Sequences

A sequence is a function a from a subset of the set of integers (usually $\mathbb{Z}_{\geq 0}$ or $\mathbb{Z}_{>0}$) to a set S, $a: \mathbb{Z}_{\geq 0} \to S$ or $a: \mathbb{Z}_{>0} \to S$.

We write $a_n = a(n)$, and call a_n the *nth term of the sequence*.

Example

The sequence defined by the function

$$a: \mathbb{Z}_{>0} \to \mathbb{Q}$$
 defined by $n \mapsto 1/n$

is the sequence

 $1, 1/2, 1/3, 1/4, \ldots$

We write $a_n = 1/n$.

We can also write such a sequence like

$$\{a(n)\}_{n=1,2,\dots}$$
 or $\{a(n)\}_{n\in\mathbb{Z}_{>0}}$.

For example, the sequence above is $\{1/n\}_{n\in\mathbb{Z}_{>0}}$.

Some different kinds of sequences

A geometric sequence (or progression) is a sequence of the form $c, cr, cr^2, cr^3, \ldots$, i.e. $a: \mathbb{Z}_{\geq 0} \to S$ by $n \mapsto cr^n$, for some constants c and r. (This is a discrete version of the exponential function $f(x) = cr^x$.)

An arithmetic progression is a sequence of the form

 $\label{eq:beta} \begin{array}{ll} b, \ b+m, \ b+2m, \ b+3m, \ldots, \\ \text{i.e.} & a: \mathbb{Z}_{\geqslant 0} \rightarrow S \quad \text{by} \quad n \mapsto b+mn, \end{array}$

for some constants b and m. (This is a discrete version of the linear function f(x)=b+mx.)

Notice, with a geometric sequence, the *ratio is constant*:

if $a_n = cr^n$, then $a_n/a_{n-1} = r$ for all n.

And with an arithmetic sequence the *difference is constant*:

if $a_n = b + mn$, then $a_n - a_{n-1} = m$ for all n.

(This is how we test to see if a sequence is geometric or arithmetic!)

Recurrence relations

A *recurrence relation* for a sequence is an equation that expresses a_n in terms of one of more of the previous terms of the sequence. For example:

$$a_n = a_{n-1} * 2;$$

 $a_n = a_{n-2} + 1;$
 $a_n = a_{n-1} + a_{n-2}.$

A sequence is called a *solution* to a recurrence relation if its terms satisfy the recurrence relation. For example,

 $a_n = 3 * 2^n$ is a solution to the recurrence relation $a_n = a_{n-1} * 2$; $a_n = -2^n$ is also a solution to the recurrence relation $a_n = a_{n-1} * 2$; $a_n = c * 2^n$ is also a solution to the recurrence relation $a_n = a_{n-1} * 2$, for any $c \in \mathbb{R}$.

An *initial condition* is a specified value for some fixed a_i (usually a_0 and/or a_1). Without initial conditions, there are usually many solutions to a recurrence relation. For example,

 $a_n = 3 * 2^n$ is the only solution to the r. rel. $a_n = a_{n-1} * 2, a_0 = 3$.

Recurrence relations

A recurrence relation for a sequence is an equation that expresses a_n in terms of one of more of the previous terms of the sequence. A sequence is called a *solution* to a recurrence relation if its terms satisfy the recurrence relation. For example,

 $a_n = 3 * 2^n$ is a solution to the recurrence relation $a_n = a_{n-1} * 2$; $a_n = -2^n$ is also a solution to the recurrence relation $a_n = a_{n-1} * 2$; $a_n = c * 2^n$ is also a solution to the recurrence relation $a_n = a_{n-1} * 2$, for any $c \in \mathbb{R}$.

And *initial condition* is a specified value for some fixed a_i (usually a_0 and/or a_1). Without initial conditions, there are usually many solutions to a recurrence relation. For example,

 $a_n = 3 * 2^n$ is the only solution to the r. rel. $a_n = a_{n-1} * 2, a_0 = 3$.

A closed formula for a recurrence relation is a formula generating the sequence. We call a closed formula that satisfies a recurrence relation a *solution* to that relation. (Ex: $a_n = c * 2^n$)

Going from a recurrence relation to a closed form is like calculating integrals—it is not always even possible, let alone deterministic. We learn to recognize familiar types, and look for patterns.

Geometric: If
$$a_n = ra_{n-1}$$
, then
 $a_1 = r \cdot a_0$, $a_2 = ra_1 = r(ra_0) = r^2 a_0$,
 $a_3 = ra_1 = r(r^2 a_0) = r^3 a_0 \dots$

Claim: In general, $a_n = a_0 r^n$ for whatever constant a_0 is.

Arithmetic:
$$a_n = m + a_{n-1}$$
, then
 $a_1 = m + a_0$, $a_2 = m + a_1 = m + (m + a_0) = 2m + a_0$,
 $a_3 = m + a_1 = m + (2m + a_0) = 3m + a_0 \dots$
Claim: In general, $a_n = nm + a_0$ for whatever constant a_0 is.

Going from a recurrence relation to a closed form is like calculating integrals—it is not always even possible, let alone deterministic. We learn to recognize familiar types, and look for patterns.

Factorial: For $n \in \mathbb{Z}_{>0}$, we define *n* factorial, denoted *n*!, by $n! = n(n-1)(n-2)\cdots 2\cdot 1$.

For example, $4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24$.

For convenience, we define 0! = 1. Then if $a_n = na_{n-1}$, we have $a_1 = 1 \cdot a_0$, $a_2 = 2a_1 = 2(1 \cdot a_0) = (2 \cdot 1)a_0$,

$$a_3 = 3a_1 = 3((2 \cdot 1)a_0) = (3 \cdot 2 \cdot 1)a_0 \dots$$

Claim: In general, $a_n = n!a_0$ for whatever constant a_0 is. You try: Exercise 12

Summations

Recall, for a sequence $\{a_n\}$, the summation notation

$$\sum_{i=k}^{\ell} a_i = a_k + a_{k+1} + \dots + a_{\ell}$$

and

$$\sum_{i=k}^{\infty} a_i = a_k + a_{k+1} + \dots = \lim_{\ell \to \infty} \sum_{i=k}^{\ell} a_i.$$

For example, let $a_i = i$. Define $S_n = \sum_{i=1}^n a_i$. Then

$$S_1 = 1, \quad S_2 = 1 + 2 = 3, \quad S_3 = 1 + 2 + 3 = 6, \dots$$

Claim: In general, $S_n = \frac{n(n+1)}{2}$.

"closed formula"

The sum S_n is half the dots in the $n \times (n + 1)$ rectangle of dots:

So $\sum_{i=1}^{\infty} a_i$ is not defined (the series does not converge).

On the other hand, let $a_i = (1/2)^i$, and define $S_n = \sum_{i=1}^n a_i$. Then

$$S_{1} = 1/2, \quad S_{2} = 1/2 + 1/4 = 3/4,$$

$$S_{3} = 1/2 + 1/4 + 1/8 = 7/8 = 1 - 1/8,$$

$$S_{4} = 1/2 + 1/4 + 1/8 + 1/16 = 15/16 = 1 - 1/16...$$

$$1/2$$

$$1/2$$

$$1/2$$

$$1/2$$

$$1/2$$

$$1/4$$

$$1/4$$

$$1/4$$

$$1/8$$

$$1/4$$

$$1/4$$

$$1/4$$

$$1/4$$

$$1/4$$

$$1/4$$

$$1/4$$

$$1/4$$

$$1/4$$

$$1/4$$

$$1/4$$

$$1/4$$

$$1/4$$

$$1/4$$

$$1/4$$

$$1/4$$

$$1/4$$

$$1/4$$

$$1/4$$

$$1/4$$

$$1/4$$

$$1/4$$

$$1/4$$

$$1/4$$

$$1/4$$

$$1/4$$

$$1/4$$

$$1/4$$

$$1/4$$

$$1/4$$

$$1/4$$

$$1/4$$

$$1/4$$

$$1/4$$

$$1/4$$

$$1/4$$

$$1/4$$

$$1/4$$

$$1/4$$

$$1/4$$

$$1/4$$

$$1/4$$

$$1/4$$

$$1/4$$

$$1/4$$

$$1/4$$

$$1/4$$

$$1/4$$

$$1/4$$

$$1/4$$

Claim: In general, $S_n = 1 - \frac{1}{2^n}$. So

"closed formula"

. .

$$\sum_{i=1}^{\infty} a_i = \lim_{n \to \infty} \left(1 - \frac{1}{2^n} \right) = 1.$$

Solving using partial sums

The finite sum

$$S_n = \sum_{i=0}^n a_i = a_0 + a_1 + \dots + a_n$$

is called the *partial sum* for the series $S = \sum_{i=0}^{\infty} a_i$. We define

 $S=\lim_{n\to\infty}S_n.$ So to solve for S, it would be very helpful to get a closed form for $S_n.$

Example

Show

$$\sum_{i=0}^{n} cr^{i} = \begin{cases} c\left(\frac{r^{n+1}-1}{r-1}\right) & \text{if } r \neq 1\\ c(n+1) & \text{if } r = 1 \end{cases}$$

using partial sums. Namely, show $rS_n = S_n + c(r^{n+1} - 1)$ and solve for S_n . Then calculate $\sum_{i=0}^{\infty} cr^i$.

Identities:

$$\sum_{i \in S} a_i + b_i = \sum_{i \in S} a_i + \sum_{i \in S} b_i$$
$$\sum_{i \in S} c * a_i = c * \sum_{i \in S} a_i$$

(addition is commutative)

(distributive property)

Set summations.

 $\sum_{a \in A} a \quad \text{means add up everything in } A.$ $\sum_{a \in A} f(a) \quad \text{means add up } f(a) \text{ for everything in } A.$ Example: $\sum_{a \in A} i^2 = 2^2 + 4^2 + 6^2.$

 $i \in \{2, 4, 6\}$

More notation

Double summations.

For example,

$$\sum_{i=1}^{3} \sum_{j=i}^{4} ij = \sum_{i=1}^{3} \left(\sum_{j=i}^{4} ij \right)$$
$$= \left(\sum_{j=1}^{4} 1 \cdot j \right) + \left(\sum_{j=2}^{4} 2 \cdot j \right) + \left(\sum_{j=3}^{4} 3 \cdot j \right)$$
$$= (1 \cdot 1 + 1 \cdot 2 + 1 \cdot 3 + 1 \cdot 4)$$
$$+ (2 \cdot 2 + 2 \cdot 3 + 2 \cdot 4) + (3 \cdot 3 + 3 \cdot 4).$$

More special summations.

Theorem

We have the following special summation identities:

$$\sum_{i=1}^n i = n(n+1)/2, \text{ and}$$
$$\sum_{i=0}^\infty ar^i = \frac{a}{1-r} \quad \text{ for } r \in (-1,1).$$

Notice

$$\sum_{i=1}^{\infty} i * x^{i-1} = \frac{d}{dx} \sum_{i=0}^{\infty} x^i.$$

What can we conclude?

You try: Exercise 13