
Warm up

Recall that the power set of a set A is

P “ tX | X Ď Au

.

1. What is |H|? What is |tHu|?

2. Let A “ txu. Calculate PpAq and PpPpAqq.
3. Let A “ H. Calculate PpAq and PpPpAqq.
4. Give an example of a set A such that AX PpAq “ H.

5. Give an example of a set A such that AX PpAq ‰ H.

6. True or false and why: For any set A, tHu Ď PpPpAqq.
7. Explain why PpAq X PpPpAqq ‰ H.



Some shorthands you’ll see in the book:
symbol: means: example:

P “in”, “contained in” “x P R” means “x is a real number”.

@ “for all” A Ď B if @a P A, we have a P B.

^ “and” AXB “ tx P U | px P Aq ^ px P Bqu.

_ “or” (inclusive) AYB “ tx P U | px P Aq _ px P Bqu.

 “not” A “ tx P U |  px P Aqu.

Put a priority on clarity!
Writing mathematics is not that different that any other writing. In
journalism, clear and articulate writing is as important as content; the
same is true in math. Don’t make your reader work too hard to
understand what you’re trying to convey! In short, use symbols
sparingly–go for clarity, not just saving space.



A Venn diagram is an abstract representation of a family of sets
sitting inside of a universal set.

How to draw a Venn diagram:
Draw the universal set at a rectangle.
Inside that rectangle, indicate a set by drawing a closed loop
(usually a circle, but not always) where the object in the set are
the points inside that closed loop.

Say we have two sets A and B and a fixed universal set U :

A looks like

U

BA

Shade in areas to indicate various sets.
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Infinite unions and intersections
Recall summation and product notation

n
ÿ

i“1

ai “ a1 ` a2 ` ¨ ¨ ¨ ` an,
8
ÿ

i“1

ai “ a1 ` a2 ` ¨ ¨ ¨ ,

n
ź

i“1

ai “ a1 ¨ a2 ¨ ¨ ¨ an,
8

ź

i“1

ai “ a1 ¨ a2 ¨ ¨ ¨ ,

for numbers a1, a2, . . . .

Similarly, let A1, A2, . . . be a (possibly infinite) collection of sets.
For example,

A1 “ t1u, A2 “ t1, 2u, . . . Ai “ t1, 2, 3, . . . , iu.

Then
n

ď

i“1

Ai “ A1 YA2 Y ¨ ¨ ¨ YAn,
8
ď

i“1

Ai “ A1 YA2 Y ¨ ¨ ¨

n
č

i“1

Ai “ A1 XA2 X ¨ ¨ ¨ XAn,
8
č

i“1

Ai “ A1 XA2 X ¨ ¨ ¨ .

You try: Exercise 4.
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How can we prove your hypothesis?

For two sets A and B, we have

A “ B exactly when A Ď B and B Ď A.

What does it mean for two sets to be equal?
Example: Compare

W “ t1, 2u, X “ t1, 2, 3u, Y “ t1u, and Z “ t1, 2u.

‚ W ‰ X because 3 P X but 3 RW (X Ę W ).
‚ W ‰ Y because 2 PW but 2 R Y (W Ę Y ).
‚ W “ Z because

1 PW and 1 P Z;
2 PW and 2 P Z;

and there are no other elements in W or Z (W Ď Z and Z Ď W ).

In general, A “ B means that every element of A is in B, and vice
versa. But

A Ď B means that every element of A is in B,
(if a P A, then a P B too)

and
B Ď A means that every element of B is in A,

(if b P B, then b P A too)

the “and vice versa” part.
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For two sets A and B, we have

A “ B exactly when A Ď B and B Ď A.

(If a P A, then a P B. And if b P B, then b P A.)

Example

If Ai “ t1, 2, . . . , iu for i “ 1, 2, 3, . . . , then
Ť8

i“1Ai “ Zą0.

Proof.
Let A “

Ť8
i“1Ai.

First, if a P A, then a is an element of one of the Ai’s. But since
Ai Ď Zą0 for all i “ 1, 2, 3, . . . , we get that a P Zą0. Thus
A Ď Zą0.

Next, if i P Zą0, then i is an element of Ai, which is a subset of
A. Therefore i is and element of A. So Zą0 is a subset of A.

Therefore A “ Zą0.

You try: Do Exercise 5.
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Let A,B,C be sets contained in a universal set U .
The following identities are our core set operations.

Identity Name

AX U “ AYH “ A Identity laws

AY U “ U and AXH “ H Domination laws

AYA “ AXA “ A Idempotent laws

pAq “ A Complementation law

AYB “ B YA
AXB “ B XA

Commutative laws

AY pB Y Cq “ pAYBq Y C
AX pB X Cq “ pAXBq X C

Associative laws

AY pB X Cq “ pAYBq X pAY Cq
AX pB Y Cq “ pAXBq Y pAX Cq

Distributive laws

AYB “ AXB (Exercise 6)

AXB “ AYB
De Morgan’s laws

AY pAXBq “ A and AX pAYBq “ A Absorption laws

AYA “ U and AXA “ H Complement laws


