Tree diagrams: A decision tree consists of a "root", a number of "branches" leaving the root, and possible additional branches leaving the endpoints of other branches (usually drawn upside-down). We use a branch to represent each possible choice. We represent the possible outcomes by "leaves", the endpoints of branches not having other branches starting at them. (See §6.1)

Tree diagrams: A decision tree consists of a "root", a number of "branches" leaving the root, and possible additional branches leaving the endpoints of other branches (usually drawn upside-down). We use a branch to represent each possible choice. We represent the possible outcomes by "leaves", the endpoints of branches not having other branches starting at them. (See §6.1) Example: How many strings of length-three of 1 's and 0 's do not have two consecutive 1's?

Tree diagrams: A decision tree consists of a "root", a number of "branches" leaving the root, and possible additional branches leaving the endpoints of other branches (usually drawn upside-down). We use a branch to represent each possible choice. We represent the possible outcomes by "leaves", the endpoints of branches not having other branches starting at them. (See §6.1) Example: How many strings of length-three of 1 's and 0 's do not have two consecutive 1's?

Tree diagrams: A decision tree consists of a "root", a number of "branches" leaving the root, and possible additional branches leaving the endpoints of other branches (usually drawn upside-down). We use a branch to represent each possible choice. We represent the possible outcomes by "leaves", the endpoints of branches not having other branches starting at them. (See §6.1) Example: How many strings of length-three of 1 's and 0 's do not have two consecutive 1's?

Tree diagrams: A decision tree consists of a "root", a number of "branches" leaving the root, and possible additional branches leaving the endpoints of other branches (usually drawn upside-down). We use a branch to represent each possible choice. We represent the possible outcomes by "leaves", the endpoints of branches not having other branches starting at them. (See §6.1) Example: How many strings of length-three of 1 's and 0 's do not have two consecutive 1's?

Tree diagrams: A decision tree consists of a "root", a number of "branches" leaving the root, and possible additional branches leaving the endpoints of other branches (usually drawn upside-down). We use a branch to represent each possible choice. We represent the possible outcomes by "leaves", the endpoints of branches not having other branches starting at them. (See §6.1) Example: How many strings of length-three of 1 's and 0 's do not have two consecutive 1's?

Tree diagrams: A decision tree consists of a "root", a number of "branches" leaving the root, and possible additional branches leaving the endpoints of other branches (usually drawn upside-down). We use a branch to represent each possible choice. We represent the possible outcomes by "leaves", the endpoints of branches not having other branches starting at them. (See §6.1) Example: How many strings of length-three of 1 's and 0 's do not have two consecutive 1's?

Tree diagrams: A decision tree consists of a "root", a number of "branches" leaving the root, and possible additional branches leaving the endpoints of other branches (usually drawn upside-down). We use a branch to represent each possible choice. We represent the possible outcomes by "leaves", the endpoints of branches not having other branches starting at them. (See §6.1) Example: How many strings of length-three of 1 's and 0 's do not have two consecutive 1's?

Tree diagrams: A decision tree consists of a "root", a number of "branches" leaving the root, and possible additional branches leaving the endpoints of other branches (usually drawn upside-down). We use a branch to represent each possible choice. We represent the possible outcomes by "leaves", the endpoints of branches not having other branches starting at them. (See §6.1) Example: How many strings of length-three of 1 's and 0 's do not have two consecutive 1's?

Tree diagrams: A decision tree consists of a "root", a number of "branches" leaving the root, and possible additional branches leaving the endpoints of other branches (usually drawn upside-down). We use a branch to represent each possible choice. We represent the possible outcomes by "leaves", the endpoints of branches not having other branches starting at them. (See §6.1) Example: How many strings of length-three of 1 's and 0 's do not have two consecutive 1's?

Tree diagrams: A decision tree consists of a "root", a number of "branches" leaving the root, and possible additional branches leaving the endpoints of other branches (usually drawn upside-down). We use a branch to represent each possible choice. We represent the possible outcomes by "leaves", the endpoints of branches not having other branches starting at them. (See §6.1) Example: How many strings of length-three of 1's and 0's do not have two consecutive 1's?

Tree diagrams: A decision tree consists of a "root", a number of "branches" leaving the root, and possible additional branches leaving the endpoints of other branches (usually drawn upside-down). We use a branch to represent each possible choice. We represent the possible outcomes by "leaves", the endpoints of branches not having other branches starting at them. (See §6.1) Example: How many strings of length-three of 1's and 0's do not have two consecutive 1's?

Tree diagrams: A decision tree consists of a "root", a number of "branches" leaving the root, and possible additional branches leaving the endpoints of other branches (usually drawn upside-down). We use a branch to represent each possible choice. We represent the possible outcomes by "leaves", the endpoints of branches not having other branches starting at them. (See §6.1) Example: How many strings of length-three of 1's and 0's do not have two consecutive 1's?

Tree diagrams: A decision tree consists of a "root", a number of "branches" leaving the root, and possible additional branches leaving the endpoints of other branches (usually drawn upside-down). We use a branch to represent each possible choice. We represent the possible outcomes by "leaves", the endpoints of branches not having other branches starting at them. (See §6.1) Example: How many strings of length-three of 1's and 0's do not have two consecutive 1's?

Tree diagrams: A decision tree consists of a "root", a number of "branches" leaving the root, and possible additional branches leaving the endpoints of other branches (usually drawn upside-down). We use a branch to represent each possible choice. We represent the possible outcomes by "leaves", the endpoints of branches not having other branches starting at them. (See §6.1) Example: How many strings of length-three of 1's and 0's do not have two consecutive 1's?

Tree diagrams: A decision tree consists of a "root", a number of "branches" leaving the root, and possible additional branches leaving the endpoints of other branches (usually drawn upside-down). We use a branch to represent each possible choice. We represent the possible outcomes by "leaves", the endpoints of branches not having other branches starting at them. (See §6.1) Example: How many strings of length-three of 1's and 0's do not have two consecutive 1's?

Tree diagrams: A decision tree consists of a "root", a number of "branches" leaving the root, and possible additional branches leaving the endpoints of other branches (usually drawn upside-down). We use a branch to represent each possible choice. We represent the possible outcomes by "leaves", the endpoints of branches not having other branches starting at them. (See §6.1) Example: How many strings of length-three of 1 's and 0 's do not have two consecutive 1's?

Tree diagrams: A decision tree consists of a "root", a number of "branches" leaving the root, and possible additional branches leaving the endpoints of other branches (usually drawn upside-down). We use a branch to represent each possible choice. We represent the possible outcomes by "leaves", the endpoints of branches not having other branches starting at them. (See §6.1) Example: How many strings of length-three of 1 's and 0 's do not have two consecutive 1's?

See also Examples 21-23 in section 6.1. Note: the book labels the nodes by the choice; we label the edges by the choice and the nodes by the outcomes.

Tree diagrams: A decision tree consists of a "root", a number of "branches" leaving the root, and possible additional branches leaving the endpoints of other branches (usually drawn upside-down). We use a branch to represent each possible choice. We represent the possible outcomes by "leaves", the endpoints of branches not having other branches starting at them. (See §6.1) Example: How many strings of length-three of 1 's and 0 's do not have two consecutive 1's?

See also Examples 21-23 in section 6.1. Note: the book labels the nodes by the choice; we label the edges by the choice and the nodes by the outcomes.

You try: Exercise 29

Applications of recurrence relations

Recall that a recursive definition for a sequence is an expression of a_{n} using the previous terms:
For example: $\underbrace{a_{n}=3 a_{n-1}+a_{n-3}+1}_{\text {recurrence relation }}$

Applications of recurrence relations

Recall that a recursive definition for a sequence is an expression of a_{n} using the previous terms:

Example (Fibonacci's Rabbits)
Put two rabbits on an island. A pair of rabbits won't breed until they're 2 months old. Each mature pair of rabbits will produce a new pair of rabbits the following month. How many pairs of rabbits are there after n months? (assume balanced sexes)

Applications of recurrence relations

Recall that a recursive definition for a sequence is an expression of a_{n} using the previous terms:

Example (Fibonacci's Rabbits)
Put two rabbits on an island. A pair of rabbits won't breed until they're 2 months old. Each mature pair of rabbits will produce a new pair of rabbits the following month. How many pairs of rabbits are there after n months? (assume balanced sexes) Recurrence relation:

The number of

Number of pairs at month n

The number of pairs
$=$ already around $\quad+$ from month $n-1$
eligible parenting pairs at month n
(rabbits around since month $n-2$)

Applications of recurrence relations

Example (Fibonacci's Rabbits)
Put two rabbits on an island. A pair of rabbits won't breed until they're 2 months old. Each mature pair of rabbits will produce a new pair of rabbits the following month. How many pairs of rabbits are there after n months? (assume balanced sexes)
Recurrence relation:
$=\quad$ already around
from month $n-1$

$$
a_{n} \quad=\quad a_{n-1}
$$

The number of

Number of pairs at month n

Applications of recurrence relations

Example (Fibonacci's Rabbits)
Put two rabbits on an island. A pair of rabbits won't breed until they're 2 months old. Each mature pair of rabbits will produce a new pair of rabbits the following month. How many pairs of rabbits are there after n months? (assume balanced sexes)
Recurrence relation:
$\left.\left.\begin{array}{c}\begin{array}{c}\text { Number of pairs } \\ \text { at month } n\end{array}=\begin{array}{c}\text { The number of pairs } \\ \text { already around } \\ \text { from month } n-1\end{array} \\ a_{n}\end{array}+\begin{array}{c}\text { The number of } \\ \text { eligible parenting pairs } \\ \text { at month } n \\ \text { (rabbits around }\end{array}\right\} \begin{array}{c}a_{n-1} \\ \text { since month } n-2) \\ a_{n-2}\end{array}\right)$

Initial conditions: Start with 1 pair. Still have 1 pair in the 1st month. Then the 1 pair starts to breed.

Applications of recurrence relations

Example (Fibonacci's Rabbits)
Put two rabbits on an island. A pair of rabbits won't breed until they're 2 months old. Each mature pair of rabbits will produce a new pair of rabbits the following month. How many pairs of rabbits are there after n months? (assume balanced sexes)
Recurrence relation:
The number of

Number of pairs at month n
a_{n}
a_{n}
The number of pairs already around from month $n-1$
:---:
at month n
(rabbits around
since month $n-2$)

Initial conditions: Start with 1 pair. Still have 1 pair in the 1st month. Then the 1 pair starts to breed.

$$
a_{0}=1, \quad a_{1}=1
$$

Towers of Hanoi: Start with n discs of different sizes on the left-most of three pegs, in increasing order of size top-to-bottom. Move discs from pole to pole one at a time. End with all n discs on the right-most of three pegs, again in decreasing order top-to-bottom.

Towers of Hanoi: Start with n discs of different sizes on the left-most of three pegs, in increasing order of size top-to-bottom. Move discs from pole to pole one at a time. End with all n discs on the right-most of three pegs, again in decreasing order top-to-bottom.

Moved disc from pole 1 to pole 3.

Towers of Hanoi: Start with n discs of different sizes on the left-most of three pegs, in increasing order of size top-to-bottom. Move discs from pole to pole one at a time. End with all n discs on the right-most of three pegs, again in decreasing order top-to-bottom.

Moved disc from pole 1 to pole 2.

Towers of Hanoi: Start with n discs of different sizes on the left-most of three pegs, in increasing order of size top-to-bottom. Move discs from pole to pole one at a time. End with all n discs on the right-most of three pegs, again in decreasing order top-to-bottom.

Moved disc from pole 3 to pole 2.

Towers of Hanoi: Start with n discs of different sizes on the left-most of three pegs, in increasing order of size top-to-bottom. Move discs from pole to pole one at a time. End with all n discs on the right-most of three pegs, again in decreasing order top-to-bottom.

Moved disc from pole 1 to pole 3.

Towers of Hanoi: Start with n discs of different sizes on the left-most of three pegs, in increasing order of size top-to-bottom. Move discs from pole to pole one at a time. End with all n discs on the right-most of three pegs, again in decreasing order top-to-bottom.

Moved disc from pole 2 to pole 1.

Towers of Hanoi: Start with n discs of different sizes on the left-most of three pegs, in increasing order of size top-to-bottom. Move discs from pole to pole one at a time. End with all n discs on the right-most of three pegs, again in decreasing order top-to-bottom.

Moved disc from pole 2 to pole 3.

Towers of Hanoi: Start with n discs of different sizes on the left-most of three pegs, in increasing order of size top-to-bottom. Move discs from pole to pole one at a time. End with all n discs on the right-most of three pegs, again in decreasing order top-to-bottom.

Moved disc from pole 1 to pole 3.

Towers of Hanoi: Start with n discs of different sizes on the left-most of three pegs, in increasing order of size top-to-bottom. Move discs from pole to pole one at a time. End with all n discs on the right-most of three pegs, again in decreasing order top-to-bottom.

Towers of Hanoi: Start with n discs of different sizes on the left-most of three pegs, in increasing order of size top-to-bottom. Move discs from pole to pole one at a time. End with all n discs on the right-most of three pegs, again in decreasing order top-to-bottom.

Towers of Hanoi: Start with n discs of different sizes on the left-most of three pegs, in increasing order of size top-to-bottom. Move discs from pole to pole one at a time. End with all n discs on the right-most of three pegs, again in decreasing order top-to-bottom.

Moved disc from pole 1 to pole 2.

Towers of Hanoi: Start with n discs of different sizes on the left-most of three pegs, in increasing order of size top-to-bottom. Move discs from pole to pole one at a time. End with all n discs on the right-most of three pegs, again in decreasing order top-to-bottom.

Moved disc from pole 1 to pole 3.

Towers of Hanoi: Start with n discs of different sizes on the left-most of three pegs, in increasing order of size top-to-bottom. Move discs from pole to pole one at a time. End with all n discs on the right-most of three pegs, again in decreasing order top-to-bottom.

Moved disc from pole 2 to pole 3.

Towers of Hanoi: Start with n discs of different sizes on the left-most of three pegs, in increasing order of size top-to-bottom. Move discs from pole to pole one at a time. End with all n discs on the right-most of three pegs, again in decreasing order top-to-bottom.

Moved disc from pole 1 to pole 2.

Towers of Hanoi: Start with n discs of different sizes on the left-most of three pegs, in increasing order of size top-to-bottom. Move discs from pole to pole one at a time. End with all n discs on the right-most of three pegs, again in decreasing order top-to-bottom.

Moved disc from pole 3 to pole 1.

Towers of Hanoi: Start with n discs of different sizes on the left-most of three pegs, in increasing order of size top-to-bottom. Move discs from pole to pole one at a time. End with all n discs on the right-most of three pegs, again in decreasing order top-to-bottom.

Moved disc from pole 3 to pole 2.

Towers of Hanoi: Start with n discs of different sizes on the left-most of three pegs, in increasing order of size top-to-bottom. Move discs from pole to pole one at a time. End with all n discs on the right-most of three pegs, again in decreasing order top-to-bottom.

Moved disc from pole 1 to pole 2.

Towers of Hanoi: Start with n discs of different sizes on the left-most of three pegs, in increasing order of size top-to-bottom. Move discs from pole to pole one at a time. End with all n discs on the right-most of three pegs, again in decreasing order top-to-bottom.

Moved disc from pole 1 to pole 3.

Towers of Hanoi: Start with n discs of different sizes on the left-most of three pegs, in increasing order of size top-to-bottom. Move discs from pole to pole one at a time. End with all n discs on the right-most of three pegs, again in decreasing order top-to-bottom.

Moved disc from pole 2 to pole 3.

Towers of Hanoi: Start with n discs of different sizes on the left-most of three pegs, in increasing order of size top-to-bottom. Move discs from pole to pole one at a time. End with all n discs on the right-most of three pegs, again in decreasing order top-to-bottom.

Moved disc from pole 2 to pole 1.

Towers of Hanoi: Start with n discs of different sizes on the left-most of three pegs, in increasing order of size top-to-bottom. Move discs from pole to pole one at a time. End with all n discs on the right-most of three pegs, again in decreasing order top-to-bottom.

Moved disc from pole 3 to pole 1.

Towers of Hanoi: Start with n discs of different sizes on the left-most of three pegs, in increasing order of size top-to-bottom. Move discs from pole to pole one at a time. End with all n discs on the right-most of three pegs, again in decreasing order top-to-bottom.

Moved disc from pole 2 to pole 3.

Towers of Hanoi: Start with n discs of different sizes on the left-most of three pegs, in increasing order of size top-to-bottom. Move discs from pole to pole one at a time. End with all n discs on the right-most of three pegs, again in decreasing order top-to-bottom.

Moved disc from pole 1 to pole 2.

Towers of Hanoi: Start with n discs of different sizes on the left-most of three pegs, in increasing order of size top-to-bottom. Move discs from pole to pole one at a time. End with all n discs on the right-most of three pegs, again in decreasing order top-to-bottom.

Moved disc from pole 1 to pole 3.

Towers of Hanoi: Start with n discs of different sizes on the left-most of three pegs, in increasing order of size top-to-bottom. Move discs from pole to pole one at a time. End with all n discs on the right-most of three pegs, again in decreasing order top-to-bottom.

Moved disc from pole 2 to pole 3.

Towers of Hanoi: Start with n discs of different sizes on the left-most of three pegs, in increasing order of size top-to-bottom. Move discs from pole to pole one at a time. End with all n discs on the right-most of three pegs, again in decreasing order top-to-bottom.

Start with n discs of different sizes on the left-most of three pegs, in increasing order of size top-to-bottom. Move discs from pole to pole one at a time. End with all n discs on the right-most of three pegs, again in decreasing order top-to-bottom.

Solution: We solved these by first piling the all but one of the discs onto pole 2 (which takes the same number of moves are piling all but one onto pole 3); then we moved the biggest disc; then we moved the $n-1$ discs on top.

Towers of Hanoi: Start with n discs of different sizes on the left-most of three pegs, in increasing order of size top-to-bottom. Move discs from pole to pole one at a time. End with all n discs on the right-most of three pegs, again in decreasing order top-to-bottom.

Solution: We solved these by first piling the all but one of the discs onto pole 2 (which takes the same number of moves are piling all but one onto pole 3); then we moved the biggest disc; then we moved the $n-1$ discs on top.

Towers of Hanoi: Start with n discs of different sizes on the left-most of three pegs, in increasing order of size top-to-bottom. Move discs from pole to pole one at a time. End with all n discs on the right-most of three pegs, again in decreasing order top-to-bottom.

Moved disc from pole 1 to pole 3.
Solution: We solved these by first piling the all but one of the discs onto pole 2 (which takes the same number of moves are piling all but one onto pole 3); then we moved the biggest disc; then we moved the $n-1$ discs on top.

Towers of Hanoi: Start with n discs of different sizes on the left-most of three pegs, in increasing order of size top-to-bottom. Move discs from pole to pole one at a time. End with all n discs on the right-most of three pegs, again in decreasing order top-to-bottom.

Moved disc from pole 1 to pole 2.
Solution: We solved these by first piling the all but one of the discs onto pole 2 (which takes the same number of moves are piling all but one onto pole 3); then we moved the biggest disc; then we moved the $n-1$ discs on top.

Towers of Hanoi: Start with n discs of different sizes on the left-most of three pegs, in increasing order of size top-to-bottom. Move discs from pole to pole one at a time. End with all n discs on the right-most of three pegs, again in decreasing order top-to-bottom.

Moved disc from pole 3 to pole 2.
Solution: We solved these by first piling the all but one of the discs onto pole 2 (which takes the same number of moves are piling all but one onto pole 3); then we moved the biggest disc; then we moved the $n-1$ discs on top.

Towers of Hanoi: Start with n discs of different sizes on the left-most of three pegs, in increasing order of size top-to-bottom. Move discs from pole to pole one at a time. End with all n discs on the right-most of three pegs, again in decreasing order top-to-bottom.

Moved disc from pole 1 to pole 3.
Solution: We solved these by first piling the all but one of the discs onto pole 2 (which takes the same number of moves are piling all but one onto pole 3); then we moved the biggest disc; then we moved the $n-1$ discs on top.

Towers of Hanoi: Start with n discs of different sizes on the left-most of three pegs, in increasing order of size top-to-bottom. Move discs from pole to pole one at a time. End with all n discs on the right-most of three pegs, again in decreasing order top-to-bottom.

Moved disc from pole 2 to pole 1.
Solution: We solved these by first piling the all but one of the discs onto pole 2 (which takes the same number of moves are piling all but one onto pole 3); then we moved the biggest disc; then we moved the $n-1$ discs on top.

Towers of Hanoi: Start with n discs of different sizes on the left-most of three pegs, in increasing order of size top-to-bottom. Move discs from pole to pole one at a time. End with all n discs on the right-most of three pegs, again in decreasing order top-to-bottom.

Moved disc from pole 2 to pole 3.
Solution: We solved these by first piling the all but one of the discs onto pole 2 (which takes the same number of moves are piling all but one onto pole 3); then we moved the biggest disc; then we moved the $n-1$ discs on top.

Towers of Hanoi: Start with n discs of different sizes on the left-most of three pegs, in increasing order of size top-to-bottom. Move discs from pole to pole one at a time. End with all n discs on the right-most of three pegs, again in decreasing order top-to-bottom.

Moved disc from pole 1 to pole 3.
Solution: We solved these by first piling the all but one of the discs onto pole 2 (which takes the same number of moves are piling all but one onto pole 3); then we moved the biggest disc; then we moved the $n-1$ discs on top.

Towers of Hanoi: Start with n discs of different sizes on the left-most of three pegs, in increasing order of size top-to-bottom. Move discs from pole to pole one at a time. End with all n discs on the right-most of three pegs, again in decreasing order top-to-bottom.

Moved disc from pole 1 to pole 2.
Solution: We solved these by first piling the all but one of the discs onto pole 2 (which takes the same number of moves are piling all but one onto pole 3); then we moved the biggest disc; then we moved the $n-1$ discs on top.

Towers of Hanoi: Start with n discs of different sizes on the left-most of three pegs, in increasing order of size top-to-bottom. Move discs from pole to pole one at a time. End with all n discs on the right-most of three pegs, again in decreasing order top-to-bottom.

Moved disc from pole 3 to pole 2.
Solution: We solved these by first piling the all but one of the discs onto pole 2 (which takes the same number of moves are piling all but one onto pole 3); then we moved the biggest disc; then we moved the $n-1$ discs on top.

Towers of Hanoi: Start with n discs of different sizes on the left-most of three pegs, in increasing order of size top-to-bottom. Move discs from pole to pole one at a time. End with all n discs on the right-most of three pegs, again in decreasing order top-to-bottom.

Moved disc from pole 3 to pole 1.
Solution: We solved these by first piling the all but one of the discs onto pole 2 (which takes the same number of moves are piling all but one onto pole 3); then we moved the biggest disc; then we moved the $n-1$ discs on top.

Towers of Hanoi: Start with n discs of different sizes on the left-most of three pegs, in increasing order of size top-to-bottom. Move discs from pole to pole one at a time. End with all n discs on the right-most of three pegs, again in decreasing order top-to-bottom.

Moved disc from pole 2 to pole 1.
Solution: We solved these by first piling the all but one of the discs onto pole 2 (which takes the same number of moves are piling all but one onto pole 3); then we moved the biggest disc; then we moved the $n-1$ discs on top.

Towers of Hanoi: Start with n discs of different sizes on the left-most of three pegs, in increasing order of size top-to-bottom. Move discs from pole to pole one at a time. End with all n discs on the right-most of three pegs, again in decreasing order top-to-bottom.

Moved disc from pole 3 to pole 2.
Solution: We solved these by first piling the all but one of the discs onto pole 2 (which takes the same number of moves are piling all but one onto pole 3); then we moved the biggest disc; then we moved the $n-1$ discs on top.

Towers of Hanoi: Start with n discs of different sizes on the left-most of three pegs, in increasing order of size top-to-bottom. Move discs from pole to pole one at a time. End with all n discs on the right-most of three pegs, again in decreasing order top-to-bottom.

Moved disc from pole 1 to pole 3.
Solution: We solved these by first piling the all but one of the discs onto pole 2 (which takes the same number of moves are piling all but one onto pole 3); then we moved the biggest disc; then we moved the $n-1$ discs on top.

Towers of Hanoi: Start with n discs of different sizes on the left-most of three pegs, in increasing order of size top-to-bottom. Move discs from pole to pole one at a time. End with all n discs on the right-most of three pegs, again in decreasing order top-to-bottom.

Moved disc from pole 1 to pole 2.
Solution: We solved these by first piling the all but one of the discs onto pole 2 (which takes the same number of moves are piling all but one onto pole 3); then we moved the biggest disc; then we moved the $n-1$ discs on top.

Towers of Hanoi: Start with n discs of different sizes on the left-most of three pegs, in increasing order of size top-to-bottom. Move discs from pole to pole one at a time. End with all n discs on the right-most of three pegs, again in decreasing order top-to-bottom.

Moved disc from pole 3 to pole 2.
Solution: We solved these by first piling the all but one of the discs onto pole 2 (which takes the same number of moves are piling all but one onto pole 3); then we moved the biggest disc; then we moved the $n-1$ discs on top.

Towers of Hanoi: Start with n discs of different sizes on the left-most of three pegs, in increasing order of size top-to-bottom. Move discs from pole to pole one at a time. End with all n discs on the right-most of three pegs, again in decreasing order top-to-bottom.

Moved disc from pole 1 to pole 3.
Solution: We solved these by first piling the all but one of the discs onto pole 2 (which takes the same number of moves are piling all but one onto pole 3); then we moved the biggest disc; then we moved the $n-1$ discs on top.

Towers of Hanoi: Start with n discs of different sizes on the left-most of three pegs, in increasing order of size top-to-bottom. Move discs from pole to pole one at a time. End with all n discs on the right-most of three pegs, again in decreasing order top-to-bottom.

Moved disc from pole 2 to pole 1.
Solution: We solved these by first piling the all but one of the discs onto pole 2 (which takes the same number of moves are piling all but one onto pole 3); then we moved the biggest disc; then we moved the $n-1$ discs on top.

Towers of Hanoi: Start with n discs of different sizes on the left-most of three pegs, in increasing order of size top-to-bottom. Move discs from pole to pole one at a time. End with all n discs on the right-most of three pegs, again in decreasing order top-to-bottom.

Moved disc from pole 2 to pole 3.
Solution: We solved these by first piling the all but one of the discs onto pole 2 (which takes the same number of moves are piling all but one onto pole 3); then we moved the biggest disc; then we moved the $n-1$ discs on top.

Towers of Hanoi: Start with n discs of different sizes on the left-most of three pegs, in increasing order of size top-to-bottom. Move discs from pole to pole one at a time. End with all n discs on the right-most of three pegs, again in decreasing order top-to-bottom.

Moved disc from pole 1 to pole 3.
Solution: We solved these by first piling the all but one of the discs onto pole 2 (which takes the same number of moves are piling all but one onto pole 3); then we moved the biggest disc; then we moved the $n-1$ discs on top.

Towers of Hanoi: Start with n discs of different sizes on the left-most of three pegs, in increasing order of size top-to-bottom. Move discs from pole to pole one at a time. End with all n discs on the right-most of three pegs, again in decreasing order top-to-bottom.

Moved disc from pole 2 to pole 1.
Solution: We solved these by first piling the all but one of the discs onto pole 2 (which takes the same number of moves are piling all but one onto pole 3); then we moved the biggest disc; then we moved the $n-1$ discs on top.

Towers of Hanoi: Start with n discs of different sizes on the left-most of three pegs, in increasing order of size top-to-bottom. Move discs from pole to pole one at a time. End with all n discs on the right-most of three pegs, again in decreasing order top-to-bottom.

Moved disc from pole 3 to pole 2.
Solution: We solved these by first piling the all but one of the discs onto pole 2 (which takes the same number of moves are piling all but one onto pole 3); then we moved the biggest disc; then we moved the $n-1$ discs on top.

Towers of Hanoi: Start with n discs of different sizes on the left-most of three pegs, in increasing order of size top-to-bottom. Move discs from pole to pole one at a time. End with all n discs on the right-most of three pegs, again in decreasing order top-to-bottom.

Moved disc from pole 3 to pole 1.
Solution: We solved these by first piling the all but one of the discs onto pole 2 (which takes the same number of moves are piling all but one onto pole 3); then we moved the biggest disc; then we moved the $n-1$ discs on top.

Towers of Hanoi: Start with n discs of different sizes on the left-most of three pegs, in increasing order of size top-to-bottom. Move discs from pole to pole one at a time. End with all n discs on the right-most of three pegs, again in decreasing order top-to-bottom.

Moved disc from pole 2 to pole 1.
Solution: We solved these by first piling the all but one of the discs onto pole 2 (which takes the same number of moves are piling all but one onto pole 3); then we moved the biggest disc; then we moved the $n-1$ discs on top.

Towers of Hanoi: Start with n discs of different sizes on the left-most of three pegs, in increasing order of size top-to-bottom. Move discs from pole to pole one at a time. End with all n discs on the right-most of three pegs, again in decreasing order top-to-bottom.

Moved disc from pole 2 to pole 3.
Solution: We solved these by first piling the all but one of the discs onto pole 2 (which takes the same number of moves are piling all but one onto pole 3); then we moved the biggest disc; then we moved the $n-1$ discs on top.

Towers of Hanoi: Start with n discs of different sizes on the left-most of three pegs, in increasing order of size top-to-bottom. Move discs from pole to pole one at a time. End with all n discs on the right-most of three pegs, again in decreasing order top-to-bottom.

Moved disc from pole 1 to pole 3.
Solution: We solved these by first piling the all but one of the discs onto pole 2 (which takes the same number of moves are piling all but one onto pole 3); then we moved the biggest disc; then we moved the $n-1$ discs on top.

Towers of Hanoi: Start with n discs of different sizes on the left-most of three pegs, in increasing order of size top-to-bottom. Move discs from pole to pole one at a time. End with all n discs on the right-most of three pegs, again in decreasing order top-to-bottom.

Moved disc from pole 1 to pole 2.
Solution: We solved these by first piling the all but one of the discs onto pole 2 (which takes the same number of moves are piling all but one onto pole 3); then we moved the biggest disc; then we moved the $n-1$ discs on top.

Towers of Hanoi: Start with n discs of different sizes on the left-most of three pegs, in increasing order of size top-to-bottom. Move discs from pole to pole one at a time. End with all n discs on the right-most of three pegs, again in decreasing order top-to-bottom.

Moved disc from pole 3 to pole 2.
Solution: We solved these by first piling the all but one of the discs onto pole 2 (which takes the same number of moves are piling all but one onto pole 3); then we moved the biggest disc; then we moved the $n-1$ discs on top.

Towers of Hanoi: Start with n discs of different sizes on the left-most of three pegs, in increasing order of size top-to-bottom. Move discs from pole to pole one at a time. End with all n discs on the right-most of three pegs, again in decreasing order top-to-bottom.

Moved disc from pole 1 to pole 3.
Solution: We solved these by first piling the all but one of the discs onto pole 2 (which takes the same number of moves are piling all but one onto pole 3); then we moved the biggest disc; then we moved the $n-1$ discs on top.

Towers of Hanoi: Start with n discs of different sizes on the left-most of three pegs, in increasing order of size top-to-bottom. Move discs from pole to pole one at a time. End with all n discs on the right-most of three pegs, again in decreasing order top-to-bottom.

Moved disc from pole 2 to pole 1.
Solution: We solved these by first piling the all but one of the discs onto pole 2 (which takes the same number of moves are piling all but one onto pole 3); then we moved the biggest disc; then we moved the $n-1$ discs on top.

Towers of Hanoi: Start with n discs of different sizes on the left-most of three pegs, in increasing order of size top-to-bottom. Move discs from pole to pole one at a time. End with all n discs on the right-most of three pegs, again in decreasing order top-to-bottom.

Moved disc from pole 2 to pole 3.
Solution: We solved these by first piling the all but one of the discs onto pole 2 (which takes the same number of moves are piling all but one onto pole 3); then we moved the biggest disc; then we moved the $n-1$ discs on top.

Towers of Hanoi: Start with n discs of different sizes on the left-most of three pegs, in increasing order of size top-to-bottom. Move discs from pole to pole one at a time. End with all n discs on the right-most of three pegs, again in decreasing order top-to-bottom.

Moved disc from pole 1 to pole 3.
Solution: We solved these by first piling the all but one of the discs onto pole 2 (which takes the same number of moves are piling all but one onto pole 3); then we moved the biggest disc; then we moved the $n-1$ discs on top.

Towers of Hanoi: Start with n discs of different sizes on the left-most of three pegs, in increasing order of size top-to-bottom. Move discs from pole to pole one at a time. End with all n discs on the right-most of three pegs, again in decreasing order top-to-bottom.

Solution: We solved these by first piling the all but one of the discs onto pole 2 (which takes the same number of moves are piling all but one onto pole 3); then we moved the biggest disc; then we moved the $n-1$ discs on top.

Towers of Hanoi: Start with n discs of different sizes on the left-most of three pegs, in increasing order of size top-to-bottom. Move discs from pole to pole one at a time. End with all n discs on the right-most of three pegs, again in decreasing order top-to-bottom.

Solution: We solved these by first piling the all but one of the discs onto pole 2 (which takes the same number of moves are piling all but one onto pole 3); then we moved the biggest disc; then we moved the $n-1$ discs on top.

Let H_{n} be the be the number of moves needed to solve the puzzle.

Towers of Hanoi: Start with n discs of different sizes on the left-most of three pegs, in increasing order of size top-to-bottom. Move discs from pole to pole one at a time. End with all n discs on the right-most of three pegs, again in decreasing order top-to-bottom.

Solution: We solved these by first piling the all but one of the discs onto pole 2 (which takes the same number of moves are piling all but one onto pole 3); then we moved the biggest disc; then we moved the $n-1$ discs on top.

Let H_{n} be the be the number of moves needed to solve the puzzle.
Recursion relation: $H_{n}=H_{n-1}+H_{n-1}+1=2 H_{n-1}+1$

Towers of Hanoi: Start with n discs of different sizes on the left-most of three pegs, in increasing order of size top-to-bottom. Move discs from pole to pole one at a time. End with all n discs on the right-most of three pegs, again in decreasing order top-to-bottom.

Solution: We solved these by first piling the all but one of the discs onto pole 2 (which takes the same number of moves are piling all but one onto pole 3); then we moved the biggest disc; then we moved the $n-1$ discs on top.

Let H_{n} be the be the number of moves needed to solve the puzzle.
Recursion relation: $H_{n}=H_{n-1}+H_{n-1}+1=2 H_{n-1}+1$

Bit strings

Find a recurrence relation and give initial conditions for the number of bit strings of length n that do not have two consecutive 0 s. How many such bit strings are there of length five?

Bit strings

Find a recurrence relation and give initial conditions for the number of bit strings of length n that do not have two consecutive 0s. How many such bit strings are there of length five?

Examples:

$$
\begin{aligned}
& n=1:\{0,1\} \\
& n=2:\{01,10,11\} \\
& n=3:\{010,011,101,110,111\}
\end{aligned}
$$

Bit strings

Find a recurrence relation and give initial conditions for the number of bit strings of length n that do not have two consecutive 0s. How many such bit strings are there of length five?
Examples:

$$
\begin{aligned}
& n=1:\{0,1\} \\
& n=2:\{01,10,11\} \\
& n=3:\{010,011,101,110,111\}
\end{aligned}
$$

Solution: For $n \geqslant 3$, break into cases, whether an admissible string ends in a 1 or a 0 .

Bit strings

Find a recurrence relation and give initial conditions for the number of bit strings of length n that do not have two consecutive 0s. How many such bit strings are there of length five?
Examples:

$$
\begin{aligned}
& n=1:\{0,1\} \\
& n=2:\{01,10,11\} \\
& n=3:\{010,011,101,110,111\}=\{011,101,111\} \sqcup\{010,110\}
\end{aligned}
$$

Solution: For $n \geqslant 3$, break into cases, whether an admissible string ends in a 1 or a 0 .

Bit strings

Find a recurrence relation and give initial conditions for the number of bit strings of length n that do not have two consecutive 0s. How many such bit strings are there of length five?
Examples:

$$
\begin{aligned}
& n=1:\{0,1\} \\
& n=2:\{01,10,11\} \\
& n=3:\{010,011,101,110,111\}=\{011,101,111\} \sqcup\{010,110\}
\end{aligned}
$$

Solution: For $n \geqslant 3$, break into cases, whether an admissible string ends in a 1 or a 0 . Strings that end in a 1 :

Bit strings

Find a recurrence relation and give initial conditions for the number of bit strings of length n that do not have two consecutive 0s. How many such bit strings are there of length five?

Examples:

$$
\begin{aligned}
& n=1:\{0,1\} \\
& n=2:\{01,10,11\} \\
& n=3:\{010,011,101,110,111\}=\{011,101,111\} \sqcup\{010,110\}
\end{aligned}
$$

Solution: For $n \geqslant 3$, break into cases, whether an admissible string ends in a 1 or a 0 .
Strings that end in a 1: you can take any admissible $n-1$ string, add a 1 to the end, and get an admissible n string.

Bit strings

Find a recurrence relation and give initial conditions for the number of bit strings of length n that do not have two consecutive 0s. How many such bit strings are there of length five?

Examples:

$$
\begin{aligned}
& n=1:\{0,1\} \\
& n=2:\{01,10,11\} \\
& n=3:\{010,011,101,110,111\}=\{011,101,111\} \sqcup\{010,110\}
\end{aligned}
$$

Solution: For $n \geqslant 3$, break into cases, whether an admissible string ends in a 1 or a 0 . Strings that end in a 1: you can take any admissible $n-1$ string, add a 1 to the end, and get an admissible n string.

$$
a_{n-1} \text { of these }
$$

Bit strings

Find a recurrence relation and give initial conditions for the number of bit strings of length n that do not have two consecutive 0s. How many such bit strings are there of length five?

Examples:

$$
\begin{aligned}
& n=1:\{0,1\} \\
& n=2:\{01,10,11\} \\
& n=3:\{010,011,101,110,111\}=\{011,101,111\} \sqcup\{010,110\}
\end{aligned}
$$

Solution: For $n \geqslant 3$, break into cases, whether an admissible string ends in a 1 or a 0 .
Strings that end in a 1: you can take any admissible $n-1$ string, add a 1 to the end, and get an admissible n string. Strings that end in 0 an a_{n-1} of these
Strings that end in a 0 : if an admissible string ends in a 0 , then the second-to-last bit has to be a 1 . So this falls into the first case, but for admissible strings of length $n-1$.

Bit strings

Find a recurrence relation and give initial conditions for the number of bit strings of length n that do not have two consecutive 0s. How many such bit strings are there of length five?

Examples:

$$
\begin{aligned}
& n=1:\{0,1\} \\
& n=2:\{01,10,11\} \\
& n=3:\{010,011,101,110,111\}=\{011,101,111\} \sqcup\{010,110\}
\end{aligned}
$$

Solution: For $n \geqslant 3$, break into cases, whether an admissible string ends in a 1 or a 0 .
Strings that end in a 1: you can take any admissible $n-1$ string, add a 1 to the end, and get an admissible n string.
Strings that end in a 0 . a_{n-1} of these
Strings that end in a 0 : if an admissible string ends in a 0 , then the second-to-last bit has to be a 1 . So this falls into the first case, but for admissible strings of length $n-1$.

$$
a_{n-1-1}=a_{n-2} \text { of these }
$$

Bit strings

Find a recurrence relation and give initial conditions for the number of bit strings of length n that do not have two consecutive 0s. How many such bit strings are there of length five?

Examples:

$$
\begin{aligned}
& n=1:\{0,1\} \\
& n=2:\{01,10,11\} \\
& n=3:\{010,011,101,110,111\}=\{011,101,111\} \sqcup\{010,110\}
\end{aligned}
$$

Solution: For $n \geqslant 3$, break into cases, whether an admissible string ends in a 1 or a 0 .
Strings that end in a 1: you can take any admissible $n-1$ string, add a 1 to the end, and get an admissible n string.

$$
a_{n-1} \text { of these }
$$

Strings that end in a 0 : if an admissible string ends in a 0 , then the second-to-last bit has to be a 1 . So this falls into the first case, but for admissible strings of length $n-1$.

$$
a_{n-1-1}=a_{n-2} \text { of these }
$$

Rec. rel.: $a_{n}=a_{n-1}+a_{n-2}$

Bit strings

Find a recurrence relation and give initial conditions for the number of bit strings of length n that do not have two consecutive 0s. How many such bit strings are there of length five?

Examples:

$$
\begin{aligned}
& n=1:\{0,1\} \\
& n=2:\{01,10,11\} \\
& n=3:\{010,011,101,110,111\}=\{011,101,111\} \sqcup\{010,110\}
\end{aligned}
$$

Solution: For $n \geqslant 3$, break into cases, whether an admissible string ends in a 1 or a 0 .
Strings that end in a 1: you can take any admissible $n-1$ string, add a 1 to the end, and get an admissible n string.

$$
a_{n-1} \text { of these }
$$

Strings that end in a 0 : if an admissible string ends in a 0 , then the second-to-last bit has to be a 1 . So this falls into the first case, but for admissible strings of length $n-1$.

$$
a_{n-1-1}=a_{n-2} \text { of these }
$$

Rec. rel.: $a_{n}=a_{n-1}+a_{n-2}$, Init. conds.: $a_{1}=2, a_{2}=3$.

Codeword enumeration

A computer system considers a string of decimal digits a "valid codeword" if it contains an even number of 0 digits. For example, 1230407869 is valid, but 120987045608 is not.

Codeword enumeration

A computer system considers a string of decimal digits a "valid codeword" if it contains an even number of 0 digits. For example, 1230407869 is valid, but 120987045608 is not. Let a_{n} be the number of valid n-digit codewords. Find a recurrence relation and initial conditions for a_{n}.

Codeword enumeration

A computer system considers a string of decimal digits a "valid codeword" if it contains an even number of 0 digits. For example, 1230407869 is valid, but 120987045608 is not. Let a_{n} be the number of valid n-digit codewords. Find a recurrence relation and initial conditions for a_{n}.
Solution: For $n \geqslant 2$, break into cases, whether an admissible string ends in a 0 or not.

Codeword enumeration

A computer system considers a string of decimal digits a "valid codeword" if it contains an even number of 0 digits. For example, 1230407869 is valid, but 120987045608 is not. Let a_{n} be the number of valid n-digit codewords. Find a recurrence relation and initial conditions for a_{n}.
Solution: For $n \geqslant 2$, break into cases, whether an admissible string ends in a 0 or not.
Strings that do not end in a 0 :

Codeword enumeration

A computer system considers a string of decimal digits a "valid codeword" if it contains an even number of 0 digits. For example, 1230407869 is valid, but 120987045608 is not. Let a_{n} be the number of valid n-digit codewords. Find a recurrence relation and initial conditions for a_{n}.
Solution: For $n \geqslant 2$, break into cases, whether an admissible string ends in a 0 or not.
Strings that do not end in a 0 : the first $n-1$ numbers are also valid.

Codeword enumeration

A computer system considers a string of decimal digits a "valid codeword" if it contains an even number of 0 digits. For example, 1230407869 is valid, but 120987045608 is not. Let a_{n} be the number of valid n-digit codewords. Find a recurrence relation and initial conditions for a_{n}.
Solution: For $n \geqslant 2$, break into cases, whether an admissible string ends in a 0 or not.
Strings that do not end in a 0 : the first $n-1$ numbers are also valid.

$$
9 * a_{n-1} \text { of these }
$$

Codeword enumeration

A computer system considers a string of decimal digits a "valid codeword" if it contains an even number of 0 digits. For example, 1230407869 is valid, but 120987045608 is not. Let a_{n} be the number of valid n-digit codewords. Find a recurrence relation and initial conditions for a_{n}.
Solution: For $n \geqslant 2$, break into cases, whether an admissible string ends in a 0 or not.
Strings that do not end in a 0 : the first $n-1$ numbers are also valid.

$$
9 * a_{n-1} \text { of these }
$$

Strings that end in a 0 :

Codeword enumeration

A computer system considers a string of decimal digits a "valid codeword" if it contains an even number of 0 digits. For example, 1230407869 is valid, but 120987045608 is not.
Let a_{n} be the number of valid n-digit codewords. Find a recurrence relation and initial conditions for a_{n}.
Solution: For $n \geqslant 2$, break into cases, whether an admissible string ends in a 0 or not.
Strings that do not end in a 0 : the first $n-1$ numbers are also valid.

$$
9 * a_{n-1} \text { of these }
$$

Strings that end in a 0 : the first $n-1$ numbers are not valid.

Codeword enumeration

A computer system considers a string of decimal digits a "valid codeword" if it contains an even number of 0 digits. For example, 1230407869 is valid, but 120987045608 is not. Let a_{n} be the number of valid n-digit codewords. Find a recurrence relation and initial conditions for a_{n}.
Solution: For $n \geqslant 2$, break into cases, whether an admissible string ends in a 0 or not.
Strings that do not end in a 0 : the first $n-1$ numbers are also valid.

$$
9 * a_{n-1} \text { of these }
$$

Strings that end in a 0 : the first $n-1$ numbers are not valid.

$$
10^{n-1}-a_{n-1} \text { of these }
$$

Codeword enumeration

A computer system considers a string of decimal digits a "valid codeword" if it contains an even number of 0 digits. For example, 1230407869 is valid, but 120987045608 is not.
Let a_{n} be the number of valid n-digit codewords. Find a recurrence relation and initial conditions for a_{n}.
Solution: For $n \geqslant 2$, break into cases, whether an admissible string ends in a 0 or not.
Strings that do not end in a 0 : the first $n-1$ numbers are also valid.

$$
9 * a_{n-1} \text { of these }
$$

Strings that end in a 0 : the first $n-1$ numbers are not valid.

$$
10^{n-1}-a_{n-1} \text { of these }
$$

Rec. rel.: $a_{n}=9 * a_{n-1}+\left(10^{n-1}-a_{n-1}\right)$

Codeword enumeration

A computer system considers a string of decimal digits a "valid codeword" if it contains an even number of 0 digits. For example, 1230407869 is valid, but 120987045608 is not.
Let a_{n} be the number of valid n-digit codewords. Find a recurrence relation and initial conditions for a_{n}.
Solution: For $n \geqslant 2$, break into cases, whether an admissible string ends in a 0 or not.
Strings that do not end in a 0 : the first $n-1$ numbers are also valid.

$$
9 * a_{n-1} \text { of these }
$$

Strings that end in a 0 : the first $n-1$ numbers are not valid.

$$
10^{n-1}-a_{n-1} \text { of these }
$$

Rec. rel.: $a_{n}=9 * a_{n-1}+\left(10^{n-1}-a_{n-1}\right)=8 a_{n-1}+10^{n-1}$

Codeword enumeration

A computer system considers a string of decimal digits a "valid codeword" if it contains an even number of 0 digits. For example, 1230407869 is valid, but 120987045608 is not.
Let a_{n} be the number of valid n-digit codewords. Find a recurrence relation and initial conditions for a_{n}.
Solution: For $n \geqslant 2$, break into cases, whether an admissible string ends in a 0 or not.
Strings that do not end in a 0 : the first $n-1$ numbers are also valid.

$$
9 * a_{n-1} \text { of these }
$$

Strings that end in a 0 : the first $n-1$ numbers are not valid.

$$
10^{n-1}-a_{n-1} \text { of these }
$$

Rec. rel.: $a_{n}=9 * a_{n-1}+\left(10^{n-1}-a_{n-1}\right)=8 a_{n-1}+10^{n-1}$, Initial conds.: $a_{1}=9$.

Codeword enumeration

A computer system considers a string of decimal digits a "valid codeword" if it contains an even number of 0 digits. For example, 1230407869 is valid, but 120987045608 is not.
Let a_{n} be the number of valid n-digit codewords. Find a recurrence relation and initial conditions for a_{n}.
Solution: For $n \geqslant 2$, break into cases, whether an admissible string ends in a 0 or not.
Strings that do not end in a 0 : the first $n-1$ numbers are also valid.

$$
9 * a_{n-1} \text { of these }
$$

Strings that end in a 0 : the first $n-1$ numbers are not valid.

$$
10^{n-1}-a_{n-1} \text { of these }
$$

Rec. rel.: $a_{n}=9 * a_{n-1}+\left(10^{n-1}-a_{n-1}\right)=8 a_{n-1}+10^{n-1}$, Initial conds.: $a_{1}=9$.
You try: Exercise 30

