: $a_{n}=5 a_{n-1}+5 a_{n-2}-25 a_{n-3}-40 a_{n-4}-16 a_{n-5}$.
Characteristic equation:

$$
0=r^{5}-5 r^{4}-5 r^{3}+25 r^{2}+40 r+16
$$

Goal: You need k servings of solutions.

1. If you have enough ingredients from the char. eq., then just use those.
2. If the char. eq. didn't give you enough, you'll need to make some more first:

- if a root r was repeated m times, you'll need to stretch it for m servings by multiplying it by n successively until you have enough.

Example: $a_{n}=5 a_{n-1}+5 a_{n-2}-25 a_{n-3}-40 a_{n-4}-16 a_{n-5}$.
Characteristic equation:

$$
0=r^{5}-5 r^{4}-5 r^{3}+25 r^{2}+40 r+16=(r-4)^{2}(r+1)^{3} .
$$

Goal: You need k servings of solutions.

1. If you have enough ingredients from the char. eq., then just use those.
2. If the char. eq. didn't give you enough, you'll need to make some more first:

- if a root r was repeated m times, you'll need to stretch it for m servings by multiplying it by n successively until you have enough.

Example: $a_{n}=5 a_{n-1}+5 a_{n-2}-25 a_{n-3}-40 a_{n-4}-16 a_{n-5}$.
Characteristic equation:

$$
0=r^{5}-5 r^{4}-5 r^{3}+25 r^{2}+40 r+16=(r-4)^{2}(r+1)^{3} .
$$

Here, $r_{1}=4$ needs to cover two solutions, so we'll stretch it by using solutions

$$
4^{n} \quad \text { and } \quad n 4^{n} ;
$$

Goal: You need k servings of solutions.

1. If you have enough ingredients from the char. eq., then just use those.
2. If the char. eq. didn't give you enough, you'll need to make some more first:

- if a root r was repeated m times, you'll need to stretch it for m servings by multiplying it by n successively until you have enough.

Example: $a_{n}=5 a_{n-1}+5 a_{n-2}-25 a_{n-3}-40 a_{n-4}-16 a_{n-5}$.
Characteristic equation:

$$
0=r^{5}-5 r^{4}-5 r^{3}+25 r^{2}+40 r+16=(r-4)^{2}(r+1)^{3} .
$$

Here, $r_{1}=4$ needs to cover two solutions, so we'll stretch it by using solutions

$$
4^{n} \quad \text { and } \quad n 4^{n} ;
$$

and $r_{2}=-1$ needs to cover three solutions, so we'll stretch it by using solutions

$$
(-1)^{n}, \quad n(-1)^{n}, \quad \text { and } \quad n^{2}(-1)^{n} .
$$

Goal: You need k servings of solutions.

1. If you have enough ingredients from the char. eq., then just use those.
2. If the char. eq. didn't give you enough, you'll need to make some more first:

- if a root r was repeated m times, you'll need to stretch it for m servings by multiplying it by n successively until you have enough.

Example: $a_{n}=5 a_{n-1}+5 a_{n-2}-25 a_{n-3}-40 a_{n-4}-16 a_{n-5}$.
Characteristic equation:

$$
0=r^{5}-5 r^{4}-5 r^{3}+25 r^{2}+40 r+16=(r-4)^{2}(r+1)^{3} .
$$

Here, $r_{1}=4$ needs to cover two solutions, so we'll stretch it by using solutions

$$
4^{n} \quad \text { and } \quad n 4^{n} ;
$$

and $r_{2}=-1$ needs to cover three solutions, so we'll stretch it by using solutions

$$
(-1)^{n}, \quad n(-1)^{n}, \quad \text { and } \quad n^{2}(-1)^{n} .
$$

General solution: (simplified)

$$
a_{n}=\left(\alpha_{0}+\alpha_{1} n\right)(4)^{n}+\left(\beta_{0}+\beta_{1} n+\beta_{2} n^{2}\right)(-1)^{n}
$$

Goal: You need k servings of solutions.

1. If you have enough ingredients from the char. eq., then just use those.
2. If the char. eq. didn't give you enough, you'll need to make some more first:

- if a root r was repeated m times, you'll need to stretch it for m servings by multiplying it by n successively until you have enough.

Example: $a_{n}=5 a_{n-1}+5 a_{n-2}-25 a_{n-3}-40 a_{n-4}-16 a_{n-5}$.
Characteristic equation:

$$
0=r^{5}-5 r^{4}-5 r^{3}+25 r^{2}+40 r+16=(r-4)^{2}(r+1)^{3} .
$$

Here, $r_{1}=4$ needs to cover two solutions, so we'll stretch it by using solutions

$$
4^{n} \quad \text { and } \quad n 4^{n} ;
$$

and $r_{2}=-1$ needs to cover three solutions, so we'll stretch it by using solutions

$$
(-1)^{n}, \quad n(-1)^{n}, \quad \text { and } \quad n^{2}(-1)^{n} .
$$

General solution: (simplified)

$$
a_{n}=\left(\alpha_{0}+\alpha_{1} n\right)(4)^{n}+\left(\beta_{0}+\beta_{1} n+\beta_{2} n^{2}\right)(-1)^{n} .
$$

Let's see why:
Proof of Theorem 1 for $k=2$. Consider the recurrence relation

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}
$$

and suppose the corresponding characteristic equation $r^{2}-c_{1} r-c_{2}=0$ has distinct roots r_{1} and r_{2}.

Let's see why:
Proof of Theorem $\mathbf{1}$ for $k=2$. Consider the recurrence relation

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}
$$

and suppose the corresponding characteristic equation $r^{2}-c_{1} r-c_{2}=0$ has distinct roots r_{1} and r_{2}. Note that this means that

$$
r_{1}^{2}=c_{1} r_{1}+c_{2} \quad \text { and } \quad r_{2}^{2}=c_{1} r_{2}+c_{2}
$$

Let's see why:
Proof of Theorem $\mathbf{1}$ for $k=2$. Consider the recurrence relation

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}
$$

and suppose the corresponding characteristic equation $r^{2}-c_{1} r-c_{2}=0$ has distinct roots r_{1} and r_{2}. Note that this means that

$$
r_{1}^{2}=c_{1} r_{1}+c_{2} \quad \text { and } \quad r_{2}^{2}=c_{1} r_{2}+c_{2}
$$

First let's see that $a_{n}=\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{n}$ is a solution for any α_{1}, α_{2} :

Let's see why:
Proof of Theorem 1 for $k=2$. Consider the recurrence relation

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}
$$

and suppose the corresponding characteristic equation $r^{2}-c_{1} r-c_{2}=0$ has distinct roots r_{1} and r_{2}. Note that this means that

$$
r_{1}^{2}=c_{1} r_{1}+c_{2} \quad \text { and } \quad r_{2}^{2}=c_{1} r_{2}+c_{2}
$$

First let's see that $a_{n}=\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{n}$ is a solution for any α_{1}, α_{2} :

$$
c_{1} a_{n-1}+c_{2} a_{n-2}
$$

Let's see why:
Proof of Theorem 1 for $k=2$. Consider the recurrence relation

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2},
$$

and suppose the corresponding characteristic equation $r^{2}-c_{1} r-c_{2}=0$ has distinct roots r_{1} and r_{2}. Note that this means that

$$
r_{1}^{2}=c_{1} r_{1}+c_{2} \quad \text { and } \quad r_{2}^{2}=c_{1} r_{2}+c_{2}
$$

First let's see that $a_{n}=\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{n}$ is a solution for any α_{1}, α_{2} :

$$
c_{1} a_{n-1}+c_{2} a_{n-2}=c_{1}\left(\alpha_{1} r_{1}^{n-1}+\alpha_{2} r_{2}^{n-1}\right)+c_{2}\left(\alpha_{1} r_{1}^{n-2}+\alpha_{2} r_{2}^{n-2}\right)
$$

Let's see why:
Proof of Theorem 1 for $k=2$. Consider the recurrence relation

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2},
$$

and suppose the corresponding characteristic equation $r^{2}-c_{1} r-c_{2}=0$ has distinct roots r_{1} and r_{2}. Note that this means that

$$
r_{1}^{2}=c_{1} r_{1}+c_{2} \quad \text { and } \quad r_{2}^{2}=c_{1} r_{2}+c_{2}
$$

First let's see that $a_{n}=\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{n}$ is a solution for any α_{1}, α_{2} :

$$
\begin{aligned}
c_{1} a_{n-1}+c_{2} a_{n-2} & =c_{1}\left(\alpha_{1} r_{1}^{n-1}+\alpha_{2} r_{2}^{n-1}\right)+c_{2}\left(\alpha_{1} r_{1}^{n-2}+\alpha_{2} r_{2}^{n-2}\right) \\
& =\alpha_{1} r_{1}^{n-2}\left(c_{1} r_{1}+c_{2}\right)+\alpha_{2} r_{2}^{n-2}\left(c_{1} r_{2}+c_{2}\right)
\end{aligned}
$$

Let's see why:
Proof of Theorem 1 for $k=2$. Consider the recurrence relation

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2},
$$

and suppose the corresponding characteristic equation $r^{2}-c_{1} r-c_{2}=0$ has distinct roots r_{1} and r_{2}. Note that this means that

$$
r_{1}^{2}=c_{1} r_{1}+c_{2} \quad \text { and } \quad r_{2}^{2}=c_{1} r_{2}+c_{2}
$$

First let's see that $a_{n}=\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{n}$ is a solution for any α_{1}, α_{2} :

$$
\begin{aligned}
c_{1} a_{n-1}+c_{2} a_{n-2} & =c_{1}\left(\alpha_{1} r_{1}^{n-1}+\alpha_{2} r_{2}^{n-1}\right)+c_{2}\left(\alpha_{1} r_{1}^{n-2}+\alpha_{2} r_{2}^{n-2}\right) \\
& =\alpha_{1} r_{1}^{n-2}\left(c_{1} r_{1}+c_{2}\right)+\alpha_{2} r_{2}^{n-2}\left(c_{1} r_{2}+c_{2}\right)
\end{aligned}
$$

Let's see why:
Proof of Theorem 1 for $k=2$. Consider the recurrence relation

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2},
$$

and suppose the corresponding characteristic equation $r^{2}-c_{1} r-c_{2}=0$ has distinct roots r_{1} and r_{2}. Note that this means that

$$
r_{1}^{2}=c_{1} r_{1}+c_{2} \quad \text { and } \quad r_{2}^{2}=c_{1} r_{2}+c_{2}
$$

First let's see that $a_{n}=\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{n}$ is a solution for any α_{1}, α_{2} :

$$
\begin{aligned}
c_{1} a_{n-1}+c_{2} a_{n-2} & =c_{1}\left(\alpha_{1} r_{1}^{n-1}+\alpha_{2} r_{2}^{n-1}\right)+c_{2}\left(\alpha_{1} r_{1}^{n-2}+\alpha_{2} r_{2}^{n-2}\right) \\
& =\alpha_{1} r_{1}^{n-2}\left(c_{1} r_{1}+c_{2}\right)+\alpha_{2} r_{2}^{n-2}\left(c_{1} r_{2}+c_{2}\right) \\
& =\alpha_{1} r_{1}^{n-2}\left(r_{1}^{2}\right)+\alpha_{2} r_{2}^{n-2}\left(r_{2}^{2}\right)
\end{aligned}
$$

Let's see why:
Proof of Theorem 1 for $k=2$. Consider the recurrence relation

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2},
$$

and suppose the corresponding characteristic equation $r^{2}-c_{1} r-c_{2}=0$ has distinct roots r_{1} and r_{2}. Note that this means that

$$
r_{1}^{2}=c_{1} r_{1}+c_{2} \quad \text { and } \quad r_{2}^{2}=c_{1} r_{2}+c_{2}
$$

First let's see that $a_{n}=\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{n}$ is a solution for any α_{1}, α_{2} :

$$
\begin{aligned}
c_{1} a_{n-1}+c_{2} a_{n-2} & =c_{1}\left(\alpha_{1} r_{1}^{n-1}+\alpha_{2} r_{2}^{n-1}\right)+c_{2}\left(\alpha_{1} r_{1}^{n-2}+\alpha_{2} r_{2}^{n-2}\right) \\
& =\alpha_{1} r_{1}^{n-2}\left(c_{1} r_{1}+c_{2}\right)+\alpha_{2} r_{2}^{n-2}\left(c_{1} r_{2}+c_{2}\right) \\
& =\alpha_{1} r_{1}^{n-2}\left(r_{1}^{2}\right)+\alpha_{2} r_{2}^{n-2}\left(r_{2}^{2}\right) \\
& =\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{n}
\end{aligned}
$$

Let's see why:
Proof of Theorem 1 for $k=2$. Consider the recurrence relation

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2},
$$

and suppose the corresponding characteristic equation $r^{2}-c_{1} r-c_{2}=0$ has distinct roots r_{1} and r_{2}. Note that this means that

$$
r_{1}^{2}=c_{1} r_{1}+c_{2} \quad \text { and } \quad r_{2}^{2}=c_{1} r_{2}+c_{2}
$$

First let's see that $a_{n}=\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{n}$ is a solution for any α_{1}, α_{2} :

$$
\begin{aligned}
c_{1} a_{n-1}+c_{2} a_{n-2} & =c_{1}\left(\alpha_{1} r_{1}^{n-1}+\alpha_{2} r_{2}^{n-1}\right)+c_{2}\left(\alpha_{1} r_{1}^{n-2}+\alpha_{2} r_{2}^{n-2}\right) \\
& =\alpha_{1} r_{1}^{n-2}\left(c_{1} r_{1}+c_{2}\right)+\alpha_{2} r_{2}^{n-2}\left(c_{1} r_{2}+c_{2}\right) \\
& =\alpha_{1} r_{1}^{n-2}\left(r_{1}^{2}\right)+\alpha_{2} r_{2}^{n-2}\left(r_{2}^{2}\right) \\
& =\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{n} \\
& =a_{n} .
\end{aligned}
$$

Proof of Theorem 1 for $k=2$ continued:

Now, we have to show that every solution to $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$ is of the form $a_{n}=\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{n}$.

Proof of Theorem 1 for $k=2$ continued:

Now, we have to show that every solution to $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$ is of the form $a_{n}=\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{n}$. To do this, note that the recurrence relation, together with "enough" initial conditions totally determines the sequence!

Proof of Theorem 1 for $k=2$ continued:

Now, we have to show that every solution to $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$ is of the form $a_{n}=\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{n}$. To do this, note that the recurrence relation, together with "enough" initial conditions totally determines the sequence!
So, take any solution $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ to this recursion relation. Whatever a_{0} and a_{1} are, those are the initial conditions.

Proof of Theorem 1 for $k=2$ continued:

Now, we have to show that every solution to $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$ is of the form $a_{n}=\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{n}$. To do this, note that the recurrence relation, together with "enough" initial conditions totally determines the sequence!
So, take any solution $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ to this recursion relation. Whatever a_{0} and a_{1} are, those are the initial conditions.
To do*: show that there is some α_{1} and α_{2} such that

$$
a_{0}=\alpha_{1} r_{1}^{0}+\alpha_{2} r_{2}^{0} \text { and } a_{1}=\alpha_{1} r_{1}^{1}+\alpha_{2} r_{2}^{1} .
$$

Proof of Theorem 1 for $k=2$ continued:

Now, we have to show that every solution to $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$ is of the form $a_{n}=\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{n}$. To do this, note that the recurrence relation, together with "enough" initial conditions totally determines the sequence!
So, take any solution $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ to this recursion relation. Whatever a_{0} and a_{1} are, those are the initial conditions.
To do*: show that there is some α_{1} and α_{2} such that

$$
a_{0}=\alpha_{1} r_{1}^{0}+\alpha_{2} r_{2}^{0} \text { and } a_{1}=\alpha_{1} r_{1}^{1}+\alpha_{2} r_{2}^{1} .
$$

Conclusion: Thus, since $\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{n}$ is a solution (by what we just did) and satisfies the same initial conditions, it must be the same solution as the one we picked.

Proof of Theorem 1 for $k=2$ continued:

Now, we have to show that every solution to $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$ is of the form $a_{n}=\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{n}$. To do this, note that the recurrence relation, together with "enough" initial conditions totally determines the sequence!
So, take any solution $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ to this recursion relation. Whatever a_{0} and a_{1} are, those are the initial conditions.
To do*: show that there is some α_{1} and α_{2} such that

$$
a_{0}=\alpha_{1} r_{1}^{0}+\alpha_{2} r_{2}^{0} \text { and } a_{1}=\alpha_{1} r_{1}^{1}+\alpha_{2} r_{2}^{1} .
$$

Conclusion: Thus, since $\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{n}$ is a solution (by what we just did) and satisfies the same initial conditions, it must be the same solution as the one we picked.
*: Solve

$$
a_{0}=\alpha_{1}+\alpha_{2} \quad \text { and } \quad a_{1}=\alpha_{1} r_{1}+\alpha_{2} r_{2}
$$

for α_{1} and α_{2}.
*: Solve

$$
a_{0}=\alpha_{1}+\alpha_{2} \quad \text { and } \quad a_{1}=\alpha_{1} r_{1}+\alpha_{2} r_{2}
$$

for α_{1} and α_{2} :
*: Solve

$$
a_{0}=\alpha_{1}+\alpha_{2} \quad \text { and } \quad a_{1}=\alpha_{1} r_{1}+\alpha_{2} r_{2}
$$

for α_{1} and α_{2} :
The first equation gives $\alpha_{2}=a_{0}-\alpha_{1}$.
*: Solve

$$
a_{0}=\alpha_{1}+\alpha_{2} \quad \text { and } \quad a_{1}=\alpha_{1} r_{1}+\alpha_{2} r_{2}
$$

for α_{1} and α_{2} :
The first equation gives $\alpha_{2}=a_{0}-\alpha_{1}$.
Substitute this into the second equation to get

$$
a_{1}=\alpha_{1} r_{1}+\left(a_{0}-\alpha_{1}\right) r_{2}
$$

*: Solve

$$
a_{0}=\alpha_{1}+\alpha_{2} \quad \text { and } \quad a_{1}=\alpha_{1} r_{1}+\alpha_{2} r_{2}
$$

for α_{1} and α_{2} :
The first equation gives $\alpha_{2}=a_{0}-\alpha_{1}$.
Substitute this into the second equation to get

$$
a_{1}=\alpha_{1} r_{1}+\left(a_{0}-\alpha_{1}\right) r_{2}=\alpha_{1}\left(r_{1}-r_{2}\right)+a_{0} r_{2}
$$

*: Solve

$$
a_{0}=\alpha_{1}+\alpha_{2} \quad \text { and } \quad a_{1}=\alpha_{1} r_{1}+\alpha_{2} r_{2}
$$

for α_{1} and α_{2} :
The first equation gives $\alpha_{2}=a_{0}-\alpha_{1}$.
Substitute this into the second equation to get

$$
a_{1}=\alpha_{1} r_{1}+\left(a_{0}-\alpha_{1}\right) r_{2}=\alpha_{1}\left(r_{1}-r_{2}\right)+a_{0} r_{2}
$$

So as long as $r_{1} \neq r_{2}$, we have

$$
\alpha_{1}=\frac{a_{1}-a_{0} r_{2}}{r_{1}-r_{2}} \quad \text { and } \quad \alpha_{2}=a_{0}-\frac{a_{1}-a_{0} r_{2}}{r_{1}-r_{2}}
$$

*: Solve

$$
a_{0}=\alpha_{1}+\alpha_{2} \quad \text { and } \quad a_{1}=\alpha_{1} r_{1}+\alpha_{2} r_{2}
$$

for α_{1} and α_{2} :
The first equation gives $\alpha_{2}=a_{0}-\alpha_{1}$.
Substitute this into the second equation to get

$$
a_{1}=\alpha_{1} r_{1}+\left(a_{0}-\alpha_{1}\right) r_{2}=\alpha_{1}\left(r_{1}-r_{2}\right)+a_{0} r_{2}
$$

So as long as $r_{1} \neq r_{2}$, we have

$$
\alpha_{1}=\frac{a_{1}-a_{0} r_{2}}{r_{1}-r_{2}} \quad \text { and } \quad \alpha_{2}=a_{0}-\frac{a_{1}-a_{0} r_{2}}{r_{1}-r_{2}}
$$

This completes our proof of Theorem 1 for $k=2$.

