
Tree diagrams: A decision tree consists of a “root”, a number of
“branches” leaving the root, and possible additional branches
leaving the endpoints of other branches (usually drawn
upside-down). We use a branch to represent each possible choice.
We represent the possible outcomes by “leaves”, the endpoints of
branches not having other branches starting at them. (See §6.1)

Example: How many strings of length-three of 1’s and 0’s do not
have two consecutive 1’s?

H

(root)

p0 . . . q p1 . . . q

0 1

p00 . . . q p01 . . . q

0 1
p10 . . . q

0
p11 . . . q

1

p000q p001q

0 1
p010q

0
p011

1
p100q p101q

0 1
leaves: 5 in total

See also Examples 21-23 in section 6.1. Note: the book labels the
nodes by the choice; we label the edges by the choice and the
nodes by the outcomes.

You try: Exercise 29
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Applications of recurrence relations
Recall that a recursive definition for a sequence is an expression of
an using the previous terms:

For example: an “ 3an´1 ` an´3 ` 1
loooooooooooooomoooooooooooooon

recurrence relation

a0 “ 1, a1 “ 15, a2 “ 0
loooooooooooooomoooooooooooooon

initial conditions

Example (Fibonacci’s Rabbits)

Put two rabbits on an island. A pair of rabbits won’t breed until
they’re 2 months old. Each mature pair of rabbits will produce a
new pair of rabbits the following month. How many pairs of
rabbits are there after n months? (assume balanced sexes)
Recurrence relation:

Number of pairs
at month n

“

The number of pairs
already around

from month n´ 1
`

The number of
eligible parenting pairs

at month n
(rabbits around

since month n´ 2)
an “ an´1 ` an´2

Initial conditions: Start with 1 pair. Still have 1 pair in the 1st
month. Then the 1 pair starts to breed.

a0 “ 1, a1 “ 1
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Towers of Hanoi: Start with n discs of different sizes on the
left-most of three pegs, in increasing order of size top-to-bottom.
Move discs from pole to pole one at a time. End with all n discs
on the right-most of three pegs, again in decreasing order
top-to-bottom.

3

2

1
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Solution: We solved these by first piling the all but one of the
discs onto pole 2 (which takes the same number of moves are
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Recursion relation: Hn “ Hn´1 `Hn´1 ` 1 “ 2Hn´1 ` 1
Initial condition: H1 “ 1
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Bit strings

Find a recurrence relation and give initial conditions for the
number of bit strings of length n that do not have two consecutive
0s. How many such bit strings are there of length five?

Examples:
n “ 1 : t0, 1u
n “ 2 : t01, 10, 11u
n “ 3 : t010, 011, 101, 110, 111u

“ t011, 101, 111u \ t010, 110u

Solution: For n ě 3, break into cases, whether an admissible
string ends in a 1 or a 0.
Strings that end in a 1: you can take any admissible n´ 1 string,
add a 1 to the end, and get an admissible n string.

an´1 of these
Strings that end in a 0: if an admissible string ends in a 0, then
the second-to-last bit has to be a 1. So this falls into the first case,
but for admissible strings of length n´ 1.

an´1´1 “ an´2 of these

Rec. rel.: an “ an´1 ` an´2, Init. conds.: a1 “ 2, a2 “ 3.
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Examples:

n “ 1 : t0, 1u
n “ 2 : t01, 10, 11u
n “ 3 : t010, 011, 101, 110, 111u “ t011, 101, 111u \ t010, 110u

Solution: For n ě 3, break into cases, whether an admissible
string ends in a 1 or a 0.

Strings that end in a 1: you can take any admissible n´ 1 string,
add a 1 to the end, and get an admissible n string.
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Codeword enumeration

A computer system considers a string of decimal digits a “valid
codeword” if it contains an even number of 0 digits. For example,

1230407869 is valid, but 120987045608 is not.

Let an be the number of valid n-digit codewords. Find a
recurrence relation and initial conditions for an.

Solution: For n ě 2, break into cases, whether an admissible
string ends in a 0 or not.
Strings that do not end in a 0: the first n´ 1 numbers are also
valid.

9 ˚ an´1 of these

Strings that end in a 0: the first n´ 1 numbers are not valid.

10n´1 ´ an´1 of these

Rec. rel.: an “ 9 ˚ an´1 ` p10
n´1 ´ an´1q “ 8an´1 ` 10n´1,

Initial conds.: a1 “ 9.
You try: Exercise 30
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