Sequences

A sequence is a function a from a subset of the set of integers
(usually Z=g or Z~q) to a set S,
a:Zsqg— S or a:Zsy— S.

We write a,, = a(n), and call a,, the nth term of the sequence.

Example
The sequence defined by the function
a:Zso—Q defined by nw—1/n
is the sequence
1,1/2,1/3,1/4,. ...
We write a,, = 1/n.
We can also write such a sequence like
fa(nmr.  or  {a(n)}nez:
For example, the sequence above is {1/n}nez_,-



Some different kinds of sequences

A geometric sequence (or progression) is a sequence of the form
e,er,er?erd, .., ie. a:Zsg—S by n—cr’
for some constants ¢ and r. (This is a discrete version of the exponential

function f(z) = cr®.)
An arithmetic progression is a sequence of the form
b, b+m, b+2m, b+ 3m,...,
ie. a:Zso—S by n—b+mn,

for some constants b and m. (This is a discrete version of the linear
function f(z) = b+ mz.)
Notice, with a geometric sequence, the ratio is constant:

if ap, =cr™,  then a,/a,—1 = r for all n.
And with an arithmetic sequence the difference is constant:
if a, = b+ mn, then a, —a,_1 = m for all n.

(This is how we test to see if a sequence is geometric or arithmetic!)



Recurrence relations

A recurrence relation for a sequence is an equation that expresses
an in terms of one of more of the previous terms of the sequence.
For example:
ap = Qp—1 * 2;
ap = Gp—2 + 1;
Qp = Qp—1 + Qp—2.
A sequence is called a solution to a recurrence relation if its terms
satisfy the recurrence relation. For example,
an, = 3% 2" is a solution to the recurrence relation a,, = a,_1 * 2;
an, = —2" is also a solution to the recurrence relation a,, = a,_1 * 2;
an = c* 2" is also a solution to the recurrence relation a,, = a,_1 * 2,
for any ce R.
An initial condition is a specified value for some fixed a; (usually
ap and/or ap). Without initial conditions, there are usually many
solutions to a recurrence relation. For example,
an = 3 % 2" is the only solution to the r. rel. a, = a,_1 * 2,a9 = 3.
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A closed formula for a recurrence relation is a formula generating
the sequence. We call a closed formula that satisfies a recurrence
relation a solution to that relation. (Ex: a, = ¢ *2")



Going from a recurrence relation to a closed form is like calculating
integrals—it is not always even possible, let alone deterministic.
We learn to recognize familiar types, and look for patterns.

Geometric: If a,, = ra,—1, then
ay =7r-ag, ap=ra; =r(rag) = rlag,
az =ray = 7“(7’2@0) =rag....

Claim: In general, a,, = agr™ for whatever constant ay is.

Arithmetic: a, = m + a,_1, then
ay =m-+ay, ax=m-+a; =m+ (m+ag) =2m+ ag,
as=m+a =m+ (2m+ag) =3m+agp....

Claim: In general, a,, = nm + ag for whatever constant ag is.



Going from a recurrence relation to a closed form is like calculating
integrals—it is not always even possible, let alone deterministic.
We learn to recognize familiar types, and look for patterns.

Factorial: For n € Z~, we define n factorial, denoted n!, by
nl=n(n—-1)(n—2)---2-1.
For example, 4! =4-3-2-1 = 24.

For convenience, we define 0! = 1.
Then if a,, = na,—1, we have
ay = 1-&0, as 22(11 =2(1-a0) = (2-1)(10,
as =3(11 =3((2-1)a0) = (3-2'1)(10....

Claim: In general, a, = nlag for whatever constant ag is.

You try: Exercise 12



Summations

Recall, for a sequence {a,}, the summation notation

l
Zai =af + ag41 + -+ ag
i=k
and
0
Zal—ak~l—ak+1~l— = lim Zai.
{—0 *
i=k i=k

For example, let a; = i. Define S, = >} | a;. Then
Si=1, Sy=1+2=3, S3=1+2+3=6,...

. 1 " ”
Claim: In general, S,, = % closed formula

®e00000O0

H 0000000
The sum S, is half the 0000000

dots in the n x (n + 1) 0802000

. 0000000
rectangle of dots: =
n

So > a; is not defined (the series does not converge).



On the other hand, let a; = (1/2)%, and define S,, = >ty a;. Then
Sy =1/2, Sy =1/2+1/4 = 3/4,
S3=1/2+1/44+1/8=7/8=1-1/8,
Si=1/2+1/4+1/8+1/16 = 15/16 = 1 —1/16. ..

Claim: In general, S,, =1 — 2% “closed formula”
So



Solving using partial sums

The finite sum
n
Sn:Zai:a0+a1+-~~+an
i=0

e}
is called the partial sum for the series S = Z a;. We define

=0
S = lim S,,. So to solve for S, it would be very helpful to get a

n—0o0
closed form for .S,,.

Example
Show

c (7‘":_1;1) if r 21
c(n+1) ifr=1

n
St =
=0

using partial sums. Namely, show 7S,, = S,, + c¢(r"*! — 1) and
solve for S,,. Then calculate >, cr’.



Identities:

Z a; +b; = Z a; + Z b; (addition is commutative)

€S €S €S
Z c*a;=cCx* 2 a; (distributive property)
€S €S

Set summations.

Z a means add up everything in A.

aceA
2 f(a) means add up f(a) for everything in A.
aceA
Example:

Z i =22+ 4% + 6%
i€{2,4,6}



More notation

Double summations.

For example,

3 4 4

333 (L)
i—1 \j=i

(B (B) - (30

1+1-2+1-3+1-4)
(2-2+2-3+2-4)+(3‘3+3-4).

<.



More special summations.

Theorem
We have the following special summation identities:

i n(n+1)/2, and

oo) ‘ a
Zarl = forre (—1,1).
1—r
=0
Notice
0 d 0
coi—1 i
i=1 =0

What can we conclude?
You try: Exercise 13



