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Bad example.

Claim: ´1 “ 1

Non-proof.

If ´1 “ 1, then

p´1q2 “ p1q2, so that 1 “ 1,

which is true.

What went wrong:
We proved that

“´1 “ 1 implies 1 “ 1”,
which is (strangely enough) true. A false statement can imply a
true statement.

We did not show that ´1 “ 1.
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Last time: Counting rules.

Product: If a procedure can be broken into a sequence of two
tasks, and there are n1 ways to do the first task, and for each of
these ways of doing the first task, there are n2 ways to doing the
second task, then there are n1n2 total distinct outcomes.

Sum: If a procedure can be done either in one of n1 ways or in one
of n2 ways, where there is no overlap in the n1 and n2 ways, then
there are n1 ` n2 total distinct outcomes.

Subtraction/Inclusion-exclusion: If a procedure can be done either
in one of n1 ways or in one of n2 ways, but there are n3 overlapping
outcomes, then there are n1 ` n2 ´ n3 total distinct outcomes.

Division: If a procedure can be done in n ways, but that procedure
produces each outcome in d different ways, then there are actually
n{d distinct outcomes.

Remember: Every rule depends on making up a “procedure” for
counting, and then applying the rules according to that procedure!!
(Take it from this expert: Never just plug stuff into a formula – make up

a story for counting things one step at a time, and then try to count.)
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Section 6.3: Permutations and combinations

The choose function is

Cpn, kq “

ˆ

n

k

˙

“ #t ways to choose k objects from n u,

read “n choose k”.

Now that we have some counting skills, we can build a formula
using the product and division rules.
Let’s start with an example. . .
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Let’s start with an example: n “ 7, k “ 3.

Step 1: How many ways are there to select 3 things from 7 in
order (no replacement)?

Ans: 7 ˚ 6 ˚ 5.
Rewriting, notice that

7! “
`

7 ˚ 6 ˚ 5
˘

˚
`

4 ˚ 3 ˚ 2 ˚ 1
˘

looooooomooooooon

p7´3q!“4!

,

so

7 ˚ 6 ˚ 5 “
7!

p7´ 3q!
.
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`

n
k

˘

“ #t ways to choose k objects from n u “ n!
pn´kq!k!

A k-permutation of n objects is a choice of k things from n in
order.

The permutation function is

P pn, kq “ #t ways to select k objects from n in orderu.

As we saw,

P pn, kq “
n!

pn´ kq!
.

A permutation is an n-permutation of n objects.

We call counting problems that call for unordered selection
“combination problems”.
We call counting problems that call for ordered selection
“permutation problems”.
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that heads comes up exactly 3 times?
Ans: When I choose the 3 times that the heads come up, it
doesn’t matter what order I choose them, just which slots I
pick. (Combination, n “ 5, k “ 3)

Cp5, 3q “ 5 ˚ 4 ˚ 3{p3 ˚ 2 ˚ 1q.
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(Counting in two different ways gives the identity

310 “
10
ÿ

i“0

ˆ

10

i

˙

210´i.q

You try: Exercise 22
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Pigeonhole principle - §6.2
The Pigeonhole Principle says that if k ` 1 objects are placed into
k boxes, then at least one box contains two or more objects.

???

Proof (by contradiction).

Suppose every box contains at most one object. Then there are at
most

#t boxes u ˚ p max # objects per box q “ k ˚ 1 ă k ` 1.

This is a contradiction. So least one box contains two or more
objects.

In the language of functions:
If A is a set of size k ` 1 and B is a set of size k, then there is no
injective function f : AÑ B. (It follows that if |A| ą |B|, then
there is no injective function f : AÑ B.)
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Pigeonhole Principle: “if k ` 1 objects are placed into k boxes,
then at least one box contains two or more objects.”

Ex: In any group of 367 people, at least two of those people have
the same birthday.

NON-Ex: In a group of 367 people, it is not guaranteed that at
least two people were born on a specific day. For example, it is not
guaranteed that at least two people were born on January 1st. (It
is not guaranteed that any of them were born on January 1st!)

Ex: In any set of 27 english words, at least two start with the same
letter; at least two end with the same letter.

NON-Ex: In a set of twenty seven english words, it is not
guaranteed that at least two start with a specific letter. For
example, it is not guaranteed that at least two start with ‘z’ (say,
the twenty seven distinct words in this example).
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The Generalized Pigeonhole Principle says that if N objects are
placed into k boxes, then at least one box contains rN{ks objects.

???

Proof (by contradiction).

Note that
rN{ks ă pN{kq ` 1

(the ceiling function rounds up, which increases a value by less
than 1). So, multiplying both sides by k, we get

krN{ks ă kppN{kq ` 1q “ N ` k.
Now suppose every box contains at most rN{ks´ 1 objects (note
rN{ks ě 1). Then there are at most

#t boxes u ˚ p max # objects per box q “ k ˚ prN{ks´ 1q

“ krN{ks´ k ă pN ` kq ´ k “ N.

This is a contradiction. So least one box contains rN{ks or more
objects.
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Now suppose every box contains at most rN{ks´ 1 objects (note
rN{ks ě 1). Then there are at most

#t boxes u ˚ p max # objects per box q “ k ˚ prN{ks´ 1q

“ krN{ks´ k ă pN ` kq ´ k “ N.

This is a contradiction. So least one box contains rN{ks or more
objects.
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The Generalized Pigeonhole Principle says that if N objects are
placed into k boxes, then at least one box contains rN{ks objects.

Example: What is the minimum number of students required in a
class to ensure that at least ten people will receive the same grade
(if the grade options are just A,B,C,D,F)?

Answer:
Here, the grades are the “boxes”, of which there are 5. (k “ 5).
Need at least one of the boxes to have at least ten students.
(rN{5s ě 10)
But

rN{5s ě 10 exactly when N{5 ą 9.

So the question comes down to finding the least integer N such
that N ą 5 ˚ 9: N “ 5 ˚ 9` 1
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The Generalized Pigeonhole Principle says that if N objects are
placed into k boxes, then at least one box contains rN{ks objects.

Example: How many cards must be selected from a standard deck
of 52 cards to guarantee that at least three cards of the same suit
appear?

Answer:
Here, the suits are the “boxes”, of which there are 4. (k “ 4)
Need at least one of the boxes to have at least three cards.
(rN{4s ě 3)
But

rN{4s ě 3 exactly when N{4 ą 2.

So the question comes down to finding the least integer N such
that N ą 4 ˚ 2: N “ 4 ˚ 2` 1
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The Generalized Pigeonhole Principle says that if N objects are
placed into k boxes, then at least one box contains rN{ks objects.

NON-Example: How many cards must be selected from a standard
deck of 52 cards to guarantee that at least three hearts appear?

Answer: Since there are 39 cards that are not hearts, we would
need to pull at least 39` 3 “ 42 cards to ensure at least three
hearts.

Example: What is the least number of area codes needed to ensure
the availability of at least 25 million distinct phone numbers? (A
valid phone number is a sequence of 10 digits, where the first three
are the area code, and the 1st and 4th are not 1’s or 0’s.)
Ans: Here, the seven digit phone numbers are the “boxes”, of
which there are 8 ˚ 106 “ 8 million. (k “ 8 million)
So if we have 25 million phone numbers, at least

r25mil{8mils “ 4

will have the same 7-digit phone number. Therefore we need 4
area codes.
You try: Exercise 23
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