Functions

Some functions you might be familiar with:

$$
f(x)=x^{2}, \quad f(x)=3 x-2, \quad f(x)=\sqrt{x}, \quad f(x, y)=\binom{x}{y} .
$$

Functions

Some functions you might be familiar with:

$$
f(x)=x^{2}, \quad f(x)=3 x-2, \quad f(x)=\sqrt{x}, \quad f(x, y)=\binom{x}{y}
$$

A couple more we'll need:

Functions

Some functions you might be familiar with:

$$
f(x)=x^{2}, \quad f(x)=3 x-2, \quad f(x)=\sqrt{x}, \quad f(x, y)=\binom{x}{y}
$$

A couple more we'll need:

- For $x \in \mathbb{R}$, the floor of x is the greatest integer that is less than or equal to x, written $\lfloor x\rfloor$.

Functions

Some functions you might be familiar with:
$f(x)=x^{2}, \quad f(x)=3 x-2, \quad f(x)=\sqrt{x}, \quad f(x, y)=\binom{x}{y}$.
A couple more we'll need:

- For $x \in \mathbb{R}$, the floor of x is the greatest integer that is less than or equal to x, written $\lfloor x\rfloor$. For example,

$$
\lfloor 1 / 2\rfloor=0, \quad\lfloor-1 / 2\rfloor=-1, \quad\lfloor 13\rfloor=13, \quad\lfloor\pi\rfloor=3
$$

Functions

Some functions you might be familiar with:

$$
f(x)=x^{2}, \quad f(x)=3 x-2, \quad f(x)=\sqrt{x}, \quad f(x, y)=\binom{x}{y}
$$

A couple more we'll need:

- For $x \in \mathbb{R}$, the floor of x is the greatest integer that is less than or equal to x, written $\lfloor x\rfloor$. For example,

$$
\lfloor 1 / 2\rfloor=0, \quad\lfloor-1 / 2\rfloor=-1, \quad\lfloor 13\rfloor=13, \quad\lfloor\pi\rfloor=3
$$

- For $x \in \mathbb{R}$, the ceiling of x is the least integer that is greater than or equal to x, written $\lceil x\rceil$.

Functions

Some functions you might be familiar with:

$$
f(x)=x^{2}, \quad f(x)=3 x-2, \quad f(x)=\sqrt{x}, \quad f(x, y)=\binom{x}{y}
$$

A couple more we'll need:

- For $x \in \mathbb{R}$, the floor of x is the greatest integer that is less than or equal to x, written $\lfloor x\rfloor$. For example,

$$
\lfloor 1 / 2\rfloor=0, \quad\lfloor-1 / 2\rfloor=-1, \quad\lfloor 13\rfloor=13, \quad\lfloor\pi\rfloor=3
$$

- For $x \in \mathbb{R}$, the ceiling of x is the least integer that is greater than or equal to x, written $\lceil x\rceil$. For example,

$$
\lceil 1 / 2\rceil=1, \quad\lceil-1 / 2\rceil=0, \quad\lceil 13\rceil=13, \quad\lceil\pi\rceil=4
$$

Functions

- For $x \in \mathbb{R}$, the floor of x is the greatest integer that is less than or equal to x, written $\lfloor x\rfloor$. For example,

$$
\lfloor 1 / 2\rfloor=0, \quad\lfloor-1 / 2\rfloor=-1, \quad\lfloor 13\rfloor=13, \quad\lfloor\pi\rfloor=3 .
$$

- For $x \in \mathbb{R}$, the ceiling of x is the least integer that is greater than or equal to x, written $\lceil x\rceil$. For example,

$$
\lceil 1 / 2\rceil=1, \quad\lceil-1 / 2\rceil=0, \quad\lceil 13\rceil=13, \quad\lceil\pi\rceil=4 .
$$

- The absolute value of a real number x is

$$
|x|= \begin{cases}x & \text { if } x \text { is nonegative } \\ -x & \text { if } x \text { is negative }\end{cases}
$$

so that $|x|$ is always nonnegative.

Functions

- For $x \in \mathbb{R}$, the floor of x is the greatest integer that is less than or equal to x, written $\lfloor x\rfloor$. For example,

$$
\lfloor 1 / 2\rfloor=0, \quad\lfloor-1 / 2\rfloor=-1, \quad\lfloor 13\rfloor=13, \quad\lfloor\pi\rfloor=3
$$

- For $x \in \mathbb{R}$, the ceiling of x is the least integer that is greater than or equal to x, written $\lceil x\rceil$. For example,

$$
\lceil 1 / 2\rceil=1, \quad\lceil-1 / 2\rceil=0, \quad\lceil 13\rceil=13, \quad\lceil\pi\rceil=4 .
$$

- The absolute value of a real number x is

$$
|x|= \begin{cases}x & \text { if } x \text { is nonegative } \\ -x & \text { if } x \text { is negative }\end{cases}
$$

so that $|x|$ is always nonnegative. For example,

$$
|1 / 2|=1 / 2, \quad|-1 / 2|=1 / 2, \quad|0|=0, \quad|\pi|=\pi .
$$

$$
y=\lceil x\rceil
$$

$$
y=|x|
$$

What makes a function?

What makes a function?

- You need a domain (input).

What makes a function?

- You need a domain (input).
- The function should be well-defined (part 1): for every input, there is exactly one output. Namely,

$$
\text { if } f(a)=b_{1} \text { and } f(a)=b_{2}, \text { then } b_{1}=b_{2}
$$

Bad:

What makes a function?

- You need a domain (input).
- The function should be well-defined (part 1): for every input, there is exactly one output. Namely,

$$
\text { if } f(a)=b_{1} \text { and } f(a)=b_{2} \text {, then } b_{1}=b_{2} \text {. }
$$

The domain together with a function determines a range or image (output).

What makes a function?

- You need a domain (input).
- The function should be well-defined (part 1): for every input, there is exactly one output. Namely,

$$
\text { if } f(a)=b_{1} \text { and } f(a)=b_{2}, \text { then } b_{1}=b_{2}
$$

The domain together with a function determines a range or image (output).

Example
Consider $f(x)=x^{2}$.

What makes a function?

- You need a domain (input).
- The function should be well-defined (part 1): for every input, there is exactly one output. Namely,

$$
\text { if } f(a)=b_{1} \text { and } f(a)=b_{2}, \text { then } b_{1}=b_{2}
$$

The domain together with a function determines a range or image (output).

Example
Consider $f(x)=x^{2}$.
If the domain is \mathbb{R}

What makes a function?

- You need a domain (input).
- The function should be well-defined (part 1): for every input, there is exactly one output. Namely,

$$
\text { if } f(a)=b_{1} \text { and } f(a)=b_{2} \text {, then } b_{1}=b_{2} \text {. }
$$

The domain together with a function determines a range or image (output).

Example
Consider $f(x)=x^{2}$.
If the domain is \mathbb{R}, then the range is $\mathbb{R}_{\geqslant 0}$.

What makes a function?

- You need a domain (input).
- The function should be well-defined (part 1): for every input, there is exactly one output. Namely,

$$
\text { if } f(a)=b_{1} \text { and } f(a)=b_{2} \text {, then } b_{1}=b_{2}
$$

The domain together with a function determines a range or image (output).

Example
Consider $f(x)=x^{2}$.
If the domain is \mathbb{R}, then the range is $\mathbb{R}_{\geqslant 0}$.
If the domain is $\{-1\}$

What makes a function?

- You need a domain (input).
- The function should be well-defined (part 1): for every input, there is exactly one output. Namely,

$$
\text { if } f(a)=b_{1} \text { and } f(a)=b_{2} \text {, then } b_{1}=b_{2} \text {. }
$$

The domain together with a function determines a range or image (output).

Example
Consider $f(x)=x^{2}$.
If the domain is \mathbb{R}, then the range is $\mathbb{R}_{\geqslant 0}$.
If the domain is $\{-1\}$, then the range is $\{1\}$.

What makes a function?

- You need a domain (input).
- The function should be well-defined (part 1): for every input, there is exactly one output. Namely,

$$
\text { if } f(a)=b_{1} \text { and } f(a)=b_{2} \text {, then } b_{1}=b_{2}
$$

The domain together with a function determines a range or image (output).

Example
Consider $f(x)=x^{2}$.
If the domain is \mathbb{R}, then the range is $\mathbb{R}_{\geqslant 0}$.
If the domain is $\{-1\}$, then the range is $\{1\}$.
Either way, f is well-defined "on its domain".

Like we can pick a universal set, we can also pick a codomain, a set containing the range of f.

Like we can pick a universal set, we can also pick a codomain, a set containing the range of f.
If f is a function with domain A and codomain B, we say f is a function or map or transformation from A to B, and we write

$$
f: A \rightarrow B .
$$

Like we can pick a universal set, we can also pick a codomain, a set containing the range of f.
If f is a function with domain A and codomain B, we say f is a function or map or transformation from A to B, and we write

$$
f: A \rightarrow B
$$

For $a \in A$, we write

$$
f: a \mapsto f(a),
$$

where " \mapsto " reads "maps to".

Like we can pick a universal set, we can also pick a codomain, a set containing the range of f.
If f is a function with domain A and codomain B, we say f is a function or map or transformation from A to B, and we write

$$
f: A \rightarrow B
$$

For $a \in A$, we write

$$
f: a \mapsto f(a),
$$

where " \mapsto " reads "maps to".
If you have a function $f: A \rightarrow B$, and $A^{\prime} \subseteq A$, you can restrict f to the domain A^{\prime}, written

$$
\left.f\right|_{A^{\prime}}: A^{\prime} \rightarrow B
$$

This means that the definition of the function doesn't change, you just consider its image on fewer elements.
If you pick a bad codomain, your expression is no longer a function (not well-defined, part 2).

Like we can pick a universal set, we can also pick a codomain, a set containing the range of f.
If f is a function with domain A and codomain B, we say f is a function or map or transformation from A to B, and we write

$$
f: A \rightarrow B
$$

For $a \in A$, we write

$$
f: a \mapsto f(a),
$$

where " \mapsto " reads "maps to".
If you have a function $f: A \rightarrow B$, and $A^{\prime} \subseteq A$, you can restrict f to the domain A^{\prime}, written

$$
\left.f\right|_{A^{\prime}}: A^{\prime} \rightarrow B .
$$

This means that the definition of the function doesn't change, you just consider its image on fewer elements.
If you pick a bad codomain, your expression is no longer a function (not well-defined, part 2).

Example

$$
f: \mathbb{R} \rightarrow \mathbb{Z} \text { defined by } x \mapsto x
$$

is not a function.

Example

Consider the function

$$
\begin{aligned}
f: \mathbb{R} & \rightarrow \mathbb{R} \\
x & \mapsto x^{2} .
\end{aligned}
$$

Then the image of f is $\mathbb{R}_{\geqslant 0}$.

Example
Consider the function

$$
\begin{aligned}
f: \mathbb{R} & \rightarrow \mathbb{R} \\
x & \mapsto x^{2} .
\end{aligned}
$$

Then the image of f is $\mathbb{R}_{\geqslant 0}$. If we restrict f to $\{-1\} \subseteq \mathbb{R}$, the image of $\left.f\right|_{\{-1\}}:\{-1\} \rightarrow \mathbb{R}$ is $\{1\}$.

Example

Consider the function

$$
\begin{aligned}
f: \mathbb{R} & \rightarrow \mathbb{R} \\
x & \mapsto x^{2} .
\end{aligned}
$$

Then the image of f is $\mathbb{R}_{\geqslant 0}$. If we restrict f to $\{-1\} \subseteq \mathbb{R}$, the image of $\left.f\right|_{\{-1\}}:\{-1\} \rightarrow \mathbb{R}$ is $\{1\}$.
The functions

$$
\begin{array}{rlrl}
g: ~ & \mathbb{R} & \rightarrow \mathbb{C} & \text { and } \\
& & h: \mathbb{R} \rightarrow \mathbb{C} \cup \mathbb{C}^{15} \\
& x \mapsto x^{2} & & x \mapsto x^{2}
\end{array}
$$

both have image $\mathbb{R}_{\geqslant 0}$.

Example
Consider the function

$$
\begin{aligned}
f: \mathbb{R} & \rightarrow \mathbb{R} \\
x & \mapsto x^{2} .
\end{aligned}
$$

Then the image of f is $\mathbb{R}_{\geqslant 0}$. If we restrict f to $\{-1\} \subseteq \mathbb{R}$, the image of $\left.f\right|_{\{-1\}}:\{-1\} \rightarrow \mathbb{R}$ is $\{1\}$.
The functions

$$
\begin{array}{rlrl}
g: ~ & \mathbb{R} \rightarrow \mathbb{C} & \text { and } & h: \mathbb{R} \rightarrow \mathbb{C} \cup \mathbb{C}^{15} \\
& x \mapsto x^{2} & & x \mapsto x^{2}
\end{array}
$$

both have image $\mathbb{R}_{\geqslant 0}$.
The map

$$
\begin{aligned}
\varphi: & \mathbb{R} \rightarrow \mathbb{Z} \\
& x \mapsto x^{2}
\end{aligned}
$$

is not well-defined, since the image is not contained in the codomain.

The image of an element $a \in A$ is just $f(a)$.

The image of an element $a \in A$ is just $f(a)$. The preimage is defined on any element of subset of the codomain. Namely, the preimage of $b \in B$ is the set of elements $a \in A$ such that $f(a)=b$:

$$
f^{-1}(b)=\{a \in A \mid f(a)=b\} .
$$

The image of an element $a \in A$ is just $f(a)$. The preimage is defined on any element of subset of the codomain. Namely, the preimage of $b \in B$ is the set of elements $a \in A$ such that $f(a)=b$:

$$
f^{-1}(b)=\{a \in A \mid f(a)=b\} .
$$

The preimage of a subset $B^{\prime} \subseteq B$ is defined similarly, only using containment:

$$
f^{-1}\left(B^{\prime}\right)=\left\{a \in A \mid f(a) \in B^{\prime}\right\} .
$$

The image of an element $a \in A$ is just $f(a)$. The preimage is defined on any element of subset of the codomain. Namely, the preimage of $b \in B$ is the set of elements $a \in A$ such that $f(a)=b$:

$$
f^{-1}(b)=\{a \in A \mid f(a)=b\} .
$$

The preimage of a subset $B^{\prime} \subseteq B$ is defined similarly, only using containment:

$$
f^{-1}\left(B^{\prime}\right)=\left\{a \in A \mid f(a) \in B^{\prime}\right\}
$$

Notice, either way, a preimage is a set!!

The image of an element $a \in A$ is just $f(a)$. The preimage is defined on any element of subset of the codomain. Namely, the preimage of $b \in B$ is the set of elements $a \in A$ such that $f(a)=b$:

$$
f^{-1}(b)=\{a \in A \mid f(a)=b\} .
$$

The preimage of a subset $B^{\prime} \subseteq B$ is defined similarly, only using containment:

$$
f^{-1}\left(B^{\prime}\right)=\left\{a \in A \mid f(a) \in B^{\prime}\right\}
$$

Notice, either way, a preimage is a set!!
A function $f: A \rightarrow B$ is invertible if for every $b \in B, f^{-1}(b)$ has exactly one element.

A function is called one-to-one or injective if every element in the range has at most one element in its preimage.

A function is called one-to-one or injective if every element in the range has at most one element in its preimage.
Some examples of injective functions:
$f(x)=3 x-5$ with domain \mathbb{C}

A function is called one-to-one or injective if every element in the range has at most one element in its preimage.
Some examples of injective functions:
$f(x)=3 x-5$ with domain $\mathbb{C}, \quad f(x)=x^{2}$ with domain $\mathbb{R}_{\geqslant 0}$

A function is called one-to-one or injective if every element in the range has at most one element in its preimage.
Some examples of injective functions:
$f(x)=3 x-5$ with domain $\mathbb{C}, \quad f(x)=x^{2}$ with domain $\mathbb{R}_{\geqslant 0}$,

$$
f(x)=\lfloor x\rfloor \text { with domain } \mathbb{Z}
$$

A function is called one-to-one or injective if every element in the range has at most one element in its preimage.
Some examples of injective functions:
$f(x)=3 x-5$ with domain $\mathbb{C}, \quad f(x)=x^{2}$ with domain $\mathbb{R}_{\geqslant 0}$,

$$
f(x)=\lfloor x\rfloor \text { with domain } \mathbb{Z},
$$

A function is called one-to-one or injective if every element in the range has at most one element in its preimage.
Some examples of functions that are not injective:
$f(x)=3 x-5$ with domain time on a clock

A function is called one-to-one or injective if every element in the range has at most one element in its preimage.
Some examples of functions that are not injective:

$$
\begin{gathered}
f(x)=3 x-5 \text { with domain time on a clock, } \\
f(x)=x^{2} \text { with domain } \mathbb{R}
\end{gathered}
$$

A function is called one-to-one or injective if every element in the range has at most one element in its preimage.
Some examples of functions that are not injective:
$f(x)=3 x-5$ with domain time on a clock, $f(x)=x^{2}$ with domain \mathbb{R}, $f(x)=\lfloor x\rfloor$ with domain \mathbb{Q}

A function is called one-to-one or injective if every element in the range has at most one element in its preimage.
Some examples of functions that are not injective:
$f(x)=3 x-5$ with domain time on a clock, $f(x)=x^{2}$ with domain \mathbb{R}, $f(x)=\lfloor x\rfloor$ with domain \mathbb{Q},

A function is called onto or surjective if the codomain and the image are the same thing.
Some examples of surjective functions:

$$
f(x)=3 x-5 \text { with domain and codomain } \mathbb{C},
$$

A function is called onto or surjective if the codomain and the image are the same thing.
Some examples of surjective functions:
$f(x)=3 x-5$ with domain and codomain \mathbb{C}, $f(x)=x^{2}$ with domain \mathbb{R} and codomain $\mathbb{R}_{\geqslant 0}$,

A function is called onto or surjective if the codomain and the image are the same thing.
Some examples of surjective functions:
$f(x)=3 x-5$ with domain and codomain \mathbb{C}, $f(x)=x^{2}$ with domain \mathbb{R} and codomain $\mathbb{R}_{\geqslant 0}$, $f(x)=\lfloor x\rfloor$ with domain \mathbb{R} and codomain \mathbb{Z},

A function is called onto or surjective if the codomain and the image are the same thing.
Some examples of surjective functions:
$f(x)=3 x-5$ with domain and codomain \mathbb{C}, $f(x)=x^{2}$ with domain \mathbb{R} and codomain $\mathbb{R}_{\geqslant 0}$, $f(x)=\lfloor x\rfloor$ with domain \mathbb{R} and codomain \mathbb{Z},

A function is called onto or surjective if the codomain and the image are the same thing.
Some examples of functions that are not surjective:

$$
f(x)=3 x-5 \text { with domain } \mathbb{R} \text { and codomain } \mathbb{C}
$$

A function is called onto or surjective if the codomain and the image are the same thing.
Some examples of functions that are not surjective:

$$
\begin{gathered}
f(x)=3 x-5 \text { with domain } \mathbb{R} \text { and codomain } \mathbb{C}, \\
f(x)=x^{2} \text { with domain and codomain } \mathbb{R},
\end{gathered}
$$

A function is called onto or surjective if the codomain and the image are the same thing.
Some examples of functions that are not surjective:

$$
\begin{gathered}
f(x)=3 x-5 \text { with domain } \mathbb{R} \text { and codomain } \mathbb{C}, \\
f(x)=x^{2} \text { with domain and codomain } \mathbb{R}, \\
f(x)=\lfloor x\rfloor \text { with domain and codomain } \mathbb{Q}
\end{gathered}
$$

A function is called onto or surjective if the codomain and the image are the same thing.
Some examples of functions that are not surjective:
$f(x)=3 x-5$ with domain \mathbb{R} and codomain \mathbb{C},
$f(x)=x^{2}$ with domain and codomain \mathbb{R}, $f(x)=\lfloor x\rfloor$ with domain and codomain \mathbb{Q},

A function that is both injective and surjective is bijective or a one-to-one correspondence.

A function that is both injective and surjective is bijective or a one-to-one correspondence.

Theorem
A function $f: A \rightarrow B$ is bijective if and only if it is invertible.

A function that is both injective and surjective is bijective or a one-to-one correspondence.

Theorem
A function $f: A \rightarrow B$ is bijective if and only if it is invertible.

You try: Exercise 8.

Let

$$
f: A \rightarrow B \quad \text { and } \quad g: B \rightarrow C .
$$

Then the composition of g and f is

$$
g \circ f=g(f(a)): A \rightarrow C
$$

Let

$$
f: A \rightarrow B \quad \text { and } \quad g: B \rightarrow C
$$

Then the composition of g and f is

$$
g \circ f=g(f(a)): A \rightarrow C .
$$

Example
Let

What is $g \circ f$?

Let

$$
f: A \rightarrow B \quad \text { and } \quad g: B \rightarrow C .
$$

Then the composition of g and f is

$$
g \circ f=g(f(a)): A \rightarrow C .
$$

Example

Let $f(x)=x^{2}+1$ and let $g(x)=\lfloor x\rfloor$, both with domain and codomain \mathbb{R}.

Let

$$
f: A \rightarrow B \quad \text { and } \quad g: B \rightarrow C
$$

Then the composition of g and f is

$$
g \circ f=g(f(a)): A \rightarrow C .
$$

Example

Let $f(x)=x^{2}+1$ and let $g(x)=\lfloor x\rfloor$, both with domain and codomain \mathbb{R}. Since the domain and codomain are equal for both, I can consider both $f \circ g$ and $g \circ f$.

Let

$$
f: A \rightarrow B \quad \text { and } \quad g: B \rightarrow C
$$

Then the composition of g and f is

$$
g \circ f=g(f(a)): A \rightarrow C
$$

Example

Let $f(x)=x^{2}+1$ and let $g(x)=\lfloor x\rfloor$, both with domain and codomain \mathbb{R}. Since the domain and codomain are equal for both, I can consider both $f \circ g$ and $g \circ f$. We have

$$
f \circ g=\lfloor x\rfloor^{2}+1 \quad \text { and } \quad g \circ f=\left\lfloor x^{2}+1\right\rfloor .
$$

Let

$$
f: A \rightarrow B \quad \text { and } \quad g: B \rightarrow C
$$

Then the composition of g and f is

$$
g \circ f=g(f(a)): A \rightarrow C .
$$

Example

Let $f(x)=x^{2}+1$ and let $g(x)=\lfloor x\rfloor$, both with domain and codomain \mathbb{R}. Since the domain and codomain are equal for both, I can consider both $f \circ g$ and $g \circ f$. We have

$$
f \circ g=\lfloor x\rfloor^{2}+1 \quad \text { and } \quad g \circ f=\left\lfloor x^{2}+1\right\rfloor .
$$

You try: Exercise 9.

Let

$$
f: A \rightarrow B \quad \text { and } \quad g: B \rightarrow C
$$

Then the composition of g and f is

$$
g \circ f=g(f(a)): A \rightarrow C .
$$

Example
Let $f(x)=x^{2}+1$ and let $g(x)=\lfloor x\rfloor$, both with domain and codomain \mathbb{R}. Since the domain and codomain are equal for both, I can consider both $f \circ g$ and $g \circ f$. We have

$$
f \circ g=\lfloor x\rfloor^{2}+1 \quad \text { and } \quad g \circ f=\left\lfloor x^{2}+1\right\rfloor .
$$

You try: Exercise 9.
Theorem
Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions. If both f and g are one-to-one functions, then $g \circ f$ is also one-to-one.

Let

$$
f: A \rightarrow B \quad \text { and } \quad g: B \rightarrow C
$$

Then the composition of g and f is

$$
g \circ f=g(f(a)): A \rightarrow C
$$

Example
Let $f(x)=x^{2}+1$ and let $g(x)=\lfloor x\rfloor$, both with domain and codomain \mathbb{R}. Since the domain and codomain are equal for both, I can consider both $f \circ g$ and $g \circ f$. We have

$$
f \circ g=\lfloor x\rfloor^{2}+1 \quad \text { and } \quad g \circ f=\left\lfloor x^{2}+1\right\rfloor .
$$

You try: Exercise 9.
Theorem
Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions. If both f and g are one-to-one functions, then $g \circ f$ is also one-to-one.
You try: Exercise 10.

