Math 365 — Wednesday 2/6/19
Section 2.4: Sequences and summations
Exercise 12.

(a) For each of the following sequences, compute the terms ag, a1, az, and as.

(a) an = 3;
(b) an =7+ 4™
(c) ap =2"+ (=2)™.
(b) For each of the following sequences defined by recurrence relations and initial conditions, answer
the following.
(a) Compute the first four terms (ag, a1, az, and ag).
(b) Decide if {a,} is arithmetic, geometric, or neither. If it is arithmetic or geometric, then
find a closed formula for a,,.
(i) The sequence satisfying ag = 2 and a,, = %an_l.
(ii) The sequence satisfying ag = —1 and a,, = a,—1 + 5.
(iii) The sequence satisfying ap = 1, a3 = —1 and a,, = ap—2 * ap_1.
(iv) The sequence satisfying ag = 2 and a, = —a,—1.

(c) Find at least three different sequences beginning with the terms 3, 5, 7 whose terms are generated
by a simple formula or rule.

(d) For the following sequences, try to find the pattern. Decide if they are arithmetic, geometric,
or neither. If it’s arithmetic or geometric, find a closed formula expressing the nth term of the
sequence.

(i) 5,1,-3,-7,—11
(i) 1,4,9,16,25,. ..
(iii) 3,9,27,81,243, ...

(e) Show that both of the following sequences are solutions to the recurrence relation a,, = —3a,—1+
4a,—_o with initial condition ag = 1.
(i) ap =1;

(ii) an = (—4)".

Exercise 13. (a) Compute the first three partial sums for the following infinite series.

i) 251'—1—1;

(ii) Zi(i+ 1);

=4
(b) Calculate the following.
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Exercise 14. A little more.

(a) For each of these sequences find a recurrence relation satisfied by this sequence. (The answers
are not unique because there are infinitely many different recurrence relations satisfied by any
sequence.)

(i) an = 2n+ 3;
(i) an, =5
(iii) an = n?.
(b) Use partial sums to explain why, for any sequence ag, a1, ..., a,, that

n
E a; — A;—1 = Qp, — AaQ.
=1

[Let S, = > 1", a; — a;—1. Write out S, S2, 53, and so on until you see the pattern. Then use
the fact that S, = Sp—1 + (an — an—1).]

(c) Read in section 2.4 about product notation [[;", a;. Then, what are the values of the following
products?
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(a) [
=0

8
() [JiG+1)
1=5

100 ‘
() [J(=1
i=1
(d) Express n! using product notation.



Sequences

A sequence is a function a from a subset of the set of integers
(usually Z=¢ or Z~q) to a set .S,
a:Z>0—>S or CLZZ>0—>S.

We write a,, = a(n), and call a,, the nth term of the sequence.

Example
The sequence defined by the function
a:Zsg— Q defined by n—1/n
is the sequence
1,1/2,1/3,1/4,....
We write a,, = 1/n.
We can also write such a sequence like

{a(n)}n=1,2,. or  {a(n)}nez_,-

For example, the sequence above is {1/n}nez_,-

Some different kinds of sequences

A geometric sequence (or progression) is a sequence of the form
c,er,er?erd, ... i.e. a:Z=y—S by nw—cr”,
for some constants ¢ and 7. (This is a discrete version of the exponential

function f(z) = cr®.)
An arithmetic progression is a sequence of the form
b, b+m, b+ 2m, b+ 3m,...,
l.e. a:%Z=y—S by n—b+mn,

for some constants b and m. (This is a discrete version of the linear
function f(z) = b+ mx.)
Notice, with a geometric sequence, the ratio is constant:

if a,, = cr”,  then a,/a,—1 = r for all n.
And with an arithmetic sequence the difference is constant:
if a, = b+ mn, thena, —a,_1 = m for all n.

(This is how we test to see if a sequence is geometric or arithmetic!)



Recurrence relations

A recurrence relation for a sequence is an equation that expresses
an in terms of one of more of the previous terms of the sequence.
For example:
ap = Qp—1 * 2;
ap = Qp_9 + 1;
ap = Qp—1 + An—9.
A sequence is called a solution to a recurrence relation if its terms
satisfy the recurrence relation. For example,
an, = 3 % 2™ is a solution to the recurrence relation a,, = a,_1 * 2;
an, = —2™ is also a solution to the recurrence relation a,, = a,_1 * 2;
an, = c* 2" is also a solution to the recurrence relation a,, = a,_1 * 2,
for any c € R,
An initial condition is a specified value for some fixed a; (usually
ap and/or a1). Without initial conditions, there are usually many
solutions to a recurrence relation. For example,
a, = 3% 2" is the only solution to the r. rel. a,, = ap_1 * 2, a9 = 3.

Recurrence relations

A recurrence relation for a sequence is an equation that expresses

an in terms of one of more of the previous terms of the sequence.

A sequence is called a solution to a recurrence relation if its terms

satisfy the recurrence relation. For example,

an, = 3+ 2" is a solution to the recurrence relation a,, = a,,_1 * 2;
a, = —2" is also a solution to the recurrence relation a,, = a,,_1 * 2;
an, = c* 2" is also a solution to the recurrence relation a,, = a,_1 * 2,

for any c € R.

And initial condition is a specified value for some fixed a; (usually

ap and/or a1). Without initial conditions, there are usually many

solutions to a recurrence relation. For example,

a, = 3% 2" is the only solution to the r. rel. a,, = a,_1 * 2, a9 = 3.

A closed formula for a recurrence relation is a formula generating
the sequence. We call a closed formula that satisfies a recurrence
relation a solution to that relation. (Ex: a, = ¢ *2")



Going from a recurrence relation to a closed form is like calculating
integrals—it is not always even possible, let alone deterministic.
We learn to recognize familiar types, and look for patterns.

Geometric: If a,, = ra,—1, then
ay =r-ag, az=ra =r(rag) = r2ay,
as =ra; = 7“(7“2a0) = r3ag. ...

Claim: In general, a,, = agr™ for whatever constant ag is.

Arithmetic: a, = m + an_1, then
ap =m-+ag, ax=m+a; =m+ (m+ag)=2m+ aop,

as3=m+a =m+ (2m+ag) =3m+agp....

Claim: In general, a,, = nm + ag for whatever constant ay is.

Going from a recurrence relation to a closed form is like calculating
integrals—it is not always even possible, let alone deterministic.
We learn to recognize familiar types, and look for patterns.

Factorial: For n € Z~(, we define n factorial, denoted n!, by
nl=nmn-1)mn-2)---2-1.
For example, 4! =4-3-2-1 = 24.

For convenience, we define 0! = 1.
Then if a,, = na,,—1, we have
a]p = l-ao, an =2a1 =2(1-6L0) = (2-1)&0,
a3 =3a; =3((2-1)apg) =(3-2-1)ag....

Claim: In general, a,, = nlag for whatever constant ag is.

You try: Exercise 12



Summations

Recall, for a sequence {a,}, the summation notation
¢

Zaizak+ak+1+---+ag
i=k
and

o0
Eaizak+ak+1+---— lim Eaz

i—k =03

For example, let a; = i. Define S,, = > ; a;. Then
Si=1, So=142=3 S3=1+2+3=6,...

Claim: In general, S,, = —n(”;l). “closed formula”
000000
The sum S, is half the | ee90000
dots in the n x (n + 1) ceeeeos
. 0000000
rectangle of dots: —
n

So >.° | a; is not defined (the series does not converge).

On the other hand, let a; = (1/2)°, and define S,, = >.I" ; a;. Then
S1=1/2, Sp=1/2+1/4=3/4,
S3=1/2+1/44+1/8=7/8=1-1/8,
Si=1/2+1/4+1/8+1/16=15/16=1—1/16...

1/2
419
1 | N
iz o
Claim: In general, S,, =1 — —. “closed formula”

So

Q0
> a; = lim I R
S on '



Solving using partial sums

The finite sum

n
=0

0 0]
is called the partial sum for the series S = Z a;. We define

i=0
S = lim S,,. So to solve for S, it would be very helpful to get a
n— 00
closed form for .S,,.
Example
Show

c (Tnﬂ_l) if r#1

2 CTi _ r—1
) c(n+1) ifr=1

using partial sums. Namely, show S, = S,, + ¢(r"*! — 1) and
solve for S,,. Then calculate Y2, cr’.

Identities:
Dlai+bi=> ai+ ) b (addition is commutative)
€S €S €S
Z C*a; = Cx* Z a; (distributive property)
€S €S

Set summations.

Z a  means add up everything in A.

acA
Z f(a) means add up f(a) for everything in A.
acA
Example:

Yt =2 14216
1€{2,4,6}



More notation

Double summations.

For example,
3 4

1=1j

() (2 (2)

=(1-1+41-24+1-3+1-4)
+(2-2+2-3+2-4)+(3-3+3-4).

More special summations.

Theorem
We have the following special summation identities:

Zi =n(n+1)/2, and
i=1

Zari - forre (—1,1).
. 1—r
1=0

Notice

o0 d Q0

A i
Z’L*CL’ —EZQZ
=1 =0

What can we conclude?
You try: Exercise 13



