Warm up:

- How many ways can you choose 2 things from a set of 4? (Example, pick a committee of 2 people from a group of 4. This is different from the number of ways to choose a president and a vice president from a group of 4 people.)
- 2. How many ways can you choose 3 things from a set of 5?
- 3. Explain why there are exactly the same number of ways to choose 1 thing from a set of 5 as there are ways to choose 4 things from a set of 5.
- 4. How many ways are there to choose 3 things from a set of 3?4 things from a set of 4? 5 things from a set of 5?
- 5. How many ways are there to choose 0 things from a set of 3?0 things from a set of 4? 0 things from a set of 5?
- 6. Expand:

$$(1+x)^2 = 1 + 2x + x^2$$

 $(1+x)^3 =$
 $(1+x)^4 =$

Pascal's Triangle

Start and end each row with a 1. The *i*th row (starting with the 0th row) has i + 1 entries. The middle entries are acquired by adding successive entries in the previous row.

Define:

ways to choose k things from n = "n choose $k" = {n \choose k}$. Claim: ${n \choose k}$ is the kth entry of the nth row of Pascal's triangle

Course info

Me: Professor Daugherty, zdaugherty@gmail.com Website: https://zdaugherty.ccnysites.cuny.edu/teaching/m365s19/ Textbook: Discrete Mathematics and Its Applications (7th edition), by Kenneth Rosen.

Summary of syllabus (READ WEBSITE!!): **Grades:** Homework&Quizzes: 20%, Exams: 25%/25%/30%. **Homework:** due on Wednesdays in class, graded by completion. Posted on course website. FINAL DRAFTS. **Exams:** Three exams, the last of which will be on the last day of class. You highest score will count for 30%. **Quizzes:** In class, first on Wednesday 2/6.

Homework 0: Before class on Monday 2/4, send me an email at zdaugherty@gmail.com with subject line "Math 365: Homework 0", answering the questions outlined on the website.

Course expectations

• Read posted sections before class, and **bring your own copy of daily** handouts and notes (posted night before class).

• Come to class, participate, ask questions, work (possibly together) on in-class exercises.

• Come to office hours at least once in the semester (worth one homework assignment). If you can't make my office hour, make an appointment.

• Out of class studying and work should be 2–3 times the amount of time spent in class (6.5 < hours/week). Find classmates to study and work with!

• Hand in "final draft" homework, on time. Get good practice with writing; using words and complete sentences—see Writing Exercise. Ok to work with other people, but write-ups should be your own. Homework submitted in LATEX receives 10% extra credit.

• If there are accessibility accommodations or exam conflicts to be organized, contact me as soon as possible.

• If you send me email, use complete sentences and be specific (ok to send pics of work!).

Definition

A set is an unordered collection of distinct objects. (Contrast: a list is an ordered collection of objects)

Example

$$A = \{1, 2, 3\} = \{2, 1, 3\} = \{3, 2, 1\} \neq \{a, b, c\}.$$

Some special sets:

notation	definition	some terms
\mathbb{Z}	Integers	$0,\pm 1,\pm 2$
$\mathbb{Z}^+, \mathbb{Z}_{>0}$	Positive integers	1, 2, 3
$\mathbb{Z}_{\geqslant 0}$ (N)	Natural numbers	0, 1, 2, 3
\mathbb{Q}	Rational numbers (fractions)	0, 1, -1/2, 15/1004
\mathbb{R}	Real numbers	$0, 1, 1/3, \pi, -\sqrt{2}$
\mathbb{C}	Complex numbers	$0, 1, -1/3, i = \sqrt{-1}, 5 + i\pi$
Ø	The empty set	(nothing is in here)

Notice: $\mathbb{C} \supseteq \mathbb{R} \supseteq \mathbb{Q} \supseteq \mathbb{Z} \supseteq \mathbb{Z}_{\geq 0} \supseteq \emptyset$.

(Notation: \subseteq means subset, \subsetneq means proper subset, and \nsubseteq means not a subset. The symbol \subset is unclear, and we try not to use it in this class.)

Notation:

$$\left\{ \underbrace{}_{\text{objects}} \middle| \underbrace{}_{\text{conditions}} \right\}$$

Read | as "such that" or "that satisfy". Also useful: \in means "in" or "is an element of".

(Avoid using too much abbreviation in your writing though!)

Example: As a subset of \mathbb{R} , graph

Example: As subsets of \mathbb{R}^2 , graph

Context matters! To graph a set, we have to define both the set itself as well as the universal set it is contained in.

Example

As a subset of $\mathbb R,\,\mathbb Z$ looks like

As a subset of \mathbb{R}^2 , $B = \{(x, 0) \mid x \in \mathbb{Z}\}$ looks like

Let A and B be sets.

- (i) The (Cartesian) product of A and B, denoted $A \times B$, is $A \times B = \{(a, b) \mid a \in A, b \in B\}.$
- (ii) The power set of A, denoted $\mathcal{P}(A)$, is the set of subsets of A, $\mathcal{P}(A) = \{X \subseteq A\}$

Note that \varnothing and A are always elements of $\mathcal{P}(A)$.

(iii) The union of A and B is

 $A \cup B = \{c \mid c \text{ in } A \text{ or } B \text{ or both } \}.$

- (iv) The intersection of A and B is $A \cap B = \{c \mid c \text{ in } A \text{ and } c \text{ in } B \}.$
- (v) The difference of A and B is

 $A - B = \{a \in A \mid a \text{ not in } B\}.$

(vi) After choosing the universal set for A, the complement of A (in U) is

$$\overline{A} = U - A = \{ u \in U \mid u \text{ is not in } A \}.$$

(vii) If A has a finite number of distinct elements, the cardinality of A, denoted |A|, is the number of those elements. Otherwise, we say A is infinite.

Example

Let $A = \mathbb{R}^2_{x \ge y}$, $B = \mathbb{Z} \times \{0\}$, and $U = \mathbb{R} \times \mathbb{R} = \mathbb{R}^2$.

Example

Let $A = \mathbb{R}^2_{x \ge y}$, $B = \mathbb{Z} \times \{0\}$, and $U = \mathbb{R} \times \mathbb{R} = \mathbb{R}^2$.

Example

Let $A = \mathbb{R}^2_{x \ge y}$, $B = \mathbb{Z} \times \{0\}$, and $U = \mathbb{R} \times \mathbb{R} = \mathbb{R}^2$.

Example

Let
$$A = \mathbb{R}^2_{x \ge y}$$
, $B = \mathbb{Z} \times \{0\}$, and $U = \mathbb{R} \times \mathbb{R} = \mathbb{R}^2$.

Welcome to Math 365!

Course website (including syllabus): https://zdaugherty.ccnysites.cuny.edu/teaching/m365s19/ Professor: Zajj Daugherty, zdaugherty@gmail.com

Textbook: Discrete Mathematics and Its Applications (7th edition), by Kenneth Rosen.

Homework 0: due Monday 2/4 by email. (See course website.)

Attach at the end of Homework 1:

Before writing up your homework, read handouts "Communicating Mathematics through Homework and Exams" and "Some Guidelines for Good Mathematical Writing". Then, later, at the end of your write-up, include the following, labeling this as "Writing exercise".

- (a) List three things you learned or thought about more carefully after reading these documents.
- (b) Mark up this written homework assignment, showing where you followed or failed to follow the mechanical and stylistic issues outlined in *Communicating Mathematics....* (This means treat your write-up as a rough draft, and go point-by-point through this handout and address instances where on your assignment you followed or did not follow each direction. Use a different-colored pen if you have one.)

How might you improve in the future?

(c) List three or more ways that you succeeded or failed at following the advice in *Some Guidelines...*. How might you improve in the future?

To receive any credit for homework 1, you must do this writing exercise.

Exercise 1.

- (a) Use set-builder notation, i.e. { elements | conditions }, to write the following sets.
 - (i) The set of positive integers that are multiples of 5.
 - (ii) The set of real numbers that are not integers.
 - (iii) The set of rational number that are between -3 and 19, inclusive.
- (b) Let $U = \{-3, -2, -1, 0, 1, 2, 3\}$ and $V = U \times U$. List the elements in the following sets
 - (i) $A = \{x \in \mathbb{Z} \mid -2 \le x < 2\}$
 - (ii) $B = \{x \in \mathbb{Z} \mid 0 < x < 3\}$
 - (iii) $\mathcal{P}(B)$
 - (iv) $A \cup B$
 - (v) $A \cap B$
 - (vi) A B
 - (vii) \overline{A} , where U is the universal set.
- (xiii) $\overline{A \times A} \cap C$, where V is the universal set.
- (c) Pick a set S and two universal sets U_1 and U_2 that illustrate that \overline{A} depends on the choice of universal set.
- (d) Let A and B be sets contained in a universal set U. Decide whether the following identities are **true or false**. If false, give an example where the identity doesn't hold. If true, explain why (in complete sentences).
 - (i) $A \cap B = B \cap A$
 - (ii) $A \cup B = B \cup A$
 - (iii) A B = B A
 - (iv) $A \times B = B \times A$

- (v) |A B| = |A| |B|
- (vi) If A is finite, then so is $\mathcal{P}(A)$

(viii) $C = \{(x, y) \in A \times B \mid x \neq y\}.$

(x) $A \times A$

(xi) $(A \times A) \cap C$

(xii) $(A \times A) \cup C$

(ix) \overline{C} , where V is the universal set.

(vii) $\overline{A} \cap \overline{B} = \overline{(A \cup B)}$

Exercise 2. (a) Let X be the set of students who live within one mile of school and let Y be the set of students who wells have after school. Describe the students in each of these sets

- set of students who walk home after school. Describe the students in each of these sets.
 - (i) $X \cap Y$
 - (ii) $X \cup Y$
 - (iii) X Y
 - (iv) Y X
- (b) How many elements does each of these sets have (where a and b are distinct elements)?
 - (i) $P(\{a, b, \{a, b\}\})$
 - (ii) $P(\{\emptyset, a, \{a\}, \{\{a\}\}\})$
 - (iii) $P(P(\emptyset))$
- (c) Suppose that $A \times B = \emptyset$, where A and B are sets. What can you conclude?
- (d) Look up Pascal's triangle online. Give three interesting facts about it (not including any covered in class).

Due Wednesday 2/6: Handout Exercises 1–7; and the Writing Exercise. **For next time:** read sections 2.1 and 2.2.

Some shorthands you'll see in the book:			
<pre></pre>	1 : "		

∈	means "in", "contained in"	Ex: $x \in \mathbb{R}$ means x is a real number.
\forall	means "for all"	Ex: $A \subseteq B$ if $\forall a \in A$, we have $a \in B$.
\land	means "and" (both)	Ex: $A \cap B = \{x \in U \mid (x \in A) \land (x \in B)\}.$
\vee	means "or" (one or the other or both)	Ex: $A \cup B = \{x \in U \mid (x \in A) \lor (x \in B)\}.$
-	means "not"	Ex: $\overline{A} = \{x \in U \mid \neg (x \in A)\}.$