
Warmup

1. How many 5-letter words are there?

265

2. How many ways possible outcome are there of ten flips of a

coin?

210

3. How many ways ways can you answer a 20-question T or F

quiz?

320

For the following, you’ll either want to use division rule or
`

n
k

˘

.

4. How many 5-character passwords are there with four ‘A’s, two
‘B’, and one ‘C’?

Solution 1.
Place 4 A’s:

`

7
4

˘

, Place 2 B’s:
`

7´4
2

˘

, Place 1 C:
`

7´4´2
1

˘

.

Total:
`

7
4

˘`

3
2

˘`

1
1

˘

Check: 107X

Solution 2. First place the all 7 letters in order: 7!.
Then divide by the rearrangements of the four A’s: 4!
. . . and the two B’s: 2!

Total: 7!
4!2!

Check: 107X
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Caution: The book talks about permutation problems and combination

problems with or without repetition or replacement. When the rest of the

world says permutation or combination problem without clarification, they only

mean without repetition/replacement!

“Permutations with repetition”:
i.e. “ordered selection with replacement”

Permutation means that order matters.
Repetition means you can repeat objects.

Example questions: 1-3 on the warmup.
Q. How many possible outcomes are there for drawing one card
out of a deck at a time, recording its value and suite, and then
replacing it, doing so 10 times?

Theorem. The number of ways to pick n objects, in order, with
possible repetition, from a set of k objects is kn .

pkq pkq pkq pkq pkq
. . .

n times
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Permutations with indistinguishable objects.

Permutation means that order matters.
Indistinguishable means there are objects that can’t be told apart.

Example questions: #4 on the warmup.

‚ How many anagrams are there of SUCCESS?

Objects: 3 S’s, 1 U, 2 C’s, 1 E. Places: 7
Place 3 S’s:

`

7
3

˘

, Place 1 U:
`

7´3
1

˘

,

Place 2 C’s:
`

7´3´1
2

˘

, Place 1 E:
`

7´3´1´2
1

˘

.

Total:
`

7
3

˘`

4
1

˘`

3
2

˘`

1
1

˘

Solution strategy 1: Make a list of the objects and how many
times they’re used. Then place the objects one “type” at a time.
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Permutations with indistinguishable objects.
In general: the number of ways to place n objects consisting of
exactly

n1 ‘O1’s, n2 ‘O2’s, . . . , and nk ‘Ok’s

(so that n “ n1 ` ¨ ¨ ¨ ` nk), in order is

ˆ

n

n1

˙ˆ

n´ n1
n2

˙

¨ ¨ ¨

ˆ

nk
nk

˙

(since n´ pn1 ` ¨ ¨ ¨nk´1q “ nk).

Simplifying:
ˆ

n

n1

˙ˆ

n´ n1
n2

˙ˆ

n´ n1 ´ n2
n3

˙

¨ ¨ ¨

ˆ

nk
nk

˙

“
n!

n1!pn´ n1q!

pn´ n1q!

n2!pn´ n1 ´ n2q!

pn´ n1 ´ n2q!

n3!pn´ n1 ´ n2 ´ n3q!
¨ ¨ ¨

nk!

nk!0!

“
n!

n1!n2!n3! ¨ ¨ ¨nk!
. (Solution 2)



Permutations with indistinguishable objects.
In general: the number of ways to place n objects consisting of
exactly

n1 ‘O1’s, n2 ‘O2’s, . . . , and nk ‘Ok’s

(so that n “ n1 ` ¨ ¨ ¨ ` nk), in order is

ˆ

n

n1

˙ˆ

n´ n1
n2

˙

¨ ¨ ¨

ˆ

nk
nk

˙

(since n´ pn1 ` ¨ ¨ ¨nk´1q “ nk).

Simplifying:
ˆ

n

n1

˙ˆ

n´ n1
n2

˙ˆ

n´ n1 ´ n2
n3

˙

¨ ¨ ¨

ˆ

nk
nk

˙

“
n!

n1!pn´ n1q!

pn´ n1q!

n2!pn´ n1 ´ n2q!

pn´ n1 ´ n2q!

n3!pn´ n1 ´ n2 ´ n3q!
¨ ¨ ¨

nk!

nk!0!

“
n!

n1!n2!n3! ¨ ¨ ¨nk!
. (Solution 2)



Permutations with indistinguishable objects.
In general: the number of ways to place n objects consisting of
exactly

n1 ‘O1’s, n2 ‘O2’s, . . . , and nk ‘Ok’s

(so that n “ n1 ` ¨ ¨ ¨ ` nk), in order is

ˆ

n

n1

˙ˆ

n´ n1
n2

˙

¨ ¨ ¨

ˆ

nk
nk

˙

(since n´ pn1 ` ¨ ¨ ¨nk´1q “ nk).

Simplifying:
ˆ

n

n1

˙ˆ

n´ n1
n2

˙ˆ

n´ n1 ´ n2
n3

˙

¨ ¨ ¨

ˆ

nk
nk

˙

“
n!

n1!pn´ n1q!

pn´ n1q!

n2!pn´ n1 ´ n2q!

pn´ n1 ´ n2q!

n3!pn´ n1 ´ n2 ´ n3q!
¨ ¨ ¨

nk!

nk!0!

“
n!

n1!n2!n3! ¨ ¨ ¨nk!
. (Solution 2)



Permutations with indistinguishable objects.
In general: the number of ways to place n objects consisting of
exactly

n1 ‘O1’s, n2 ‘O2’s, . . . , and nk ‘Ok’s

(so that n “ n1 ` ¨ ¨ ¨ ` nk), in order is

ˆ

n

n1

˙ˆ

n´ n1
n2

˙

¨ ¨ ¨

ˆ

nk
nk

˙

(since n´ pn1 ` ¨ ¨ ¨nk´1q “ nk).

Simplifying:
ˆ

n

n1

˙ˆ

n´ n1
n2

˙ˆ

n´ n1 ´ n2
n3

˙

¨ ¨ ¨

ˆ

nk
nk

˙

“
n!

n1!pn´ n1q!

pn´ n1q!

n2!pn´ n1 ´ n2q!

pn´ n1 ´ n2q!

n3!pn´ n1 ´ n2 ´ n3q!
¨ ¨ ¨

nk!

nk!0!

“
n!

n1!n2!n3! ¨ ¨ ¨nk!
. (Solution 2)



6.5: Generalized permutations and combinations continued
So far: Placing objects in boxes (combination problems)
“How many ways can you place n objects into k boxes, if. . . ?”

For each question, ask yourself:
Can you tell the objects apart? Can you tell the boxes apart?

If you can tell them apart, we call them distinguishable.
(Objects: Cards face up. Boxes: labeled.)

If you cannot tell them apart, we call them indistinguishable.
(Objects: Cards face down. Boxes: unlabeled.)

We did: Distinguishable objects into distinguishable boxes.
More example questions:

(1) How many ways can you evenly distribute twelve articles to
three editors to be reviewed?

(2) How many ways can you distribute twelve articles to three
editors to be reviewed (if you don’t care how many articles
each person gets)?

(3) How many ways are there to distribute hands of 5 cards to
each of 4 players from the standard deck of 52 cards?
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(II) Indistinguishable objects into distinguishable boxes

(Place cards face down)

Example questions:

(1) How many outcomes can there be for the final tally in an
election with 5 candidates and 100 voters?

(2) How many ways are there to pick a collection of four pieces of
fruit from a bowl containing lots of apples, oranges, and pears?

(3) How many nonnegative integer solutions are there to the
equation x1 ` x2 ` x3 “ 11?

For (1), the 100 votes are the objects and the 5 candidates are the
boxes.
For (2), the 4 choices are the objects and the 3 fruit types are the
boxes (think ‘voting for fruit’).
For (3), there are 11 objects to be placed into the 3 boxes labeled
x1, x2, and x3 (think ‘voting for variables’).

Strategy: “stars and bars”
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(II) Indistinguishable objects into distinguishable boxes

Stars and bars. Like before, lay out the objects in a line. But
now, we can’t tell the difference between the objects. So instead of
naming them, just represent them using stars:

˚ ˚ ˚ ˚ ˚ ¨ ¨ ¨ ˚ ˚˚
loooooooomoooooooon

n objects

Next, partition them into the k boxes using bars:

objects in
1st box
hkkkikkkj

˚ ˚ ¨ ¨ ¨ ˚ |

objects in
2nd box
hkkkikkkj

˚ ˚ ¨ ¨ ¨ ˚ | ¨ ¨ ¨ |

objects in
kth box
hkkkikkkj

˚ ˚ ¨ ¨ ¨ ˚

So we’re down to counting anagrams of n stars and k ´ 1 bars:

pn` pk ´ 1qq!

n!pk ´ 1q!
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(II) Indistinguishable objects into distinguishable boxes

Theorem. The number of ways to distribute n indistinguishable
objects amongst k distinguishable boxes is

pn` pk ´ 1qq!

n!pk ´ 1q!

Back to example questions:
(1) How many outcomes can there be for the final tally in an
election with 5 candidates and 100 voters?

Answer: the 100 votes are the objects pn “ 100q and the 5 pk “ 5q
candidates are the boxes. So the number of possible outcomes is

p100` p5´ 1qq!

100!p5´ 1q!
“

104!

100!4!
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(II) Indistinguishable objects into distinguishable boxes

Theorem. The number of ways to distribute n indistinguishable
objects amongst k distinguishable boxes is

pn` pk ´ 1qq!

n!pk ´ 1q!

Back to example questions:
(2) How many ways are there to pick a collection of four pieces of
fruit from a bowl containing lots of apples, oranges, and pears?

Answer: the 4 choices are the objects (n “ 4) and the 3 fruit types
are the boxes (think ‘voting for fruit’) (k “ 3) . So the number of
possible outcomes is

p4` p3´ 1qq!

4!p3´ 1q!
“

6!

4!2!
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(II) Indistinguishable objects into distinguishable boxes

Theorem. The number of ways to distribute n indistinguishable
objects amongst k distinguishable boxes is

pn` pk ´ 1qq!

n!pk ´ 1q!

Back to example questions:
(3) How many nonnegative integer solutions are there to the
equation x1 ` x2 ` x3 “ 11?

Answer: there are 11 objects (n “ 11) to be placed into the 3
boxes (k “ 3) labeled x1, x2, and x3 (think ‘voting for variables’).
So the number of possible outcomes is

p11` p3´ 1qq!

11!p3´ 1q!
“

13!

11!2!

(See Exercise 26.)
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(III) Indistinguishable objects into indistinguishable boxes

Example question: How many ways can you distribute 4 apples
into three unmarked baskets?
(Specifically, the possibilities you’re counting are like “all four
apples go into one basket”, or “one basket has 2 apples, and the
other two each has 1 apple”, and so on.)

Instead of. . .

we’re counting things like. . .
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(III) Indistinguishable objects into indistinguishable boxes
Example question: How many ways can you distribute 4 apples
into three unmarked baskets?
(Specifically, the possibilities you’re counting are like “all four
apples go into one basket”, or “one basket has 2 apples, and the
other two each has 1 apple”, and so on.)

Hard: we can’t line anything up anymore, since there’s no 1st, 2nd,
etc.. By “hard”, I mean there’s no closed formula.

Rearrange all possible outcomes from most full basket to least full:
4 in one basket;

λ “ p4q

3 in one, 1 in another;

λ “ p3, 1q

2 in one, 2 in another;

λ “ p2, 2q

2 in one, 1 in another, 1 in another;

λ “ p2, 1, 1q

1 in each.

λ “ p1, 1, 1, 1q

An (integer) partition of a positive integer n is a way of breaking n
into whole pieces, without order. Alternatively, a partition λ of n,
written λ $ n is a sequence

λ “ pλ1, λ2, . . . , λ`q
satisfying
n “ λ1 ` λ2 ` ¨ ¨ ¨ ` λ`, λi P Zą0 and λ1 ě λ2 ě ¨ ¨ ¨ ě λ`.
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An (integer) partition of a positive integer n is a sequence
λ “ pλ1, λ2, . . . , λ`q

satisfying
n “ λ1 ` λ2 ` ¨ ¨ ¨ ` λ`, λi P Zą0 and λ1 ě λ2 ě ¨ ¨ ¨ ě λ`.

Partitions are hard to count (i.e. there is no closed formula) –
you have to do it manually. Easier to count if we draw!

Draw partitions as n boxes piled up and to the left into a corner,
where the ith row has λi boxes.
For example,

the partition p1, 1, 1, 1q is ;

the partition p2, 1, 1q is ;

the partition p2, 2q is ;

the partition p3, 1q is ;

and the partition p4q is .
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An (integer) partition of a positive integer n is a sequence
λ “ pλ1, λ2, . . . , λ`q

satisfying
n “ λ1 ` λ2 ` ¨ ¨ ¨ ` λ`, λi P Zą0 and λ1 ě λ2 ě ¨ ¨ ¨ ě λ`.

For example,

the partition p1, 1, 1, 1q is ;

the partition p2, 1, 1q is ;

the partition p2, 2q is ;

the partition p3, 1q is ;

and the partition p4q is .

The entries in the sequence are called the parts; λi is the length of
the ith part. Denote

the number of partitions of n with are most k parts by pkpnq;

and the number of partitions of n by ppnq.



(IV) Distinguishable objects into indistinguishable boxes

Example question: How many ways are there to put n different
employees into k basically identical offices, when each office can
contain any number of employees?

Instead of. . .

we’re counting things like. . .
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(IV) Distinguishable objects into indistinguishable boxes

Also note that (in the indistinguishable boxes case) . . .

is the same as. . .

but not. . .

(since the objects are distinguishable).



(IV) Distinguishable objects into indistinguishable boxes
Example question: How many ways are there to put four different
employees into three basically identical offices, when each office
can contain any number of employees?

For small examples: Think of how to partition tA,B,C,Du into
up to three subsets:

(all in one set): tA,B,C,Du

(three in one, one alone): 4 of these–choose who’s alone
tA,B,Cu \ tDu, tA,B,Du \ tCu,

tA,C,Du \ tBu, or tB,C,Du \ tAu.

(two and two): 3 of these–choose A’s officemate
tA,Bu \ tC,Du, tA,Cu \ tB,Du, or tA,Du \ tB,Cu

(two, one, and one):
`

4
2

˘

of these–choose who’s alone

tA,Bu \ tCu \ tDu, tA,Cu \ tBu \ tDu, tA,Du \ tBu \ tCu,
tB,Cu \ tAu \ tDu, tB,Du \ tAu \ tCu, tC,Du \ tAu \ tDu

Total: 1` 4` 3` 6 “ 14.
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(IV) Distinguishable objects into indistinguishable boxes

Stirling numbers of the second kind: Let Spn, jq be the number of
ways to distribute n distinguishable things into exactly j boxes (so
that none of the boxes are empty).

One can use
inclusion/exclusion to find (We will not prove this yet)

Spn, jq “
1

j!

j´1
ÿ

i“0

p´1qi
ˆ

j

i

˙

pj ´ iqn.

Example: In our example of assigning people to offices. . .
Sp4, 1q counts putting everyone into one office:

Sp4, 1q “
1

1!

1´1
ÿ

i“0

p´1qi
ˆ

1

i

˙

p1´ iq4 “ p´1q0
ˆ

1

0

˙

p1´ 0q4 “ 1.X

Sp4, 2q counts putting people into exactly 2 offices, i.e. the cases
corresponding to the partitions with 2 parts, and .

Sp4, 2q “
1

2!

2´1
ÿ

i“0

p´1qi
ˆ

2

i

˙

p2´ iq4 “
1

2

ˆ̂

2

0

˙

24 ´

ˆ

2

1

˙

14
˙

“ 7 “ 3` 4.X
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Then the number of ways to distribute n distinguishable things
into k boxes (when we don’t care if some are left empty) is

k
ÿ

j“1

Spn, jq “ Spn, 1q ` Spn, 2q ` ¨ ¨ ¨ ` Spn, kq.

Example: In our example of assigning people to offices, we should
get

3
ÿ

j“1

Sp4, jq “ Sp4, 1q ` Sp4, 2q ` Sp4, 3q “ 1` 7` 6 “ 14.X
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