Math 365 - Wednesday 2/6/19 Section 2.4: Sequences and summations

Exercise 12.

(a) For each of the following sequences, compute the terms a_{0}, a_{1}, a_{2}, and a_{3}.
(a) $a_{n}=3$;
(b) $a_{n}=7+4^{n}$;
(c) $a_{n}=2^{n}+(-2)^{n}$.
(b) For each of the following sequences defined by recurrence relations and initial conditions, answer the following.
(a) Compute the first four terms $\left(a_{0}, a_{1}, a_{2}\right.$, and $\left.a_{3}\right)$.
(b) Decide if $\left\{a_{n}\right\}$ is arithmetic, geometric, or neither. If it is arithmetic or geometric, then find a closed formula for a_{n}.
(i) The sequence satisfying $a_{0}=2$ and $a_{n}=\frac{1}{2} a_{n-1}$.
(ii) The sequence satisfying $a_{0}=-1$ and $a_{n}=a_{n-1}+5$.
(iii) The sequence satisfying $a_{0}=1, a_{1}=-1$ and $a_{n}=a_{n-2} * a_{n-1}$.
(iv) The sequence satisfying $a_{0}=2$ and $a_{n}=-a_{n-1}$.
(c) Find at least three different sequences beginning with the terms $3,5,7$ whose terms are generated by a simple formula or rule.
(d) For the following sequences, try to find the pattern. Decide if they are arithmetic, geometric, or neither. If it's arithmetic or geometric, find a closed formula expressing the nth term of the sequence.
(i) $5,1,-3,-7,-11, \ldots$
(ii) $1,4,9,16,25, \ldots$
(iii) $3,9,27,81,243, \ldots$
(e) Show that both of the following sequences are solutions to the recurrence relation $a_{n}=-3 a_{n-1}+$ $4 a_{n-2}$ with initial condition $a_{0}=1$.
(i) $a_{n}=1$;
(ii) $a_{n}=(-4)^{n}$.

Exercise 13. (a) Compute the first three partial sums for the following infinite series.
(i) $\sum_{i=0}^{\infty} 5 i+1$;
(ii) $\sum_{i=4}^{\infty} i(i+1)$;
(b) Calculate the following.
(i) $\sum_{j=0}^{8}\left(1+(-1)^{j}\right)$
(ii) $\sum_{j=-1}^{2} \sum_{i=2}^{3}(2 i+3 j)$
(iii) $\sum_{j \in\{-1,4,15\}} 2$
(iv) $\sum_{j \in\{z \in \mathbb{Z}| | z \mid \leq 2\}} j$
(v) $\sum_{n=2}^{5} a_{n}-a_{n-1}$ where $a_{n}=n$!
(vi) $\sum_{i=1}^{2000} i$
(vii) $\sum_{i=0}^{10} \frac{2}{3^{i}}$
(viii) $\sum_{i=0}^{\infty} \frac{2}{3^{i}}$

Exercise 14. A little more.

(a) For each of these sequences find a recurrence relation satisfied by this sequence. (The answers are not unique because there are infinitely many different recurrence relations satisfied by any sequence.)
(i) $a_{n}=2 n+3$;
(ii) $a_{n}=5^{n}$;
(iii) $a_{n}=n^{2}$.
(b) Use partial sums to explain why, for any sequence $a_{0}, a_{1}, \ldots, a_{n}$, that

$$
\sum_{i=1}^{n} a_{i}-a_{i-1}=a_{n}-a_{0}
$$

[Let $S_{n}=\sum_{i=1}^{n} a_{i}-a_{i-1}$. Write out S_{1}, S_{2}, S_{3}, and so on until you see the pattern. Then use the fact that $S_{n}=S_{n-1}+\left(a_{n}-a_{n-1}\right)$.]
(c) Read in section 2.4 about product notation $\prod_{i=m}^{n} a_{i}$. Then, what are the values of the following products?
(a) $\prod_{i=0}^{10} i$
(b) $\prod_{i=5}^{8} i(i+1)$
(c) $\prod_{i=1}^{100}(-1)^{i}$
(d) Express n ! using product notation.

Sequences

A sequence is a function a from a subset of the set of integers (usually $\mathbb{Z}_{\geqslant 0}$ or $\mathbb{Z}_{>0}$) to a set S,

$$
a: \mathbb{Z}_{\geqslant 0} \rightarrow S \quad \text { or } \quad a: \mathbb{Z}_{>0} \rightarrow S
$$

We write $a_{n}=a(n)$, and call a_{n} the nth term of the sequence.

Example

The sequence defined by the function

$$
a: \mathbb{Z}_{>0} \rightarrow \mathbb{Q} \quad \text { defined by } \quad n \mapsto 1 / n
$$

is the sequence

$$
1,1 / 2,1 / 3,1 / 4, \ldots
$$

We write $a_{n}=1 / n$.
We can also write such a sequence like

$$
\{a(n)\}_{n=1,2, \ldots} \quad \text { or } \quad\{a(n)\}_{n \in \mathbb{Z}_{>0}} .
$$

For example, the sequence above is $\{1 / n\}_{n \in \mathbb{Z}_{>0}}$.

Some different kinds of sequences

A geometric sequence (or progression) is a sequence of the form

$$
c, c r, c r^{2}, c r^{3}, \ldots, \quad \text { i.e. } \quad a: \mathbb{Z}_{\geqslant 0} \rightarrow S \quad \text { by } \quad n \mapsto c r^{n},
$$

for some constants c and r. (This is a discrete version of the exponential function $f(x)=c r^{x}$.)
An arithmetic progression is a sequence of the form

$$
\begin{array}{ll}
& b, b+m, b+2 m, b+3 m, \ldots, \\
\text { i.e. } & a: \mathbb{Z}_{\geqslant 0} \rightarrow S \quad \text { by } \quad n \mapsto b+m n,
\end{array}
$$

for some constants b and m. (This is a discrete version of the linear function $f(x)=b+m x$.)
Notice, with a geometric sequence, the ratio is constant:

$$
\text { if } a_{n}=c r^{n}, \quad \text { then } a_{n} / a_{n-1}=r \text { for all } n .
$$

And with an arithmetic sequence the difference is constant:

$$
\text { if } a_{n}=b+m n, \quad \text { then } a_{n}-a_{n-1}=m \text { for all } n \text {. }
$$

(This is how we test to see if a sequence is geometric or arithmetic!)

Recurrence relations

A recurrence relation for a sequence is an equation that expresses a_{n} in terms of one of more of the previous terms of the sequence. For example:

$$
\begin{gathered}
a_{n}=a_{n-1} * 2 \\
a_{n}=a_{n-2}+1 \\
a_{n}=a_{n-1}+a_{n-2} .
\end{gathered}
$$

A sequence is called a solution to a recurrence relation if its terms satisfy the recurrence relation. For example,
$a_{n}=3 * 2^{n}$ is a solution to the recurrence relation $a_{n}=a_{n-1} * 2$;
$a_{n}=-2^{n}$ is also a solution to the recurrence relation $a_{n}=a_{n-1} * 2$;
$a_{n}=c * 2^{n}$ is also a solution to the recurrence relation $a_{n}=a_{n-1} * 2$,
for any $c \in \mathbb{R}$.
An initial condition is a specified value for some fixed a_{i} (usually a_{0} and/or a_{1}). Without initial conditions, there are usually many solutions to a recurrence relation. For example, $a_{n}=3 * 2^{n}$ is the only solution to the r . rel. $a_{n}=a_{n-1} * 2, a_{0}=3$.

Recurrence relations

A recurrence relation for a sequence is an equation that expresses a_{n} in terms of one of more of the previous terms of the sequence. A sequence is called a solution to a recurrence relation if its terms satisfy the recurrence relation. For example,
$a_{n}=3 * 2^{n}$ is a solution to the recurrence relation $a_{n}=a_{n-1} * 2$;
$a_{n}=-2^{n}$ is also a solution to the recurrence relation $a_{n}=a_{n-1} * 2$; $a_{n}=c * 2^{n}$ is also a solution to the recurrence relation $a_{n}=a_{n-1} * 2$, for any $c \in \mathbb{R}$.
And initial condition is a specified value for some fixed a_{i} (usually a_{0} and/or a_{1}). Without initial conditions, there are usually many solutions to a recurrence relation. For example, $a_{n}=3 * 2^{n}$ is the only solution to the r . rel. $a_{n}=a_{n-1} * 2, a_{0}=3$.

A closed formula for a recurrence relation is a formula generating the sequence. We call a closed formula that satisfies a recurrence relation a solution to that relation. (Ex: $a_{n}=c * 2^{n}$)

Going from a recurrence relation to a closed form is like calculating integrals-it is not always even possible, let alone deterministic.
We learn to recognize familiar types, and look for patterns.

Geometric: If $a_{n}=r a_{n-1}$, then

$$
\begin{gathered}
a_{1}=r \cdot a_{0}, \quad a_{2}=r a_{1}=r\left(r a_{0}\right)=r^{2} a_{0}, \\
a_{3}=r a_{1}=r\left(r^{2} a_{0}\right)=r^{3} a_{0} \ldots
\end{gathered}
$$

Claim: In general, $a_{n}=a_{0} r^{n}$ for whatever constant a_{0} is.

Arithmetic: $a_{n}=m+a_{n-1}$, then

$$
\begin{gathered}
a_{1}=m+a_{0}, \quad a_{2}=m+a_{1}=m+\left(m+a_{0}\right)=2 m+a_{0}, \\
a_{3}=m+a_{1}=m+\left(2 m+a_{0}\right)=3 m+a_{0} \ldots .
\end{gathered}
$$

Claim: In general, $a_{n}=n m+a_{0}$ for whatever constant a_{0} is.

Going from a recurrence relation to a closed form is like calculating integrals-it is not always even possible, let alone deterministic. We learn to recognize familiar types, and look for patterns.

Factorial: For $n \in \mathbb{Z}_{>0}$, we define n factorial, denoted n !, by

$$
n!=n(n-1)(n-2) \cdots 2 \cdot 1 .
$$

For example, $4!=4 \cdot 3 \cdot 2 \cdot 1=24$.
For convenience, we define $0!=1$.
Then if $a_{n}=n a_{n-1}$, we have

$$
\begin{gathered}
a_{1}=1 \cdot a_{0}, \quad a_{2}=2 a_{1}=2\left(1 \cdot a_{0}\right)=(2 \cdot 1) a_{0}, \\
a_{3}=3 a_{1}=3\left((2 \cdot 1) a_{0}\right)=(3 \cdot 2 \cdot 1) a_{0} \cdots
\end{gathered}
$$

Claim: In general, $a_{n}=n!a_{0}$ for whatever constant a_{0} is.
You try: Exercise 12

Summations

Recall, for a sequence $\left\{a_{n}\right\}$, the summation notation

$$
\sum_{i=k}^{\ell} a_{i}=a_{k}+a_{k+1}+\cdots+a_{\ell}
$$

and

$$
\sum_{i=k}^{\infty} a_{i}=a_{k}+a_{k+1}+\cdots=\lim _{\ell \rightarrow \infty} \sum_{i=k}^{\ell} a_{i} .
$$

For example, let $a_{i}=i$. Define $S_{n}=\sum_{i=1}^{n} a_{i}$. Then

$$
S_{1}=1, \quad S_{2}=1+2=3, \quad S_{3}=1+2+3=6, \ldots
$$

Claim: In general, $S_{n}=\frac{n(n+1)}{2}$. "closed formula"

The sum S_{n} is half the dots in the $n \times(n+1)$ rectangle of dots:

So $\sum_{i=1}^{\infty} a_{i}$ is not defined (the series does not converge).

On the other hand, let $a_{i}=(1 / 2)^{i}$, and define $S_{n}=\sum_{i=1}^{n} a_{i}$. Then

$$
\begin{gathered}
S_{1}=1 / 2, \quad S_{2}=1 / 2+1 / 4=3 / 4, \\
S_{3}=1 / 2+1 / 4+1 / 8=7 / 8=1-1 / 8 \\
S_{4}=1 / 2+1 / 4+1 / 8+1 / 16=15 / 16=1-1 / 16 \ldots
\end{gathered}
$$

Claim: In general, $S_{n}=1-\frac{1}{2^{n}}$.

"closed formula"

So

$$
\sum_{i=1}^{\infty} a_{i}=\lim _{n \rightarrow \infty}\left(1-\frac{1}{2^{n}}\right)=1
$$

Solving using partial sums

The finite sum

$$
S_{n}=\sum_{i=0}^{n} a_{i}=a_{0}+a_{1}+\cdots+a_{n}
$$

is called the partial sum for the series $S=\sum_{i=0}^{\infty} a_{i}$. We define $S=\lim _{n \rightarrow \infty} S_{n}$. So to solve for S, it would be very helpful to get a closed form for S_{n}.

Example

Show

$$
\sum_{i=0}^{n} c r^{i}= \begin{cases}c\left(\frac{r^{n+1}-1}{r-1}\right) & \text { if } r \neq 1 \\ c(n+1) & \text { if } r=1\end{cases}
$$

using partial sums. Namely, show $r S_{n}=S_{n}+c\left(r^{n+1}-1\right)$ and solve for S_{n}. Then calculate $\sum_{i=0}^{\infty} c r^{i}$.

Identities:

$$
\begin{array}{rlrl}
\sum_{i \in S} a_{i}+b_{i} & =\sum_{i \in S} a_{i}+\sum_{i \in S} b_{i} & \text { (addition is commutative) } \\
\sum_{i \in S} c * a_{i} & =c * \sum_{i \in S} a_{i} & & \text { (distributive property) }
\end{array}
$$

Set summations.

$$
\begin{gathered}
\sum_{a \in A} a \quad \text { means add up everything in } A . \\
\sum_{a \in A} f(a) \text { means add up } f(a) \text { for everything in } A .
\end{gathered}
$$

Example:

$$
\sum_{i \in\{2,4,6\}} i^{2}=2^{2}+4^{2}+6^{2}
$$

More notation

Double summations.

For example,

$$
\begin{aligned}
\sum_{i=1}^{3} \sum_{j=i}^{4} i j= & \sum_{i=1}^{3}\left(\sum_{j=i}^{4} i j\right) \\
= & \left(\sum_{j=1}^{4} 1 \cdot j\right)+\left(\sum_{j=2}^{4} 2 \cdot j\right)+\left(\sum_{j=3}^{4} 3 \cdot j\right) \\
= & (1 \cdot 1+1 \cdot 2+1 \cdot 3+1 \cdot 4) \\
& +(2 \cdot 2+2 \cdot 3+2 \cdot 4)+(3 \cdot 3+3 \cdot 4)
\end{aligned}
$$

More special summations.

Theorem
We have the following special summation identities:

$$
\begin{aligned}
\sum_{i=1}^{n} i & =n(n+1) / 2, \text { and } \\
\sum_{i=0}^{\infty} a r^{i} & =\frac{a}{1-r} \quad \text { for } r \in(-1,1) .
\end{aligned}
$$

Notice

$$
\sum_{i=1}^{\infty} i * x^{i-1}=\frac{d}{d x} \sum_{i=0}^{\infty} x^{i} .
$$

What can we conclude?
You try: Exercise 13

