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there is exactly one output. Namely,
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Example

Consider f(z) = 22

If the domain is R, then the range is Rx.

If the domain is {—1}, then the range is {1}.
Either way, f is well-defined “on its domain”.
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Example
Consider the function

fR->R
z — 22
Then the image of f is R>q. If we restrict f to {—1} € R, the
image of fl_1y : {—1} —> Ris {1}.
The functions

g:R->C h:R—CuCP
9 and 9
€Tr— X Ir— X
both have image Rx.
The map
p:R—>Z

Tr— .’Ez

is not well-defined, since the image is not contained in the
codomain.
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defined on any element of subset of the codomain. Namely, the
preimage of b € B is the set of elements a € A such that f(a) = b:
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The preimage of a subset B’ € B is defined similarly, only using
containment:

JNB) = {ac A f(a) e B,

Notice, either way, a preimage is a set!!
A function f : A — B is invertible if for every b e B, f~1(b) has
exactly one element.



A function is called one-to-one or injective if every element in the
range has at most one element in its preimage.



A function is called one-to-one or injective if every element in the
range has at most one element in its preimage.
Some examples of injective functions:

f(x) = 3z — 5 with domain C



A function is called one-to-one or injective if every element in the
range has at most one element in its preimage.
Some examples of injective functions:

f(x) = 3z — 5 with domain C, f(z) = 2 with domain Rx



A function is called one-to-one or injective if every element in the
range has at most one element in its preimage.
Some examples of injective functions:

f(x) = 3z — 5 with domain C, f(z) = 2 with domain Rx,

f(x) = |x| with domain Z



A function is called one-to-one or injective if every element in the
range has at most one element in its preimage.
Some examples of injective functions:

f(x) = 3z — 5 with domain C, f(z) = 2 with domain Rx,




A function is called one-to-one or injective if every element in the
range has at most one element in its preimage.
Some examples of functions that are not injective:

f(z) = 3z — 5 with domain time on a clock



A function is called one-to-one or injective if every element in the
range has at most one element in its preimage.
Some examples of functions that are not injective:
f(z) = 3z — 5 with domain time on a clock,
f(x) = 2% with domain R



A function is called one-to-one or injective if every element in the
range has at most one element in its preimage.
Some examples of functions that are not injective:
f(z) = 3z — 5 with domain time on a clock,
f(x) = 2% with domain R,
f(z) = |z] with domain Q



A function is called one-to-one or injective if every element in the
range has at most one element in its preimage.
Some examples of functions that are not injective:
f(z) = 3z — 5 with domain time on a clock,
f(x) = 2% with domain R,
f(z) = |z] with domain Q,

f
T

AN

/|



A function is called onto or surjective if the codomain and the
image are the same thing.
Some examples of surjective functions:

f(z) = 3z — 5 with domain and codomain C,



A function is called onto or surjective if the codomain and the
image are the same thing.
Some examples of surjective functions:

f(z) = 3z — 5 with domain and codomain C,

f(x) = 2% with domain R and codomain R,



A function is called onto or surjective if the codomain and the
image are the same thing.
Some examples of surjective functions:

f(z) = 3z — 5 with domain and codomain C,

f(x) = 2% with domain R and codomain R,

f(z) = |z] with domain R and codomain Z,



A function is called onto or surjective if the codomain and the
image are the same thing.
Some examples of surjective functions:

f(z) = 3z — 5 with domain and codomain C,

f(x) = 2% with domain R and codomain R,

f(z) = |z] with domain R and codomain Z,

f

\ 5

[



A function is called onto or surjective if the codomain and the
image are the same thing.
Some examples of functions that are not surjective:

f(z) = 3z — 5 with domain R and codomain C



A function is called onto or surjective if the codomain and the
image are the same thing.
Some examples of functions that are not surjective:
f(z) = 3z — 5 with domain R and codomain C,
f(x) = 2% with domain and codomain R,



A function is called onto or surjective if the codomain and the
image are the same thing.
Some examples of functions that are not surjective:
f(z) = 3z — 5 with domain R and codomain C,
f(x) = 2% with domain and codomain R,
f(z) = |z] with domain and codomain Q



A function is called onto or surjective if the codomain and the
image are the same thing.
Some examples of functions that are not surjective:
f(z) = 3z — 5 with domain R and codomain C,
f(x) = 2% with domain and codomain R,
f(z) = |z] with domain and codomain Q,

f
T

A



A function that is both injective and surjective is bijective or a
one-to-one correspondence.



A function that is both injective and surjective is bijective or a
one-to-one correspondence.

f . i
o
/=
No: i No: ' Yes: '
I -
A
A B 5 A
Theorem

A function f : A — B is bijective if and only if it is invertible.



A function that is both injective and surjective is bijective or a
one-to-one correspondence.

f . i
o
/=
No: i No: ' Yes: '
I -
A
A B 5 A
Theorem

A function f : A — B is bijective if and only if it is invertible.

You try: Exercise 8.
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