
Warmup
Recall

ˆ

n

k

˙

“
n!

pn´ kq!k!
.

Read notes for “Tips for being slick”.

Then, without a calculator, compute the following values:

ˆ

4

2

˙

“ 4 ˚ 3{2 “ 6

ˆ

8

6

˙

“ 8 ˚ 7{2 “ 28

ˆ

10

9

˙

“ 10

ˆ
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1

˙
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ˆ

5

3

˙

“ 5 ˚ 4{2 “ 10

ˆ
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3

˙

“ 10˚9˚8
3˚2 “ 120

ˆ
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˙
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ˆ

200

200

˙

“ 1
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Recall, on Day 1, we talked about expanding px` yqn:

The term xkyn´k appears in

px` yqn “ px` yqpx` yq ¨ ¨ ¨ px` yq

by picking k terms to take x from and then take y from the
remaining n´ k terms. For example, x2y appears

`

3
2

˘

times:

px` yq˚px` yq˚px` yq
“ x ˚ x ˚ x
` x ˚ x ˚ y Ð

` x ˚ y ˚ x Ð

` x ˚ y ˚ y
` y ˚ x ˚ x Ð

` y ˚ x ˚ y
` y ˚ y ˚ x
` y ˚ y ˚ y

So, the coefficient of xkyn´k in px` yqn is
`

n
k

˘

“
`

n
n´k

˘

.
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The coefficient of xkyn´k in px` yqn is
`

n
k

˘

“
`

n
n´k

˘

.

Theorem
Let x and y be variables, and let n be a nonnegative integer. Then

px` yqn “
n
ÿ

k“0

ˆ

n

k

˙

xkyn´k.

This is our first binomial identity.
Example: In the expansion of px` yq4, the coefficient of

. . . x4y0 “ x4 is
`

4
0

˘

“ 1, . . . x3y is
`

4
1

˘

“ 4,

. . . x2y2 is
`

4
2

˘

“ 6, . . . xy3 is
`

4
3

˘

“ 4,

. . . x0y4 “ y4 is
`

4
4

˘

“ 1,
so

px` yq4 “ x4 ` 4x3y ` 6x2y2 ` 4xy3 ` y4.
Example: In the expansion of px` yq24, the coefficient of x21y3 is

ˆ

21

3

˙

“
21 ˚ 20 ˚ 19

3 ˚ 2 ˚ 1
.



The coefficient of xkyn´k in px` yqn is
`

n
k

˘

“
`

n
n´k

˘

.

Theorem
Let x and y be variables, and let n be a nonnegative integer. Then

px` yqn “
n
ÿ

k“0

ˆ

n

k

˙

xkyn´k.

This is our first binomial identity.
Example: In the expansion of px` yq4, the coefficient of

. . . x4y0 “ x4 is
`

4
0

˘

“ 1, . . . x3y is
`

4
1

˘

“ 4,

. . . x2y2 is
`

4
2

˘

“ 6, . . . xy3 is
`

4
3

˘

“ 4,

. . . x0y4 “ y4 is
`

4
4

˘

“ 1,
so

px` yq4 “ x4 ` 4x3y ` 6x2y2 ` 4xy3 ` y4.
Example: In the expansion of px` yq24, the coefficient of x21y3 is

ˆ

21

3

˙

“
21 ˚ 20 ˚ 19

3 ˚ 2 ˚ 1
.



The coefficient of xkyn´k in px` yqn is
`

n
k

˘

“
`

n
n´k

˘

.

Theorem
Let x and y be variables, and let n be a nonnegative integer. Then

px` yqn “
n
ÿ

k“0

ˆ

n

k

˙

xkyn´k.

This is our first binomial identity.

Example: In the expansion of px` yq4, the coefficient of
. . . x4y0 “ x4 is

`

4
0

˘

“ 1, . . . x3y is
`

4
1

˘

“ 4,

. . . x2y2 is
`

4
2

˘

“ 6, . . . xy3 is
`

4
3

˘

“ 4,

. . . x0y4 “ y4 is
`

4
4

˘

“ 1,
so

px` yq4 “ x4 ` 4x3y ` 6x2y2 ` 4xy3 ` y4.
Example: In the expansion of px` yq24, the coefficient of x21y3 is

ˆ

21

3

˙

“
21 ˚ 20 ˚ 19

3 ˚ 2 ˚ 1
.



The coefficient of xkyn´k in px` yqn is
`

n
k

˘

“
`

n
n´k

˘

.

Theorem
Let x and y be variables, and let n be a nonnegative integer. Then

px` yqn “
n
ÿ

k“0

ˆ

n

k

˙

xkyn´k.

This is our first binomial identity.
Example: In the expansion of px` yq4, the coefficient of

. . . x4y0 “ x4 is
`

4
0

˘

“ 1, . . . x3y is
`

4
1

˘

“ 4,

. . . x2y2 is
`

4
2

˘

“ 6, . . . xy3 is
`

4
3

˘

“ 4,

. . . x0y4 “ y4 is
`

4
4

˘

“ 1,
so

px` yq4 “ x4 ` 4x3y ` 6x2y2 ` 4xy3 ` y4.

Example: In the expansion of px` yq24, the coefficient of x21y3 is
ˆ

21

3

˙

“
21 ˚ 20 ˚ 19

3 ˚ 2 ˚ 1
.



The coefficient of xkyn´k in px` yqn is
`

n
k

˘

“
`

n
n´k

˘

.

Theorem
Let x and y be variables, and let n be a nonnegative integer. Then

px` yqn “
n
ÿ

k“0

ˆ

n

k

˙

xkyn´k.

This is our first binomial identity.
Example: In the expansion of px` yq4, the coefficient of

. . . x4y0 “ x4 is
`

4
0

˘

“ 1, . . . x3y is
`

4
1

˘

“ 4,

. . . x2y2 is
`

4
2

˘

“ 6, . . . xy3 is
`

4
3

˘

“ 4,

. . . x0y4 “ y4 is
`

4
4

˘

“ 1,
so

px` yq4 “ x4 ` 4x3y ` 6x2y2 ` 4xy3 ` y4.
Example: In the expansion of px` yq24, the coefficient of x21y3 is

ˆ

21

3

˙

“
21 ˚ 20 ˚ 19

3 ˚ 2 ˚ 1
.



There are many ways to arrive at a “combinatorial identity”.
One way is to count a set in two different ways.

Example: How many ways can you answer an n-question T or F
quiz, if you might leave some answers blank?
Method 1: there are n steps, at each step, there are 3 possible
outcomes, so the answer is 3n.
Method 2: Choose the questions to leave blank (break into cases
based on exactly how many to leave blank), and then answer the
rest, so the answer is

řn
k“0

`

n
k

˘

2k.
So

3n “
n
ÿ

k“0

ˆ

n

k

˙

2k.

Another way is to substitute special values into identities we
already have.
Example: Substitute x “ 2, y “ 1 into

px` yqn “
n
ÿ

k“0

ˆ

n

k

˙

xkyn´k:
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Another way is to substitute special values into identities we
already have.
Example: Substitute x “ 2, y “ 1 into

px` yqn “
n
ÿ
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ˆ

n
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xkyn´k:

LHS: p2` 1qn

“ 3n RHS:
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n

k
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n
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What if I had substituted x “ 1 and y “ 2 instead? I should get
the same identity. (Use the fact that

`

n
k

˘

“
`

n
n´k

˘

.) See Ex 24.
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Recall Pascal’s Triangle
Start and end each row with a 1. The ith row (starting with the
0th row) has i` 1 entries. The middle entries are acquired by
adding successive entries in the previous row.

(0th row)

(1st row)

(2nd row)

(3rd row)

(4th row)

(5th row)

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1
.
.
.

.

.

.

.

.

.

Day 1 we argued (informally)
`

n
k

˘

is the kth entry of the nth row
of Pascal’s triangle

Theorem (Pascal’s identity)

Let n and k be positive integers with n ě k. Then

ˆ

n

k

˙

“

ˆ

n´ 1

k ´ 1

˙

`

ˆ

n´ 1

k

˙

.
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Day 1 we argued (informally)
`

n
k

˘

is the kth entry of the nth row
of Pascal’s triangle

Theorem (Pascal’s identity)

Let n and k be positive integers with n ě k. Then

ˆ

n

k

˙

“

ˆ

n´ 1

k ´ 1

˙

`

ˆ

n´ 1

k

˙

.
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˙

`

ˆ

n´ 1

k

˙

.

Combinatorial proof of Pascal’s identity:
We prove this identity “combinatorially”, meaning we come up
with a story about counting a set in two different ways. Then we’ll
conclude that since the two answers will count elements in the
same set, they must be equal.

Let A be a set of size n.

Fix x P A and let B “ A´ txu.

Count subsets of A of size k in two ways:
(1) all at once, and
(2) broken into cases, depending on
whether a subset contains x or not.

B

¨ ¨ ¨

A

x

X Ď A

x P X

X Ď B

(x R X)
(2)

(1) PpAq



Theorem (Pascal’s identity). Let n and k be positive integers with
n ě k. Then

ˆ

n

k

˙

“

ˆ

n´ 1

k ´ 1

˙

`

ˆ

n´ 1

k

˙

.

Combinatorial proof of Pascal’s identity:
We prove this identity “combinatorially”, meaning we come up
with a story about counting a set in two different ways. Then we’ll
conclude that since the two answers will count elements in the
same set, they must be equal.

Let A be a set of size n.

Fix x P A and let B “ A´ txu.

Count subsets of A of size k in two ways:
(1) all at once, and
(2) broken into cases, depending on
whether a subset contains x or not.

B

¨ ¨ ¨

A

x

X Ď A

x P X

X Ď B

(x R X)
(2)

(1) PpAq



Theorem (Pascal’s identity). Let n and k be positive integers with
n ě k. Then

ˆ

n

k

˙

“

ˆ

n´ 1

k ´ 1

˙

`

ˆ

n´ 1

k

˙

.

Combinatorial proof of Pascal’s identity:
We prove this identity “combinatorially”, meaning we come up
with a story about counting a set in two different ways. Then we’ll
conclude that since the two answers will count elements in the
same set, they must be equal.

Let A be a set of size n.

Fix x P A and let B “ A´ txu.

Count subsets of A of size k in two ways:
(1) all at once, and
(2) broken into cases, depending on
whether a subset contains x or not.

B

¨ ¨ ¨

A

x

X Ď A

x P X

X Ď B

(x R X)
(2)

(1) PpAq



Theorem (Pascal’s identity). Let n and k be positive integers with
n ě k. Then

ˆ

n

k

˙

“

ˆ

n´ 1

k ´ 1

˙

`

ˆ

n´ 1

k

˙

.

Combinatorial proof of Pascal’s identity:
We prove this identity “combinatorially”, meaning we come up
with a story about counting a set in two different ways. Then we’ll
conclude that since the two answers will count elements in the
same set, they must be equal.

Let A be a set of size n.
Fix x P A

and let B “ A´ txu.

Count subsets of A of size k in two ways:
(1) all at once, and
(2) broken into cases, depending on
whether a subset contains x or not.

B

¨ ¨ ¨

A
x

X Ď A

x P X

X Ď B

(x R X)
(2)

(1) PpAq



Theorem (Pascal’s identity). Let n and k be positive integers with
n ě k. Then

ˆ

n

k

˙

“

ˆ

n´ 1

k ´ 1

˙

`

ˆ

n´ 1

k

˙

.

Combinatorial proof of Pascal’s identity:
We prove this identity “combinatorially”, meaning we come up
with a story about counting a set in two different ways. Then we’ll
conclude that since the two answers will count elements in the
same set, they must be equal.

Let A be a set of size n.
Fix x P A and let B “ A´ txu.

Count subsets of A of size k in two ways:
(1) all at once, and
(2) broken into cases, depending on
whether a subset contains x or not.

B

¨ ¨ ¨

A
x

X Ď A

x P X

X Ď B

(x R X)
(2)

(1) PpAq



Theorem (Pascal’s identity). Let n and k be positive integers with
n ě k. Then

ˆ

n

k

˙

“

ˆ

n´ 1

k ´ 1

˙

`

ˆ

n´ 1

k

˙

.

Combinatorial proof of Pascal’s identity:
We prove this identity “combinatorially”, meaning we come up
with a story about counting a set in two different ways. Then we’ll
conclude that since the two answers will count elements in the
same set, they must be equal.

Let A be a set of size n.
Fix x P A and let B “ A´ txu.

Count subsets of A of size k in two ways:
(1) all at once

, and
(2) broken into cases, depending on
whether a subset contains x or not.

B

¨ ¨ ¨

A
x

X Ď A

x P X

X Ď B

(x R X)
(2)

(1) PpAq



Theorem (Pascal’s identity). Let n and k be positive integers with
n ě k. Then

ˆ

n

k

˙

“

ˆ

n´ 1

k ´ 1

˙

`

ˆ

n´ 1

k

˙

.

Combinatorial proof of Pascal’s identity:
We prove this identity “combinatorially”, meaning we come up
with a story about counting a set in two different ways. Then we’ll
conclude that since the two answers will count elements in the
same set, they must be equal.

Let A be a set of size n.
Fix x P A and let B “ A´ txu.

Count subsets of A of size k in two ways:
(1) all at once, and
(2) broken into cases, depending on
whether a subset contains x or not.

B

¨ ¨ ¨

A
x

X Ď A

x P X

X Ď B

(x R X)
(2)

(1) PpAq



Theorem (Pascal’s identity). Let n and k be positive integers with
n ě k. Then

ˆ

n

k

˙

“

ˆ

n´ 1

k ´ 1

˙

`

ˆ

n´ 1

k

˙

.

Combinatorial proof of Pascal’s identity:
Let A be a set of size n. Fix x P A and let B “ A´ txu.

B

¨ ¨ ¨

A
x

Count size-k subsets of A in 2 ways:
LHS, All at once:

There are
`

n
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there are
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n´1
k

˘

size-k subsets of A not containing x.
‚ Case 2: x P X. Every size-k subset of A containing x looks like
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n´1
k´1

˘
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So, using the sum rule, there are
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n´1
k

˘

`
`

n´1
k´1

˘

subsets of A of size k.
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`

n
k

˘

“
`

n´1
k´1

˘

`
`

n´1
k

˘

. ˝
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`

n
k

˘

“
`

n´1
k´1

˘

`
`

n´1
k

˘

.
Alternatively, we could prove this algebraically.

Algebraic proof of Pascal’s identity.

Recall,
ˆ

n

k

˙

“
n!

pn´ kq!k!
.

So, algebraically,

ˆ

n´ 1

k ´ 1

˙

`

ˆ

n´ 1

k

˙

“
pn´ 1q!

pn´ 1´ pk ´ 1qq!pk ´ 1q!
`

pn´ 1q!

pn´ 1´ kq!k!

“ pn´ 1q!

ˆ

1

pn´ kq!pk ´ 1q!
`

1

pn´ 1´ kq!k!

˙

“
pn´ 1q!

pn´ kq!k!
pk ` pn´ kqq

“
pn´ 1q!

pn´ kq!k!
˚ n “

n!

pn´ kq!k!
“

ˆ

n

k

˙

. ˝
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Theorem (Vandermonde’s identity)

Let m,n, r be nonnegative integers with r ď minpm,nq. Then

ˆ

m` n

r

˙

“

r
ÿ

k“0

ˆ

m

r ´ k

˙ˆ

n

k

˙

.

Combinatorial proof sketch: count something in two ways. Let A
and B be disjoint sets with |A| “ m and |B| “ n.

(m elements) (n elements)

A\B

A B

Count the size-r subsets of A\B with A and B together, and
then separately.
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A\B

A B

Count the size-r subsets of A\B with A and B together, and
then separately.
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See later:
Recall, Vandermonde’s identity says that for r � min(m, n) we have

✓
m + n

r

◆
=

rX

k=0

✓
m

r � k

◆✓
n

k

◆
.

We showed this by counting size-r subsets of A t B in two ways, where |A| = m and |B| = n.

Example of the RHS of proving Vandermonde’s identity: Let

A = {a, b, c, d, e}, and B = {x, y, z}, so that m = |A| = 5, n = |B| = 3, and A t B = {a, b, c, d, e, x, y, z}.

Then the size-3 (r = 3) subsets can be broken up into 4 (r + 1) categories as follows:

3 elements
from A,
0 from B
(k = 0) 2 elements from A, 1 from B (k = 1) 1 element from A, 2 from B (k = 2)

0 elements
from A,
3 from B
(k = 3)

there are✓
5

3

◆✓
3

0

◆

of these

there are✓
5

2

◆✓
3

1

◆

of these

there are✓
5

1

◆✓
3

2

◆

of these

there are✓
5

0

◆✓
3

3

◆

of these

{a, b, c}
{a, b, d}
{a, b, e}
{b, c, d}
{b, c, e}
{b, d, e}
{c, d, e}

{a, b, x}
{a, b, y}
{a, b, z}
{a, c, x}
{a, c, y}
{a, c, z}
{a, d, x}
{a, d, y}
{a, d, z}
{a, e, x}
{a, e, y}
{a, e, z}

...

{b, c, x}
{b, c, y}
{b, c, z}
{b, d, x}
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{b, d, z}
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...

{c, d, x}
{c, d, y}
{c, d, z}
{c, e, x}
{c, e, y}
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{d, e, x}
{d, e, y}
{d, e, z}

...

{a, x, y}
{a, x, z}
{a, y, z}

{b, x, y}
{b, x, z}
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{d, y, z}

{e, x, y}
{e, x, z}
{e, y, z}

{x, y, z}

So in total, there are ✓
5

3

◆✓
3

0

◆
+

✓
5

2

◆✓
3

1

◆
+

✓
5

1

◆✓
3

2

◆
+

✓
5

0

◆✓
3

3

◆
=

3X

k=0

✓
5

3 � k

◆✓
3

k

◆
=

✓
5 + 3

3

◆

size-3 subsets of A t B.



Theorem. Let n ě k be nonnegative integers. Then
ˆ
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k ` 1

˙

“

n
ÿ

m“k

ˆ

m

k

˙

.

Combinatorial proof sketch: Put n` 1 items in ascending order,
and break into cases based on what the greatest chosen item is.
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6.5: Generalized permutations and combinations
Caution: The book talks about permutation problems and combination

problems with or without repetition or replacement. When the rest of

the world says permutation or combination problem without clarification,

they only mean without repetition/replacement!

“Permutations with repetition”:
i.e. “ordered selection with replacement”

Permutation means that order matters.
Repetition means you can repeat objects.

Example questions:

1. How many 5-letter words are there?

265

2. How many ways possible outcome are there of ten flips of a

coin?

210

3. How many ways ways can you answer a 20-question T or F

quiz?

320

Theorem. The number of ways to pick n objects, in order, with
possible repetition, from a set of k objects is kn .
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Permutations with indistinguishable objects.

Permutation means that order matters.
Indistinguishable means there are objects that can’t be told apart.

Example questions:

1. How many 5-character passwords are there with 3 ‘A’s, one
‘B’, and one ‘C’?

Place 3 A’s:
`

5
3

˘

, Place 1 B:
`

5´3
1

˘

, Place 1 C:
`

5´3´1
1

˘

.

Total:
`

5
3

˘`

2
1

˘`

1
1

˘

2. How many anagrams are there of SUCCESS?

Objects: 3 S’s, 1 U, 2 C’s, 1 E. Places: 7
Place 3 S’s:

`

7
3

˘

, Place 1 U:
`

7´3
1

˘

,

Place 2 C’s:
`

7´3´1
2

˘

, Place 1 E:
`

7´3´1´2
1

˘

.

Total:
`

7
3

˘`

4
1

˘`

3
2

˘`

1
1

˘

Solution strategy: Make a list of the objects and how many times
they’re used. Then place the objects one “type” at a time.
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Permutations with indistinguishable objects.
In general: the number of ways to place n objects consisting of
exactly

n1 ‘O1’s, n2 ‘O2’s, . . . , and nk ‘Ok’s

(so that n “ n1 ` ¨ ¨ ¨ ` nk), in order is

ˆ

n

n1

˙ˆ

n´ n1

n2

˙

¨ ¨ ¨

ˆ

nk

nk

˙

(since n´ pn1 ` ¨ ¨ ¨nk´1q “ nk).

Simplifying:
ˆ

n

n1

˙ˆ

n´ n1

n2

˙ˆ

n´ n1 ´ n2

n3

˙

¨ ¨ ¨

ˆ

nk

nk

˙

“
n!

n1!pn´ n1q!

pn´ n1q!

n2!pn´ n1 ´ n2q!

pn´ n1 ´ n2q!

n3!pn´ n1 ´ n2 ´ n3q!
¨ ¨ ¨

nk!

nk!0!

“
n!

n1!n2!n3! ¨ ¨ ¨nk!
.
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