Warm up

Recall that the power set of a set A is

$$
\mathcal{P}=\{X \mid X \subseteq A\}
$$

1. What is $|\varnothing|$? What is $|\{\varnothing\}|$?
2. Let $A=\{x\}$. Calculate $\mathcal{P}(A)$ and $\mathcal{P}(\mathcal{P}(A))$.
3. Let $A=\varnothing$. Calculate $\mathcal{P}(A)$ and $\mathcal{P}(\mathcal{P}(A))$.
4. Give an example of a set A such that $A \cap \mathcal{P}(A)=\varnothing$.
5. Give an example of a set A such that $A \cap \mathcal{P}(A) \neq \varnothing$.
6. True or false and why: For any set $A,\{\varnothing\} \subseteq \mathcal{P}(\mathcal{P}(A))$.
7. Explain why $\mathcal{P}(A) \cap \mathcal{P}(\mathcal{P}(A)) \neq \varnothing$.

Some shorthands you'll see in the book:

symbol:	means:	example:
\in	"in", "contained in"	" $x \in \mathbb{R}^{\prime \prime}$ means " x is a real number".
\forall	"for all"	$A \subseteq B$ if $\forall a \in A$, we have $a \in B$.
\wedge	"and"	$A \cap B=\{x \in U \mid(x \in A) \wedge(x \in B)\}$.
\vee	"or" (inclusive)	$A \cup B=\{x \in U \mid(x \in A) \vee(x \in B)\}$.
\neg	"not"	$\bar{A}=\{x \in U \mid \neg(x \in A)\}$.

Put a priority on clarity!

Writing mathematics is not that different that any other writing. In journalism, clear and articulate writing is as important as content; the same is true in math. Don't make your reader work too hard to understand what you're trying to convey! In short, use symbols sparingly-go for clarity, not just saving space.

A Venn diagram is an abstract representation of a family of sets sitting inside of a universal set.

A Venn diagram is an abstract representation of a family of sets sitting inside of a universal set.

How to draw a Venn diagram:
Draw the universal set at a rectangle.
Inside that rectangle, indicate a set by drawing a closed loop (usually a circle, but not always) where the object in the set are the points inside that closed loop.

A Venn diagram is an abstract representation of a family of sets sitting inside of a universal set.

How to draw a Venn diagram:
Draw the universal set at a rectangle.
Inside that rectangle, indicate a set by drawing a closed loop (usually a circle, but not always) where the object in the set are the points inside that closed loop.
Say we have two sets A and B and a fixed universal set U :

A Venn diagram is an abstract representation of a family of sets sitting inside of a universal set.

How to draw a Venn diagram:
Draw the universal set at a rectangle.
Inside that rectangle, indicate a set by drawing a closed loop (usually a circle, but not always) where the object in the set are the points inside that closed loop.
Say we have two sets A and B and a fixed universal set U :

Shade in areas to indicate various sets.

A Venn diagram is an abstract representation of a family of sets sitting inside of a universal set.

How to draw a Venn diagram:
Draw the universal set at a rectangle.
Inside that rectangle, indicate a set by drawing a closed loop (usually a circle, but not always) where the object in the set are the points inside that closed loop.
Say we have two sets A and B and a fixed universal set U :

Shade in areas to indicate various sets.

A Venn diagram is an abstract representation of a family of sets sitting inside of a universal set.

How to draw a Venn diagram:
Draw the universal set at a rectangle.
Inside that rectangle, indicate a set by drawing a closed loop (usually a circle, but not always) where the object in the set are the points inside that closed loop.
Say we have two sets A and B and a fixed universal set U :

Shade in areas to indicate various sets.

A Venn diagram is an abstract representation of a family of sets sitting inside of a universal set.

How to draw a Venn diagram:
Draw the universal set at a rectangle.
Inside that rectangle, indicate a set by drawing a closed loop (usually a circle, but not always) where the object in the set are the points inside that closed loop.
Say we have two sets A and B and a fixed universal set U :

Shade in areas to indicate various sets.
A looks like

\bar{A} looks like

$A \cup B$ looks like

\bar{A} looks like

$A-B$ looks like

$A \cup B$ looks like

\bar{A} looks like

$A-B$ looks like

You try: Do Exercise 3

Infinite unions and intersections

Recall summation and product notation

$$
\begin{aligned}
& \sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+\cdots+a_{n}, \quad \sum_{i=1}^{\infty} a_{i}=a_{1}+a_{2}+\cdots, \\
& \prod_{i=1}^{n} a_{i}=a_{1} \cdot a_{2} \cdots a_{n}, \quad \prod_{i=1}^{\infty} a_{i}=a_{1} \cdot a_{2} \cdots
\end{aligned}
$$

for numbers a_{1}, a_{2}, \ldots.

Infinite unions and intersections

Recall summation and product notation

$$
\begin{aligned}
& \sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+\cdots+a_{n}, \quad \sum_{i=1}^{\infty} a_{i}=a_{1}+a_{2}+\cdots, \\
& \prod_{i=1}^{n} a_{i}=a_{1} \cdot a_{2} \cdots a_{n}, \quad \prod_{i=1}^{\infty} a_{i}=a_{1} \cdot a_{2} \cdots,
\end{aligned}
$$

for numbers a_{1}, a_{2}, \ldots.
Similarly, let A_{1}, A_{2}, \ldots be a (possibly infinite) collection of sets.

Infinite unions and intersections

Recall summation and product notation

$$
\begin{aligned}
& \sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+\cdots+a_{n}, \quad \sum_{i=1}^{\infty} a_{i}=a_{1}+a_{2}+\cdots, \\
& \prod_{i=1}^{n} a_{i}=a_{1} \cdot a_{2} \cdots a_{n}, \quad \prod_{i=1}^{\infty} a_{i}=a_{1} \cdot a_{2} \cdots,
\end{aligned}
$$

for numbers a_{1}, a_{2}, \ldots.
Similarly, let A_{1}, A_{2}, \ldots be a (possibly infinite) collection of sets.
For example,

$$
A_{1}=\{1\}, \quad A_{2}=\{1,2\}, \quad \ldots \quad A_{i}=\{1,2,3, \ldots, i\} .
$$

Infinite unions and intersections

Recall summation and product notation

$$
\begin{aligned}
& \sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+\cdots+a_{n}, \quad \sum_{i=1}^{\infty} a_{i}=a_{1}+a_{2}+\cdots, \\
& \prod_{i=1}^{n} a_{i}=a_{1} \cdot a_{2} \cdots a_{n}, \quad \prod_{i=1}^{\infty} a_{i}=a_{1} \cdot a_{2} \cdots
\end{aligned}
$$

for numbers a_{1}, a_{2}, \ldots.
Similarly, let A_{1}, A_{2}, \ldots be a (possibly infinite) collection of sets.
For example,

$$
A_{1}=\{1\}, \quad A_{2}=\{1,2\}, \quad \ldots \quad A_{i}=\{1,2,3, \ldots, i\} .
$$

Then

$$
\begin{array}{ll}
\bigcup_{i=1}^{n} A_{i}=A_{1} \cup A_{2} \cup \cdots \cup A_{n}, & \bigcup_{i=1}^{\infty} A_{i}=A_{1} \cup A_{2} \cup \cdots \\
\bigcap_{i=1}^{n} A_{i}=A_{1} \cap A_{2} \cap \cdots \cap A_{n}, & \bigcap_{i=1}^{\infty} A_{i}=A_{1} \cap A_{2} \cap \cdots .
\end{array}
$$

Infinite unions and intersections

Recall summation and product notation

$$
\begin{aligned}
& \sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+\cdots+a_{n}, \quad \sum_{i=1}^{\infty} a_{i}=a_{1}+a_{2}+\cdots, \\
& \prod_{i=1}^{n} a_{i}=a_{1} \cdot a_{2} \cdots a_{n}, \quad \prod_{i=1}^{\infty} a_{i}=a_{1} \cdot a_{2} \cdots
\end{aligned}
$$

for numbers a_{1}, a_{2}, \ldots.
Similarly, let A_{1}, A_{2}, \ldots be a (possibly infinite) collection of sets.
For example,

$$
A_{1}=\{1\}, \quad A_{2}=\{1,2\}, \quad \ldots \quad A_{i}=\{1,2,3, \ldots, i\} .
$$

Then

$$
\begin{array}{ll}
\bigcup_{i=1}^{n} A_{i}=A_{1} \cup A_{2} \cup \cdots \cup A_{n}, & \bigcup_{i=1}^{\infty} A_{i}=A_{1} \cup A_{2} \cup \cdots \\
\bigcap_{i=1}^{n} A_{i}=A_{1} \cap A_{2} \cap \cdots \cap A_{n}, & \bigcap_{i=1}^{\infty} A_{i}=A_{1} \cap A_{2} \cap \cdots .
\end{array}
$$

You try: Exercise 4.

How can we prove your hypothesis?

How can we prove your hypothesis? For two sets A and B, we have $A=B \quad$ exactly when $\quad A \subseteq B \quad$ and $\quad B \subseteq A$.

How can we prove your hypothesis? For two sets A and B, we have

$$
A=B \quad \text { exactly when } \quad A \subseteq B \quad \text { and } \quad B \subseteq A
$$

What does it mean for two sets to be equal?

How can we prove your hypothesis? For two sets A and B, we have

$$
A=B \quad \text { exactly when } \quad A \subseteq B \quad \text { and } \quad B \subseteq A .
$$

What does it mean for two sets to be equal?
Example: Compare

$$
W=\{1,2\}, \quad X=\{1,2,3\}, \quad Y=\{1\}, \quad \text { and } \quad Z=\{1,2\} .
$$

How can we prove your hypothesis? For two sets A and B, we have

$$
A=B \quad \text { exactly when } \quad A \subseteq B \quad \text { and } \quad B \subseteq A
$$

What does it mean for two sets to be equal?
Example: Compare

$$
W=\{1,2\}, \quad X=\{1,2,3\}, \quad Y=\{1\}, \quad \text { and } \quad Z=\{1,2\} .
$$

- $W \neq X$ because $3 \in X$ but $3 \notin W(X \ddagger W)$.
- $W \neq Y$ because $2 \in W$ but $2 \notin Y(W \nsubseteq Y)$.
- $W=Z$ because
$1 \in W$ and $1 \in Z$;
$2 \in W$ and $2 \in Z$;
and there are no other elements in W or Z ($W \subseteq Z$ and $Z \subseteq W$).

How can we prove your hypothesis? For two sets A and B, we have

$$
A=B \quad \text { exactly when } \quad A \subseteq B \quad \text { and } \quad B \subseteq A .
$$

What does it mean for two sets to be equal?
Example: Compare

$$
W=\{1,2\}, \quad X=\{1,2,3\}, \quad Y=\{1\}, \quad \text { and } \quad Z=\{1,2\} .
$$

- $W \neq X$ because $3 \in X$ but $3 \notin W(X \ddagger W)$.
- $W \neq Y$ because $2 \in W$ but $2 \notin Y(W \nsubseteq Y)$.
- $W=Z$ because
$1 \in W$ and $1 \in Z$;
$2 \in W$ and $2 \in Z$;
and there are no other elements in W or Z ($W \subseteq Z$ and $Z \subseteq W$).
In general, $A=B$ means that every element of A is in B, and vice versa.

How can we prove your hypothesis? For two sets A and B, we have

$$
A=B \quad \text { exactly when } \quad A \subseteq B \quad \text { and } \quad B \subseteq A
$$

What does it mean for two sets to be equal?
Example: Compare

$$
W=\{1,2\}, \quad X=\{1,2,3\}, \quad Y=\{1\}, \quad \text { and } \quad Z=\{1,2\}
$$

- $W \neq X$ because $3 \in X$ but $3 \notin W(X \ddagger W)$.
- $W \neq Y$ because $2 \in W$ but $2 \notin Y(W \nsubseteq Y)$.
- $W=Z$ because
$1 \in W$ and $1 \in Z$;
$2 \in W$ and $2 \in Z$;
and there are no other elements in W or Z ($W \subseteq Z$ and $Z \subseteq W$).
In general, $A=B$ means that every element of A is in B, and vice versa. But

$$
A \subseteq B \text { means that every element of } A \text { is in } B
$$

$$
\text { (if } a \in A \text {, then } a \in B \text { too) }
$$

and
$B \subseteq A$ means that every element of B is in A, (if $b \in B$, then $b \in A$ too)
the "and vice versa" part.

For two sets A and B, we have

$$
A=B \quad \text { exactly when } \quad A \subseteq B \quad \text { and } \quad B \subseteq A
$$

(If $a \in A$, then $a \in B$. And if $b \in B$, then $b \in A$.)

For two sets A and B, we have

$$
A=B \quad \text { exactly when } \quad A \subseteq B \quad \text { and } \quad B \subseteq A .
$$

(If $a \in A$, then $a \in B$. And if $b \in B$, then $b \in A$.)

Example

If $A_{i}=\{1,2, \ldots, i\}$ for $i=1,2,3, \ldots$, then $\bigcup_{i=1}^{\infty} A_{i}=\mathbb{Z}_{>0}$.
Proof.
Let $\mathcal{A}=\bigcup_{i=1}^{\infty} A_{i}$.

For two sets A and B, we have

$$
A=B \quad \text { exactly when } \quad A \subseteq B \quad \text { and } \quad B \subseteq A .
$$

(If $a \in A$, then $a \in B$. And if $b \in B$, then $b \in A$.)

Example

If $A_{i}=\{1,2, \ldots, i\}$ for $i=1,2,3, \ldots$, then $\bigcup_{i=1}^{\infty} A_{i}=\mathbb{Z}_{>0}$.
Proof.
Let $\mathcal{A}=\bigcup_{i=1}^{\infty} A_{i}$.
First, if $a \in \mathcal{A}$, then a is an element of one of the A_{i} 's.

For two sets A and B, we have

$$
A=B \quad \text { exactly when } \quad A \subseteq B \quad \text { and } \quad B \subseteq A
$$

(If $a \in A$, then $a \in B$. And if $b \in B$, then $b \in A$.)
Example
If $A_{i}=\{1,2, \ldots, i\}$ for $i=1,2,3, \ldots$, then $\bigcup_{i=1}^{\infty} A_{i}=\mathbb{Z}_{>0}$.
Proof.
Let $\mathcal{A}=\bigcup_{i=1}^{\infty} A_{i}$.
First, if $a \in \mathcal{A}$, then a is an element of one of the A_{i} 's. But since $A_{i} \subseteq \mathbb{Z}_{>0}$ for all $i=1,2,3, \ldots$, we get that $a \in \mathbb{Z}_{>0}$.

For two sets A and B, we have

$$
A=B \quad \text { exactly when } \quad A \subseteq B \quad \text { and } \quad B \subseteq A
$$

$$
\text { (If } a \in A \text {, then } a \in B \text {. And if } b \in B \text {, then } b \in A \text {.) }
$$

Example
If $A_{i}=\{1,2, \ldots, i\}$ for $i=1,2,3, \ldots$, then $\bigcup_{i=1}^{\infty} A_{i}=\mathbb{Z}_{>0}$.
Proof.
Let $\mathcal{A}=\bigcup_{i=1}^{\infty} A_{i}$.
First, if $a \in \mathcal{A}$, then a is an element of one of the A_{i} 's. But since $A_{i} \subseteq \mathbb{Z}_{>0}$ for all $i=1,2,3, \ldots$, we get that $a \in \mathbb{Z}_{>0}$. Thus $\mathcal{A} \subseteq \mathbb{Z}_{>0}$.

For two sets A and B, we have

$$
A=B \quad \text { exactly when } \quad A \subseteq B \quad \text { and } \quad B \subseteq A
$$

$$
\text { (If } a \in A \text {, then } a \in B \text {. And if } b \in B \text {, then } b \in A \text {.) }
$$

Example
If $A_{i}=\{1,2, \ldots, i\}$ for $i=1,2,3, \ldots$, then $\bigcup_{i=1}^{\infty} A_{i}=\mathbb{Z}_{>0}$.
Proof.
Let $\mathcal{A}=\bigcup_{i=1}^{\infty} A_{i}$.
First, if $a \in \mathcal{A}$, then a is an element of one of the A_{i} 's. But since $A_{i} \subseteq \mathbb{Z}_{>0}$ for all $i=1,2,3, \ldots$, we get that $a \in \mathbb{Z}_{>0}$. Thus $\mathcal{A} \subseteq \mathbb{Z}_{>0}$.
Next, if $i \in \mathbb{Z}_{>0}$, then i is an element of A_{i}

For two sets A and B, we have

$$
A=B \quad \text { exactly when } \quad A \subseteq B \quad \text { and } \quad B \subseteq A
$$

$$
\text { (If } a \in A \text {, then } a \in B \text {. And if } b \in B \text {, then } b \in A \text {.) }
$$

Example
If $A_{i}=\{1,2, \ldots, i\}$ for $i=1,2,3, \ldots$, then $\bigcup_{i=1}^{\infty} A_{i}=\mathbb{Z}_{>0}$.
Proof.
Let $\mathcal{A}=\bigcup_{i=1}^{\infty} A_{i}$.
First, if $a \in \mathcal{A}$, then a is an element of one of the A_{i} 's. But since $A_{i} \subseteq \mathbb{Z}_{>0}$ for all $i=1,2,3, \ldots$, we get that $a \in \mathbb{Z}_{>0}$. Thus $\mathcal{A} \subseteq \mathbb{Z}_{>0}$.
Next, if $i \in \mathbb{Z}_{>0}$, then i is an element of A_{i}, which is a subset of \mathcal{A}.

For two sets A and B, we have

$$
A=B \quad \text { exactly when } \quad A \subseteq B \quad \text { and } \quad B \subseteq A
$$

$$
\text { (If } a \in A \text {, then } a \in B \text {. And if } b \in B \text {, then } b \in A \text {.) }
$$

Example
If $A_{i}=\{1,2, \ldots, i\}$ for $i=1,2,3, \ldots$, then $\bigcup_{i=1}^{\infty} A_{i}=\mathbb{Z}_{>0}$.
Proof.
Let $\mathcal{A}=\bigcup_{i=1}^{\infty} A_{i}$.
First, if $a \in \mathcal{A}$, then a is an element of one of the A_{i} 's. But since $A_{i} \subseteq \mathbb{Z}_{>0}$ for all $i=1,2,3, \ldots$, we get that $a \in \mathbb{Z}_{>0}$. Thus $\mathcal{A} \subseteq \mathbb{Z}_{>0}$.
Next, if $i \in \mathbb{Z}_{>0}$, then i is an element of A_{i}, which is a subset of \mathcal{A}. Therefore i is and element of \mathcal{A}.

For two sets A and B, we have

$$
A=B \quad \text { exactly when } \quad A \subseteq B \quad \text { and } \quad B \subseteq A
$$

$$
\text { (If } a \in A \text {, then } a \in B \text {. And if } b \in B \text {, then } b \in A \text {.) }
$$

Example
If $A_{i}=\{1,2, \ldots, i\}$ for $i=1,2,3, \ldots$, then $\bigcup_{i=1}^{\infty} A_{i}=\mathbb{Z}_{>0}$.
Proof.
Let $\mathcal{A}=\bigcup_{i=1}^{\infty} A_{i}$.
First, if $a \in \mathcal{A}$, then a is an element of one of the A_{i} 's. But since $A_{i} \subseteq \mathbb{Z}_{>0}$ for all $i=1,2,3, \ldots$, we get that $a \in \mathbb{Z}_{>0}$. Thus $\mathcal{A} \subseteq \mathbb{Z}_{>0}$.
Next, if $i \in \mathbb{Z}_{>0}$, then i is an element of A_{i}, which is a subset of \mathcal{A}. Therefore i is and element of \mathcal{A}. So $\mathbb{Z}_{>0}$ is a subset of \mathcal{A}.

For two sets A and B, we have

$$
A=B \quad \text { exactly when } \quad A \subseteq B \quad \text { and } \quad B \subseteq A
$$

$$
\text { (If } a \in A \text {, then } a \in B \text {. And if } b \in B \text {, then } b \in A \text {.) }
$$

Example
If $A_{i}=\{1,2, \ldots, i\}$ for $i=1,2,3, \ldots$, then $\bigcup_{i=1}^{\infty} A_{i}=\mathbb{Z}_{>0}$.
Proof.
Let $\mathcal{A}=\bigcup_{i=1}^{\infty} A_{i}$.
First, if $a \in \mathcal{A}$, then a is an element of one of the A_{i} 's. But since $A_{i} \subseteq \mathbb{Z}_{>0}$ for all $i=1,2,3, \ldots$, we get that $a \in \mathbb{Z}_{>0}$. Thus $\mathcal{A} \subseteq \mathbb{Z}_{>0}$.
Next, if $i \in \mathbb{Z}_{>0}$, then i is an element of A_{i}, which is a subset of \mathcal{A}. Therefore i is and element of \mathcal{A}. So $\mathbb{Z}_{>0}$ is a subset of \mathcal{A}.
Therefore $\mathcal{A}=\mathbb{Z}_{>0}$.

For two sets A and B, we have

$$
A=B \quad \text { exactly when } \quad A \subseteq B \quad \text { and } \quad B \subseteq A
$$

(If $a \in A$, then $a \in B$. And if $b \in B$, then $b \in A$.)
Example
If $A_{i}=\{1,2, \ldots, i\}$ for $i=1,2,3, \ldots$, then $\bigcup_{i=1}^{\infty} A_{i}=\mathbb{Z}_{>0}$.
Proof.
Let $\mathcal{A}=\bigcup_{i=1}^{\infty} A_{i}$.
First, if $a \in \mathcal{A}$, then a is an element of one of the A_{i} 's. But since $A_{i} \subseteq \mathbb{Z}_{>0}$ for all $i=1,2,3, \ldots$, we get that $a \in \mathbb{Z}_{>0}$. Thus $\mathcal{A} \subseteq \mathbb{Z}_{>0}$.
Next, if $i \in \mathbb{Z}_{>0}$, then i is an element of A_{i}, which is a subset of \mathcal{A}. Therefore i is and element of \mathcal{A}. So $\mathbb{Z}_{>0}$ is a subset of \mathcal{A}.
Therefore $\mathcal{A}=\mathbb{Z}_{>0}$.
You try: Do Exercise 5.

Let A, B, C be sets contained in a universal set U.
The following identities are our core set operations.

Identity	Name
$A \cap U=A \cup \varnothing=A$	Identity laws
$A \cup U=U$ and $A \cap \varnothing=\varnothing$	Domination laws
$A \cup A=A \cap A=A$	Idempotent laws
$\overline{(\bar{A})}=A$	Complementation law
$A \cup B=B \cup A$	Commutative laws
$A \cap B=B \cap A$	Associative laws
$A \cup(B \cup C)=(A \cup B) \cup C$	
$A \cap(B \cap C)=(A \cap B) \cap C$	Distributive laws
$A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$	
$A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$	De Morgan's laws
$\overline{A \cup B=\bar{A} \cap \bar{B} \quad(\text { Exercise 6) }}$	
$A \cap B=\bar{A} \cup \bar{B}$	Complement laws
$A \cup(A \cap B)=A$ and $A \cap(A \cup B)=A$	Absorption laws
$A \cup \bar{A}=U$ and $A \cap \bar{A}=\varnothing$	

