Some functions you might be familiar with:

$$f(x) = x^2,$$
 $f(x) = 3x-2,$ $f(x) = \sqrt{x},$ $f(x,y) = \begin{pmatrix} x \\ y \end{pmatrix}$

Some functions you might be familiar with:

 $f(x) = x^2,$ f(x) = 3x-2, $f(x) = \sqrt{x},$ $f(x,y) = \binom{x}{y}.$

A couple more we'll need:

Some functions you might be familiar with:

 $f(x) = x^2$, f(x) = 3x-2, $f(x) = \sqrt{x}$, $f(x,y) = \binom{x}{y}$.

A couple more we'll need:

For $x \in \mathbb{R}$, the floor of x is the greatest integer that is less than or equal to x, written $\lfloor x \rfloor$.

Some functions you might be familiar with:

 $f(x) = x^2$, f(x) = 3x-2, $f(x) = \sqrt{x}$, $f(x,y) = \binom{x}{y}$.

A couple more we'll need:

• For $x \in \mathbb{R}$, the floor of x is the greatest integer that is less than or equal to x, written $\lfloor x \rfloor$. For example,

$$\lfloor 1/2 \rfloor = 0, \quad \lfloor -1/2 \rfloor = -1, \quad \lfloor 13 \rfloor = 13, \quad \lfloor \pi \rfloor = 3.$$

Some functions you might be familiar with:

 $f(x) = x^2$, f(x) = 3x-2, $f(x) = \sqrt{x}$, $f(x,y) = \binom{x}{y}$.

A couple more we'll need:

• For $x \in \mathbb{R}$, the floor of x is the greatest integer that is less than or equal to x, written $\lfloor x \rfloor$. For example,

$$\lfloor 1/2 \rfloor = 0, \quad \lfloor -1/2 \rfloor = -1, \quad \lfloor 13 \rfloor = 13, \quad \lfloor \pi \rfloor = 3.$$

For $x \in \mathbb{R}$, the ceiling of x is the least integer that is greater than or equal to x, written [x].

Some functions you might be familiar with:

 $f(x) = x^2$, f(x) = 3x-2, $f(x) = \sqrt{x}$, $f(x,y) = \binom{x}{y}$.

A couple more we'll need:

• For $x \in \mathbb{R}$, the floor of x is the greatest integer that is less than or equal to x, written $\lfloor x \rfloor$. For example,

$$\lfloor 1/2 \rfloor = 0, \quad \lfloor -1/2 \rfloor = -1, \quad \lfloor 13 \rfloor = 13, \quad \lfloor \pi \rfloor = 3.$$

For $x \in \mathbb{R}$, the ceiling of x is the least integer that is greater than or equal to x, written [x]. For example,

$$[1/2] = 1, \quad [-1/2] = 0, \quad [13] = 13, \quad [\pi] = 4.$$

• For $x \in \mathbb{R}$, the floor of x is the greatest integer that is less than or equal to x, written $\lfloor x \rfloor$. For example,

$$\lfloor 1/2 \rfloor = 0, \quad \lfloor -1/2 \rfloor = -1, \quad \lfloor 13 \rfloor = 13, \quad \lfloor \pi \rfloor = 3.$$

For $x \in \mathbb{R}$, the ceiling of x is the least integer that is greater than or equal to x, written [x]. For example,

$$\lceil 1/2 \rceil = 1, \quad \lceil -1/2 \rceil = 0, \quad \lceil 13 \rceil = 13, \quad \lceil \pi \rceil = 4.$$

• The absolute value of a real number x is

$$|x| = \begin{cases} x & \text{if } x \text{ is nonegative,} \\ -x & \text{if } x \text{ is negative,} \end{cases}$$

so that |x| is always nonnegative.

• For $x \in \mathbb{R}$, the floor of x is the greatest integer that is less than or equal to x, written $\lfloor x \rfloor$. For example,

$$\lfloor 1/2 \rfloor = 0, \quad \lfloor -1/2 \rfloor = -1, \quad \lfloor 13 \rfloor = 13, \quad \lfloor \pi \rfloor = 3.$$

For $x \in \mathbb{R}$, the ceiling of x is the least integer that is greater than or equal to x, written [x]. For example,

$$\lceil 1/2 \rceil = 1, \quad \lceil -1/2 \rceil = 0, \quad \lceil 13 \rceil = 13, \quad \lceil \pi \rceil = 4.$$

• The absolute value of a real number x is

$$|x| = \begin{cases} x & \text{if } x \text{ is nonegative,} \\ -x & \text{if } x \text{ is negative,} \end{cases}$$

so that |x| is always nonnegative. For example,

$$|1/2| = 1/2, \quad |-1/2| = 1/2, \quad |0| = 0, \quad |\pi| = \pi.$$

• You need a domain (input).

- You need a domain (input).
- The function should be well-defined (part 1): for every input, there is exactly one output. Namely,

$$\text{if } f(a) = b_1 \text{ and } f(a) = b_2 \text{, then } b_1 = b_2. \\$$

- You need a domain (input).
- The function should be well-defined (part 1): for every input, there is exactly one output. Namely,

if
$$f(a) = b_1$$
 and $f(a) = b_2$, then $b_1 = b_2$.

The domain together with a function determines a range or image (output).

- You need a domain (input).
- The function should be well-defined (part 1): for every input, there is exactly one output. Namely,

if
$$f(a) = b_1$$
 and $f(a) = b_2$, then $b_1 = b_2$.

The domain together with a function determines a range or image (output).

Example

Consider $f(x) = x^2$.

- You need a domain (input).
- The function should be well-defined (part 1): for every input, there is exactly one output. Namely,

if
$$f(a) = b_1$$
 and $f(a) = b_2$, then $b_1 = b_2$.

The domain together with a function determines a range or image (output).

Example

Consider $f(x) = x^2$. If the domain is \mathbb{R}

- You need a domain (input).
- The function should be well-defined (part 1): for every input, there is exactly one output. Namely,

if
$$f(a) = b_1$$
 and $f(a) = b_2$, then $b_1 = b_2$.

The domain together with a function determines a range or image (output).

Example

Consider $f(x) = x^2$. If the domain is \mathbb{R} , then the range is $\mathbb{R}_{\geq 0}$.

- You need a domain (input).
- The function should be well-defined (part 1): for every input, there is exactly one output. Namely,

if
$$f(a) = b_1$$
 and $f(a) = b_2$, then $b_1 = b_2$.

The domain together with a function determines a range or image (output).

Example

Consider $f(x) = x^2$. If the domain is \mathbb{R} , then the range is $\mathbb{R}_{\geq 0}$. If the domain is $\{-1\}$

- You need a domain (input).
- The function should be well-defined (part 1): for every input, there is exactly one output. Namely,

if
$$f(a) = b_1$$
 and $f(a) = b_2$, then $b_1 = b_2$.

The domain together with a function determines a range or image (output).

Example

Consider $f(x) = x^2$. If the domain is \mathbb{R} , then the range is $\mathbb{R}_{\geq 0}$. If the domain is $\{-1\}$, then the range is $\{1\}$.

- You need a domain (input).
- The function should be well-defined (part 1): for every input, there is exactly one output. Namely,

if
$$f(a) = b_1$$
 and $f(a) = b_2$, then $b_1 = b_2$.

The domain together with a function determines a range or image (output).

Example

Consider $f(x) = x^2$. If the domain is \mathbb{R} , then the range is $\mathbb{R}_{\geq 0}$. If the domain is $\{-1\}$, then the range is $\{1\}$. Either way, f is well-defined "on its domain".

If f is a function with domain A and codomain B, we say f is a function or map or transformation from A to B, and we write

 $f: A \to B.$

If f is a function with domain A and codomain B, we say f is a function or map or transformation from A to B, and we write

 $f: A \to B.$

For $a \in A$, we write

$$f: a \mapsto f(a),$$

where " \mapsto " reads "maps to".

If f is a function with domain A and codomain B, we say f is a function or map or transformation from A to B, and we write

$$f: A \to B.$$

For $a \in A$, we write

$$f: a \mapsto f(a),$$

where " \mapsto " reads "maps to".

If you have a function $f:A\to B,$ and $A'\subseteq A,$ you can restrict f to the domain A', written

$$f|_{A'}: A' \to B.$$

This means that the definition of the function doesn't change, you just consider its image on fewer elements.

If you pick a bad codomain, your expression is no longer a function (not well-defined, part 2).

If f is a function with domain A and codomain B, we say f is a function or map or transformation from A to B, and we write

$$f: A \to B.$$

For $a \in A$, we write

$$f: a \mapsto f(a),$$

where " \mapsto " reads "maps to".

If you have a function $f:A\to B,$ and $A'\subseteq A,$ you can restrict f to the domain A', written

$$f|_{A'}: A' \to B.$$

This means that the definition of the function doesn't change, you just consider its image on fewer elements.

If you pick a bad codomain, your expression is no longer a function (not well-defined, part 2).

Example

$$f: \mathbb{R} \to \mathbb{Z}$$
 defined by $x \mapsto x$

is not a function.

Consider the function

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto x^2.$$

Then the image of f is $\mathbb{R}_{\geq 0}$.

Consider the function

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto x^2.$$

Then the image of f is $\mathbb{R}_{\geq 0}$. If we restrict f to $\{-1\} \subseteq \mathbb{R}$, the image of $f|_{\{-1\}} : \{-1\} \to \mathbb{R}$ is $\{1\}$.

Consider the function

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto x^2.$$

Then the image of f is $\mathbb{R}_{\geq 0}$. If we restrict f to $\{-1\} \subseteq \mathbb{R}$, the image of $f|_{\{-1\}} : \{-1\} \to \mathbb{R}$ is $\{1\}$. The functions

$$\begin{array}{ccc} g: \mathbb{R} \to \mathbb{C} & & \\ x \mapsto x^2 & & \text{and} & & h: \mathbb{R} \to \mathbb{C} \cup \mathbb{C}^{15} \\ & x \mapsto x^2 \end{array}$$

both have image $\mathbb{R}_{\geq 0}$.

Consider the function

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto x^2.$$

Then the image of f is $\mathbb{R}_{\geq 0}$. If we restrict f to $\{-1\} \subseteq \mathbb{R}$, the image of $f|_{\{-1\}} : \{-1\} \to \mathbb{R}$ is $\{1\}$. The functions

$$\begin{array}{ccc} g: \mathbb{R} \to \mathbb{C} & & \\ x \mapsto x^2 & & \text{and} & & \begin{array}{c} h: \mathbb{R} \to \mathbb{C} \cup \mathbb{C}^{15} \\ & x \mapsto x^2 \end{array}$$

both have image $\mathbb{R}_{\geq 0}$. The map

$$\begin{array}{c} \varphi: \mathbb{R} \to \mathbb{Z} \\ x \mapsto x^2 \end{array}$$

is not well-defined, since the image is not contained in the codomain.

The image of an element $a \in A$ is just f(a).

The image of an element $a \in A$ is just f(a). The preimage is defined on any element of subset of the codomain. Namely, the preimage of $b \in B$ is the set of elements $a \in A$ such that f(a) = b: $f^{-1}(b) = \{a \in A \mid f(a) = b\}.$

The image of an element $a \in A$ is just f(a). The preimage is defined on any element of subset of the codomain. Namely, the preimage of $b \in B$ is the set of elements $a \in A$ such that f(a) = b: $f^{-1}(b) = \{a \in A \mid f(a) = b\}.$

The preimage of a subset $B' \subseteq B$ is defined similarly, only using containment:

$$f^{-1}(B') = \{a \in A \mid f(a) \in B'\}.$$

The image of an element $a \in A$ is just f(a). The preimage is defined on any element of subset of the codomain. Namely, the preimage of $b \in B$ is the set of elements $a \in A$ such that f(a) = b: $f^{-1}(b) = \{a \in A \mid f(a) = b\}.$

The preimage of a subset $B' \subseteq B$ is defined similarly, only using containment:

$$f^{-1}(B') = \{ a \in A \mid f(a) \in B' \}.$$

Notice, either way, a preimage is a set!!

The image of an element $a \in A$ is just f(a). The preimage is defined on any element of subset of the codomain. Namely, the preimage of $b \in B$ is the set of elements $a \in A$ such that f(a) = b: $f^{-1}(b) = \{a \in A \mid f(a) = b\}.$

The preimage of a subset $B' \subseteq B$ is defined similarly, only using containment:

$$f^{-1}(B') = \{ a \in A \mid f(a) \in B' \}.$$

Notice, either way, a preimage is a set!! A function $f : A \rightarrow B$ is invertible if for every $b \in B$, $f^{-1}(b)$ has exactly one element. A function is called one-to-one or injective if every element in the range has at most one element in its preimage.

f(x) = 3x - 5 with domain $\mathbb C$

f(x) = 3x - 5 with domain \mathbb{C} , $f(x) = x^2$ with domain $\mathbb{R}_{\geq 0}$

f(x) = 3x - 5 with domain \mathbb{C} , $f(x) = x^2$ with domain $\mathbb{R}_{\geq 0}$,

$$f(x) = \lfloor x \rfloor$$
 with domain \mathbb{Z}

f(x) = 3x - 5 with domain \mathbb{C} , $f(x) = x^2$ with domain $\mathbb{R}_{\geq 0}$,

f(x) = 3x - 5 with domain time on a clock

$$f(x) = 3x - 5$$
 with domain time on a clock,
 $f(x) = x^2$ with domain \mathbb{R}

$$\begin{split} f(x) &= 3x-5 \text{ with domain time on a clock}, \\ f(x) &= x^2 \text{ with domain } \mathbb{R}, \\ f(x) &= \lfloor x \rfloor \text{ with domain } \mathbb{Q} \end{split}$$

$$f(x) = 3x - 5 \text{ with domain time on a clock,}$$

$$f(x) = x^2 \text{ with domain } \mathbb{R},$$

$$f(x) = \lfloor x \rfloor \text{ with domain } \mathbb{Q},$$

$$f = \begin{bmatrix} x \end{bmatrix} \text{ with domain } \mathbb{Q},$$

$$f = \begin{bmatrix} x \end{bmatrix} \text{ or } a = \begin{bmatrix} x \end{bmatrix}$$

Some examples of surjective functions:

f(x) = 3x - 5 with domain and codomain \mathbb{C} ,

Some examples of surjective functions:

f(x) = 3x - 5 with domain and codomain \mathbb{C} , $f(x) = x^2$ with domain \mathbb{R} and codomain $\mathbb{R}_{\geq 0}$,

Some examples of surjective functions:

$$\begin{split} f(x) &= 3x - 5 \text{ with domain and codomain } \mathbb{C}, \\ f(x) &= x^2 \text{ with domain } \mathbb{R} \text{ and codomain } \mathbb{R}_{\geq 0}, \\ f(x) &= \lfloor x \rfloor \text{ with domain } \mathbb{R} \text{ and codomain } \mathbb{Z}, \end{split}$$

Some examples of surjective functions:

f(x) = 3x - 5 with domain and codomain \mathbb{C} , $f(x) = x^2$ with domain \mathbb{R} and codomain $\mathbb{R}_{\geq 0}$, f(x) = |x| with domain \mathbb{R} and codomain \mathbb{Z} ,

Some examples of functions that are **not** surjective:

f(x) = 3x - 5 with domain $\mathbb R$ and codomain $\mathbb C$

Some examples of functions that are **not** surjective:

$$f(x) = 3x - 5$$
 with domain \mathbb{R} and codomain \mathbb{C} ,
 $f(x) = x^2$ with domain and codomain \mathbb{R} ,

Some examples of functions that are **not** surjective:

$$f(x) = 3x - 5$$
 with domain \mathbb{R} and codomain \mathbb{C} ,
 $f(x) = x^2$ with domain and codomain \mathbb{R} ,
 $f(x) = \lfloor x \rfloor$ with domain and codomain \mathbb{Q}

Some examples of functions that are **not** surjective:

$$f(x) = 3x - 5$$
 with domain \mathbb{R} and codomain \mathbb{C} ,
 $f(x) = x^2$ with domain and codomain \mathbb{R} ,
 $f(x) = |x|$ with domain and codomain \mathbb{Q} ,

A function that is both injective and surjective is bijective or a one-to-one correspondence.

A function that is both injective and surjective is bijective or a one-to-one correspondence.

Theorem

A function $f : A \rightarrow B$ is bijective if and only if it is invertible.

A function that is both injective and surjective is bijective or a one-to-one correspondence.

Theorem

A function $f : A \rightarrow B$ is bijective if and only if it is invertible.

You try: Exercise 8.

$$f: A \to B$$
 and $g: B \to C$.

Then the composition of g and f is

$$g \circ f = g(f(a)) : A \to C.$$

$$f: A \to B$$
 and $g: B \to C$.

Then the composition of g and f is

$$g \circ f = g(f(a)) : A \to C.$$

Example

Let

What is $g \circ f$?

$$f: A \to B$$
 and $g: B \to C$.

Then the composition of g and f is

$$g \circ f = g(f(a)) : A \to C.$$

Example

Let $f(x) = x^2 + 1$ and let $g(x) = \lfloor x \rfloor$, both with domain and codomain \mathbb{R} .

$$f: A \to B$$
 and $g: B \to C$.

Then the composition of g and f is

$$g \circ f = g(f(a)) : A \to C.$$

Example

Let $f(x) = x^2 + 1$ and let $g(x) = \lfloor x \rfloor$, both with domain and codomain \mathbb{R} . Since the domain and codomain are equal for both, I can consider both $f \circ g$ and $g \circ f$.

$$f: A \to B$$
 and $g: B \to C$.

Then the composition of g and f is

$$g \circ f = g(f(a)) : A \to C.$$

Example

Let $f(x) = x^2 + 1$ and let $g(x) = \lfloor x \rfloor$, both with domain and codomain \mathbb{R} . Since the domain and codomain are equal for both, I can consider both $f \circ g$ and $g \circ f$. We have

 $f \circ g = \lfloor x \rfloor^2 + 1$ and $g \circ f = \lfloor x^2 + 1 \rfloor$.

$$f: A \to B$$
 and $g: B \to C$.

Then the composition of g and f is

$$g \circ f = g(f(a)) : A \to C.$$

Example

Let $f(x) = x^2 + 1$ and let $g(x) = \lfloor x \rfloor$, both with domain and codomain \mathbb{R} . Since the domain and codomain are equal for both, I can consider both $f \circ g$ and $g \circ f$. We have

$$f \circ g = \lfloor x \rfloor^2 + 1$$
 and $g \circ f = \lfloor x^2 + 1 \rfloor$.

You try: Exercise 9.

$$f: A \to B$$
 and $g: B \to C$.

Then the composition of g and f is

$$g \circ f = g(f(a)) : A \to C.$$

Example

Let $f(x) = x^2 + 1$ and let $g(x) = \lfloor x \rfloor$, both with domain and codomain \mathbb{R} . Since the domain and codomain are equal for both, I can consider both $f \circ g$ and $g \circ f$. We have

$$f \circ g = \lfloor x \rfloor^2 + 1$$
 and $g \circ f = \lfloor x^2 + 1 \rfloor$.

You try: Exercise 9.

Theorem

Let $f : A \to B$ and $g : B \to C$ be functions. If both f and g are one-to-one functions, then $g \circ f$ is also one-to-one.

$$f: A \to B$$
 and $g: B \to C$.

Then the composition of g and f is

$$g \circ f = g(f(a)) : A \to C.$$

Example

Let $f(x) = x^2 + 1$ and let $g(x) = \lfloor x \rfloor$, both with domain and codomain \mathbb{R} . Since the domain and codomain are equal for both, I can consider both $f \circ g$ and $g \circ f$. We have

$$f \circ g = \lfloor x \rfloor^2 + 1$$
 and $g \circ f = \lfloor x^2 + 1 \rfloor$.

You try: Exercise 9.

Theorem

Let $f : A \to B$ and $g : B \to C$ be functions. If both f and g are one-to-one functions, then $g \circ f$ is also one-to-one. You try: Exercise 10.