Math 365 - Monday 3/11/19

(We're replacing the old #26.)

Exercise 26.

- (a) Consider strings of length 10 consisting of 1's, 2's, and/or 3's.
 - (i) How many of these are there (with no additional restrictions)?
 - (ii) How many of these are there that contain exactly three 1's, two 2's, and five 3's?
- (b) How many anagrams are there of MISSISSIPPI?
- (c) Suppose you've got eight varieties of doughnuts to choose from at a doughnuts shop.
 - (i) How many ways can you select 6 doughnuts?
 - (ii) How many ways can you select a dozen (12) doughnuts?
 - (iii) How many ways can you select a dozen doughnuts with at least one of each kind? [Hint: if there's at least one of each kind, then how many choices are you really making?]
- (d) How many different combinations of pennies, nickels, dimes, quarters, and half dollars can a jar contain if it has 20 coins in it?
- (e) Counting solutions.
 - (i) How many solutions are there to the equation $x_1 + x_2 + x_3 = 10$, where x_1, x_2 , and x_3 are nonnegative integers?
 - (ii) How many solutions are there to the equation $x_1 + x_2 + x_3 = 10$, where x_1, x_2 , and x_3 are strictly positive integers? [Hint: See problem (c)(iii)]
 - (iii) How many solutions are there to the equation $x_1 + x_2 + x_3 \le 10$, where x_1, x_2 , and x_3 are nonnegative integers? [Hint: Use an extra variable x_4 such that $x_1 + x_2 + x_3 + x_4 = 10$]

Exercise 27.

- (a) List the partitions of 6, both as box diagrams and as sequences.
- (b) How many ways are there to distribute 6 identical cookies into 6 identical lunch boxes, possibly leaving some empty?
- (c) How many ways are there to distribute 6 identical snack bars into 4 identical lunch boxes, possibly leaving some empty?
- (d) How many ways are there to distribute 4 identical apples into 6 identical lunch boxes, possibly leaving some empty?

Exercise 28.

- (a) Basic counting:
 - (i) How many ways are there to distribute 5 distinguishable objects into 3 distinguishable boxes, possibly leaving some empty?
 - (ii) How many ways are there to distribute 5 indistinguishable objects into 3 distinguishable boxes, possibly leaving some empty?
 - (iii) How many ways are there to distribute 5 distinguishable objects into 3 indistinguishable boxes, possibly leaving some empty?
 - (iv) How many ways are there to distribute 5 indistinguishable objects into 3 indistinguishable boxes, possibly leaving some empty?
 - (v) How many ways are there to distribute 6 distinguishable objects into 4 indistinguishable boxes, possibly leaving some empty?
 - (vi) How many ways are there to distribute 6 distinguishable objects into 4 indistinguishable boxes so that each of the boxes contains at least one object?
- (b) How many ways are there to pack 8 identical DVDs into 5 indistinguishable boxes? How many ways to do this task so that each box contains at least one DVD?

- (c) How many ways are there to distribute 5 balls into 7 boxes if
 - (i) both the balls and boxes are labeled?
 - (ii) the balls are labeled, but the boxes are unlabeled?
 - (iii) the balls are unlabeled, but the boxes are labeled?
 - (iv) both the balls and boxes are unlabeled?
- (d) Repeat parts (i)–(iv) of part (c), adding the condition that each bucket can have at most one ball in it.

Warmup

- 1. How many 5-letter words are there?
- 2. How many ways possible outcome are there of ten flips of a coin?
- 3. How many ways ways can you answer a 20-question T or F quiz?

For the following, you'll either want to use division rule or $\binom{n}{k}$.

4. How many 5-character passwords are there with four 'A's, two 'B', and one 'C'?

Caution: The book talks about *permutation* problems and *combination* problems with or without repetition or replacement. When the rest of the world says permutation or combination problem without clarification, they only mean without repetition/replacement!

"Permutations with repetition":

i.e. "ordered selection with replacement"

Permutation means that order matters. Repetition means you can repeat objects.

Example questions: 1-3 on the warmup.

Q. How many possible outcomes are there for drawing one card out of a deck at a time, recording its value and suite, and then replacing it, doing so 10 times?

Theorem. The number of ways to pick n objects, in order, with possible repetition, from a set of k objects is k^n .

Permutations with indistinguishable objects.

Permutation means that order matters.

Indistinguishable means there are objects that can't be told apart.

Example questions: #4 on the warmup.

• How many anagrams are there of SUCCESS? Objects: 3 S's, 1 U, 2 C's, 1 E. Places: 7 Place 3 S's: $\binom{7}{3}$, Place 1 U: $\binom{7-3}{1}$, Place 2 C's: $\binom{7-3-1}{2}$, Place 1 E: $\binom{7-3-1-2}{1}$. Total: $\binom{7}{3}\binom{4}{1}\binom{3}{2}\binom{1}{1}$

Solution strategy 1: Make a list of the objects and how many times they're used. Then place the objects one "type" at a time.

Permutations with indistinguishable objects.

In general: the number of ways to place n objects consisting of exactly

$$n_1$$
 ' O_1 's, n_2 ' O_2 's, ..., and n_k ' O_k 's

(so that $n = n_1 + \cdots + n_k$), in order is

$$\binom{n}{n_1}\binom{n-n_1}{n_2}\cdots\binom{n_k}{n_k} \qquad \text{(since } n-(n_1+\cdots n_{k-1})=n_k\text{)}.$$

Simplifying:

$$\binom{n}{n_1} \binom{n-n_1}{n_2} \binom{n-n_1-n_2}{n_3} \cdots \binom{n_k}{n_k}
= \frac{n!}{n_1!(n-n_1)!} \frac{(n-n_1)!}{n_2!(n-n_1-n_2)!} \frac{(n-n_1-n_2)!}{n_3!(n-n_1-n_2-n_3)!} \cdots \frac{n_k!}{n_k!0!}
= \boxed{\frac{n!}{n_1!n_2!n_3!\cdots n_k!}}. (Solution 2)$$

6.5: Generalized permutations and combinations continued

So far: Placing objects in boxes (combination problems)

"How many ways can you place n objects into k boxes, if...?"

For each question, ask yourself:

Can you tell the objects apart? Can you tell the boxes apart?

If you can tell them apart, we call them distinguishable.

(Objects: Cards face up. Boxes: labeled.)

If you **cannot** tell them apart, we call them indistinguishable.

(Objects: Cards face down. Boxes: unlabeled.)

We did: Distinguishable objects into distinguishable boxes. More example questions:

- (1) How many ways can you **evenly** distribute twelve articles to three editors to be reviewed?
- (2) How many ways can you distribute twelve articles to three editors to be reviewed (if you don't care how many articles each person gets)?
- (3) How many ways are there to distribute hands of 5 cards to each of 4 players from the standard deck of 52 cards?

(II) Indistinguishable objects into distinguishable boxes

(Place cards face down)

Example questions:

- (1) How many outcomes can there be for the final tally in an election with 5 candidates and 100 voters?
- (2) How many ways are there to pick a collection of four pieces of fruit from a bowl containing lots of apples, oranges, and pears?
- (3) How many nonnegative integer solutions are there to the equation $x_1 + x_2 + x_3 = 11$?

For (1), the 100 votes are the objects and the 5 candidates are the boxes.

For (2), the 4 choices are the objects and the 3 fruit types are the boxes (think 'voting for fruit').

For (3), there are 11 objects to be placed into the 3 boxes labeled x_1 , x_2 , and x_3 (think 'voting for variables').

Strategy: "stars and bars"

(II) Indistinguishable objects into distinguishable boxes

Stars and bars. Like before, lay out the objects in a line. But now, we can't tell the difference between the objects. So instead of naming them, just represent them using stars:

$$\underbrace{* * * * * * \cdots * * *}_{n \text{ objects}}$$

Next, partition them into the k boxes using bars:

three in box 1 one in box 2 two in box 3

two in box 1 four in box 2 none in box 3

six in box 1 none in box 2 none in box 3

(II) Indistinguishable objects into distinguishable boxes

Stars and bars. Like before, lay out the objects in a line. But now, we can't tell the difference between the objects. So instead of naming them, just represent them using stars:

Next, partition them into the k boxes using bars:

objects in objects in 1st box 2nd box
$$k$$
th box n stars and k 1 bars gives $n + (k-1)$ symbols in total

So we're down to counting **anagrams** of n stars and k-1 bars:

$$\frac{(n+(k-1))!}{n!(k-1)!}$$

(II) Indistinguishable objects into distinguishable boxes

Theorem. The number of ways to distribute n indistinguishable objects amongst k distinguishable boxes is

$$\frac{(n+(k-1))!}{n!(k-1)!}$$

Back to example questions:

(1) How many outcomes can there be for the final tally in an election with 5 candidates and 100 voters?

Answer: the 100 votes are the objects (n=100) and the 5 (k=5) candidates are the boxes. So the number of possible outcomes is

$$\frac{(100 + (5 - 1))!}{100!(5 - 1)!} = \frac{104!}{100!4!}$$

(II) Indistinguishable objects into distinguishable boxes

Theorem. The number of ways to distribute n indistinguishable objects amongst k distinguishable boxes is

$$\boxed{ \frac{(n+(k-1))!}{n!(k-1)!} }$$

Back to example questions:

(2) How many ways are there to pick a collection of four pieces of fruit from a bowl containing lots of apples, oranges, and pears?

Answer: the 4 choices are the objects (n=4) and the 3 fruit types are the boxes (think 'voting for fruit') (k=3). So the number of possible outcomes is

$$\boxed{\frac{(4+(3-1))!}{4!(3-1)!} = \frac{6!}{4!2!}}$$

(II) Indistinguishable objects into distinguishable boxes

Theorem. The number of ways to distribute n indistinguishable objects amongst k distinguishable boxes is

$$\frac{(n+(k-1))!}{n!(k-1)!}$$

Back to example questions:

(3) How many nonnegative integer solutions are there to the equation $x_1 + x_2 + x_3 = 11$?

Answer: there are 11 objects (n = 11) to be placed into the 3 boxes (k = 3) labeled x_1 , x_2 , and x_3 (think 'voting for variables'). So the number of possible outcomes is

$$\frac{(11+(3-1))!}{11!(3-1)!} = \frac{13!}{11!2!}$$

(See Exercise 26.)

(III) Indistinguishable objects into indistinguishable boxes

Example question: How many ways can you distribute 4 apples into three unmarked baskets?

(Specifically, the possibilities you're counting are like "all four apples go into one basket", or "one basket has 2 apples, and the other two each has 1 apple", and so on.)

Instead of...

we're counting things like...

(III) Indistinguishable objects into indistinguishable boxes

Example question: How many ways can you distribute 4 apples into three unmarked baskets?

(Specifically, the possibilities you're counting are like "all four apples go into one basket", or "one basket has 2 apples, and the other two each has 1 apple", and so on.)

Also note that (in the indistinguishable boxes case) ...

is the same as. . .

(III) Indistinguishable objects into indistinguishable boxes

Example question: How many ways can you distribute 4 apples into three unmarked baskets?

Hard: we can't line anything up anymore, since there's no 1st, 2nd, etc.. By "hard", I mean there's no closed formula.

Rearrange all possible outcomes from most full basket to least full:

- 4 in one basket;
- 3 in one, 1 in another;
- 2 in one, 2 in another;
- 2 in one, 1 in another, 1 in another;
- 1 in each.

An (integer) partition of a positive integer n is a way of breaking n into whole pieces, without order. Alternatively, a partition λ of n, written $\lambda \vdash n$ is a sequence

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_\ell)$$

satisfying

$$n = \lambda_1 + \lambda_2 + \dots + \lambda_\ell$$
, $\lambda_i \in \mathbb{Z}_{>0}$ and $\lambda_1 \geqslant \lambda_2 \geqslant \dots \geqslant \lambda_\ell$.

An (integer) partition of a positive integer n is a sequence

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_\ell)$$

satisfying

$$n = \lambda_1 + \lambda_2 + \dots + \lambda_\ell$$
, $\lambda_i \in \mathbb{Z}_{>0}$ and $\lambda_1 \geqslant \lambda_2 \geqslant \dots \geqslant \lambda_\ell$.

Partitions are hard to count (i.e. there is **no closed formula**) – you have to do it manually. Easier to count if we draw! Draw partitions as n boxes piled up and to the left into a corner, where the ith row has λ_i boxes.

For example,

the partition	(1, 1, 1, 1)	is	\exists ;
the partition	(2, 1, 1)	is	\mathbb{F} ;
the partition	(2, 2)	is	\boxplus ;
the partition	(3,1)	is	\Box ;
and the partition	(4)	is	ш.

An (integer) partition of a positive integer n is a sequence

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_\ell)$$

satisfying

$$n=\lambda_1+\lambda_2+\cdots+\lambda_\ell,\quad \lambda_i\in\mathbb{Z}_{>0} \text{ and } \lambda_1\geqslant\lambda_2\geqslant\cdots\geqslant\lambda_\ell.$$
 For example,

the partition	(1, 1, 1, 1)	is	\exists ;
the partition	(2, 1, 1)	is	\mathbb{F} ;
the partition	(2,2)	is	\boxplus ;
the partition	(3,1)	is	\Box ;
and the partition	(4)	is	ш.

The entries in the sequence are called the parts; λ_i is the length of the ith part. Denote

the number of partitions of n with are most k parts by $p_k(n)$; and the number of partitions of n by p(n).

(IV) Distinguishable objects into indistinguishable boxes

Example question: How many ways are there to put n different employees into k basically identical offices, when each office can contain any number of employees?

Instead of...

we're counting things like. . .

(IV) Distinguishable objects into indistinguishable boxes

Also note that (in the indistinguishable boxes case) ...

is the same as. . .

but not...

(since the objects are distinguishable).

(IV) Distinguishable objects into indistinguishable boxes

Example question: How many ways are there to put four different employees into three basically identical offices, when each office can contain any number of employees?

For small examples: Think of how to partition $\{A,B,C,D\}$ into up to three subsets:

```
(all in one set): \{A, B, C, D\}

(three in one, one alone): \{A, B, C, D\} \sqcup \{C\}, \{A, B, C\} \sqcup \{D\}, \{A, B, D\} \sqcup \{C\}, \{A, C, D\} \sqcup \{B\}, or \{B, C, D\} \sqcup \{A\}.

(two and two): \{A, B, D\} \sqcup \{A\}.

(two and two): \{A, C\} \sqcup \{B, D\}, or \{A, D\} \sqcup \{B, C\}.

(two, one, and one): \{A, C\} \sqcup \{B\} \sqcup \{C\}, \{A, C\} \sqcup \{B\} \sqcup \{C\}, \{A, C\} \sqcup \{B\} \sqcup \{C\}, \{A, D\} \sqcup \{B\} \sqcup \{C\}, \{B, C\} \sqcup \{A\} \sqcup \{D\}, \{A, C\} \sqcup \{A\} \sqcup \{C\}, \{C, D\} \sqcup \{A\} \sqcup \{D\}.

Total: \{A, B, C\} \sqcup \{A\} \sqcup \{A\}
```

(IV) Distinguishable objects into indistinguishable boxes

Stirling numbers of the second kind: Let S(n,j) be the number of ways to distribute n distinguishable things into **exactly** j boxes (so that none of the boxes are empty). One can use inclusion/exclusion to find (We will not prove this yet)

$$S(n,j) = \frac{1}{j!} \sum_{i=0}^{j-1} (-1)^i \binom{j}{i} (j-i)^n.$$

Example: In our example of assigning people to offices... S(4,1) counts putting everyone into one office:

$$S(4,1) = \frac{1}{1!} \sum_{i=0}^{1-1} (-1)^i {1 \choose i} (1-i)^4 = (-1)^0 {1 \choose 0} (1-0)^4 = 1.\checkmark$$

S(4,2) counts putting people into exactly 2 offices, i.e. the cases corresponding to the partitions with 2 parts, \square and \square .

$$S(4,2) = \frac{1}{2!} \sum_{i=0}^{2-1} (-1)^i {2 \choose i} (2-i)^4 = \frac{1}{2} \left({2 \choose 0} 2^4 - {2 \choose 1} 1^4 \right) = 7 = 3 + 4.\checkmark$$

(IV) Distinguishable objects into indistinguishable boxes

Stirling numbers of the second kind: Let S(n,j) be the number of ways to distribute n distinguishable things into exactly j boxes (so that none of the boxes are empty). One can use inclusion/exclusion to find (We will not prove this)

$$S(n,j) = \frac{1}{j!} \sum_{i=0}^{j-1} (-1)^i \binom{j}{i} (j-i)^n.$$

Then the number of ways to distribute n distinguishable things into k boxes (when we don't care if some are left empty) is

$$\sum_{j=1}^{k} S(n,j) = S(n,1) + S(n,2) + \dots + S(n,k).$$

Example: In our example of assigning people to offices, we should get

$$\sum_{j=1}^{3} S(4,j) = S(4,1) + S(4,2) + S(4,3) = 1 + 7 + 6 = 14.\checkmark$$

Summary of counting techniques:

Placing objects in order ("permutation")

With replacement: The number of ways to pick n objects, in order, with possible repetition, from a set of k objects is k.

With some indistinguishable objects (anagrams): The number of ways to place n objects consisting of exactly

$$n_1$$
 ' O_1 's, n_2 ' O_2 's, ..., and n_k ' O_k 's

(so that $n = n_1 + \cdots + n_k$), in order is

), in order is
$$\binom{n}{n_1} \binom{n-n_1}{n_2} \cdots \binom{n_r}{n_r} = \frac{n!}{n_1! n_2! n_3! \cdots n_k!}.$$

Placing objects into boxes

("combination": no order inside the boxes)

Distinguishable objects, distinguishable boxes: Distributing n distinguishable objects into k distinguishable boxes is the same as the permutation problems above. If there are no restrictions, then k if you restrict to placing exactly n_i objects into box i, for i = 1, 2, ..., k (so that $n = n_1 + \cdots + n_r$), is

$$\left[\binom{n}{n_1} \binom{n-n_1}{n_2} \cdots \binom{n_k}{n_k} = \frac{n!}{n_1! n_2! \cdots n_k!} \right]$$

Indistinguishable objects, distinguishable boxes: ($Stars\ and\ bars$) The number of ways to distribute n indistinguishable objects into k distinguishable boxes is

$$\binom{n+k-1}{n} = \binom{n+k-1}{k-1} = \frac{(n+k-1)!}{n!(k-1)!}.$$

Indistinguishable objects, indistinguishable boxes: (Integer partitions) The number of ways to distribute n indistinguishable objects into k indistinguishable boxes is the same of the number of integer partitions of n into at most k parts, $p_k(n)$ (there is no closed formula; you just have to count them).

Distinguishable objects, indistinguishable boxes: The number of ways to distribute n distinguishable objects into k indistinguishable boxes is given by

$$\sum_{j=1}^{k} S(n,j), \quad \text{where} \quad S(n,j) = \frac{1}{j!} \sum_{i=0}^{j-1} (-1)^{i} {j \choose i} (j-i)^{n}.$$

We call the numbers given by S(n, j) the Serling numbers of the second kind.

A note on conditions like "where there's at least one of each kind", or "where there's at least one object in each box", or solving linear equations using *strictly positive* values: these conditions effectively just decrease the number of choices you're making.

Example: Choose 10 pieces of fruit from a bowl with indistinguishable apples, oranges, and bananas, making sure to choose at least one of each kind.

Answer: Effectively, you've already picked out three pieces of fruit: one apple, one orange, and one pear. So you only need to count how many ways you can make the remaining 10-3 choices, for which you will use stars and bars, with n=10-3=7 and k=3 (the number of kinds of fruit).