
Sequences

A sequence is a function a from a subset of the set of integers
(usually Zě0 or Zą0) to a set S,

a : Zě0 Ñ S or a : Zą0 Ñ S.

We write an “ apnq, and call an the nth term of the sequence.

Example

The sequence defined by the function

a : Zą0 Ñ Q defined by n ÞÑ 1{n

is the sequence

1, 1{2, 1{3, 1{4, . . . .

We write an “ 1{n.

We can also write such a sequence like

tapnqun“1,2,... or tapnqunPZą0 .

For example, the sequence above is t1{nunPZą0 .



Some different kinds of sequences

A geometric sequence (or progression) is a sequence of the form

c, cr, cr2, cr3, . . . , i.e. a : Zě0 Ñ S by n ÞÑ crn,

for some constants c and r. (This is a discrete version of the exponential

function fpxq “ crx.)

An arithmetic progression is a sequence of the form

b, b`m, b` 2m, b` 3m, . . . ,

i.e. a : Zě0 Ñ S by n ÞÑ b`mn,

for some constants b and m. (This is a discrete version of the linear

function fpxq “ b`mx.)

Notice, with a geometric sequence, the ratio is constant:

if an “ crn, then an{an´1 “ r for all n.

And with an arithmetic sequence the difference is constant:

if an “ b`mn, then an ´ an´1 “ m for all n.

(This is how we test to see if a sequence is geometric or arithmetic!)



Recurrence relations

A recurrence relation for a sequence is an equation that expresses
an in terms of one of more of the previous terms of the sequence.
For example:

an “ an´1 ˚ 2;
an “ an´2 ` 1;

an “ an´1 ` an´2.
A sequence is called a solution to a recurrence relation if its terms
satisfy the recurrence relation. For example,
an “ 3 ˚ 2n is a solution to the recurrence relation an “ an´1 ˚ 2;

an “ ´2
n is also a solution to the recurrence relation an “ an´1 ˚ 2;

an “ c ˚ 2n is also a solution to the recurrence relation an “ an´1 ˚ 2,
for any c P R.
An initial condition is a specified value for some fixed ai (usually
a0 and/or a1). Without initial conditions, there are usually many
solutions to a recurrence relation. For example,
an “ 3 ˚ 2n is the only solution to the r. rel. an “ an´1 ˚ 2, a0 “ 3.
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A closed formula for a recurrence relation is a formula generating
the sequence. We call a closed formula that satisfies a recurrence
relation a solution to that relation. (Ex: an “ c ˚ 2n)



Going from a recurrence relation to a closed form is like calculating
integrals—it is not always even possible, let alone deterministic.
We learn to recognize familiar types, and look for patterns.

Geometric: If an “ ran´1, then
a1 “ r ¨ a0, a2 “ ra1 “ rpra0q “ r2a0,

a3 “ ra1 “ rpr2a0q “ r3a0 . . . .

Claim: In general, an “ a0r
n for whatever constant a0 is.

Arithmetic: an “ m` an´1, then
a1 “ m` a0, a2 “ m` a1 “ m` pm` a0q “ 2m` a0,

a3 “ m` a1 “ m` p2m` a0q “ 3m` a0 . . . .

Claim: In general, an “ nm` a0 for whatever constant a0 is.



Going from a recurrence relation to a closed form is like calculating
integrals—it is not always even possible, let alone deterministic.
We learn to recognize familiar types, and look for patterns.

Factorial: For n P Zą0, we define n factorial, denoted n!, by
n! “ npn´ 1qpn´ 2q ¨ ¨ ¨ 2 ¨ 1.

For example, 4! “ 4 ¨ 3 ¨ 2 ¨ 1 “ 24.

For convenience, we define 0! “ 1.
Then if an “ nan´1, we have

a1 “ 1 ¨ a0, a2 “ 2a1 “ 2p1 ¨ a0q “ p2 ¨ 1qa0,

a3 “ 3a1 “ 3pp2 ¨ 1qa0q “ p3 ¨ 2 ¨ 1qa0 . . . .

Claim: In general, an “ n!a0 for whatever constant a0 is.

You try: Exercise 12



Summations
Recall, for a sequence tanu, the summation notation

ÿ̀

i“k

ai “ ak ` ak`1 ` ¨ ¨ ¨ ` a`

and
8
ÿ

i“k

ai “ ak ` ak`1 ` ¨ ¨ ¨ “ lim
`Ñ8

ÿ̀

i“k

ai.

For example, let ai “ i. Define Sn “
řn

i“1 ai. Then

S1 “ 1, S2 “ 1` 2 “ 3, S3 “ 1` 2` 3 “ 6, . . .

Claim: In general, Sn “
npn`1q

2 . “closed formula”

The sum Sn is half the
dots in the n ˆ pn ` 1q
rectangle of dots:

n

n` 1

So
ř8

i“1 ai is not defined (the series does not converge).



On the other hand, let ai “ p1{2q
i, and define Sn “

řn
i“1 ai. Then

S1 “ 1{2, S2 “ 1{2` 1{4 “ 3{4,

S3 “ 1{2` 1{4` 1{8 “ 7{8 “ 1´ 1{8,

S4 “ 1{2` 1{4` 1{8` 1{16 “ 15{16 “ 1´ 1{16 . . .

1{2

1{2

1{2

1{4 1{4

1{2

1{4
1{8

1{8

1{2

1{4
1{8

1/16

1/16 ¨ ¨ ¨

Claim: In general, Sn “ 1´ 1
2n . “closed formula”

So
8
ÿ

i“1

ai “ lim
nÑ8

ˆ

1´
1

2n

˙

“ 1.



Solving using partial sums

The finite sum

Sn “

n
ÿ

i“0

ai “ a0 ` a1 ` ¨ ¨ ¨ ` an

is called the partial sum for the series S “
8
ÿ

i“0

ai. We define

S “ lim
nÑ8

Sn. So to solve for S, it would be very helpful to get a

closed form for Sn.

Example

Show
n
ÿ

i“0

cri “

#

c
´

rn`1´1
r´1

¯

if r ‰ 1

cpn` 1q if r “ 1

using partial sums. Namely, show rSn “ Sn ` cprn`1 ´ 1q and
solve for Sn. Then calculate

ř8
i“0 cr

i.



Identities:

ÿ

iPS

ai ` bi “
ÿ

iPS

ai `
ÿ

iPS

bi (addition is commutative)

ÿ

iPS

c ˚ ai “ c ˚
ÿ

iPS

ai (distributive property)

Set summations.
ÿ

aPA

a means add up everything in A.

ÿ

aPA

fpaq means add up fpaq for everything in A.

Example:
ÿ

iPt2,4,6u

i2 “ 22 ` 42 ` 62.



More notation

Double summations.

For example,

3
ÿ

i“1

4
ÿ

j“i

ij “
3
ÿ

i“1

˜

4
ÿ

j“i

ij

¸

“

˜

4
ÿ

j“1

1 ¨ j

¸

`

˜

4
ÿ

j“2

2 ¨ j

¸

`

˜

4
ÿ

j“3

3 ¨ j

¸

“ p1 ¨ 1` 1 ¨ 2` 1 ¨ 3` 1 ¨ 4q

` p2 ¨ 2` 2 ¨ 3` 2 ¨ 4q ` p3 ¨ 3` 3 ¨ 4q .



More special summations.

Theorem
We have the following special summation identities:

n
ÿ

i“1

i “ npn` 1q{2, and

8
ÿ

i“0

ari “
a

1´ r
for r P p´1, 1q.

Notice
8
ÿ

i“1

i ˚ xi´1 “
d

dx

8
ÿ

i“0

xi.

What can we conclude?
You try: Exercise 13


