Welcome to Math 365!

Warm up:

- How many ways can you choose 2 things from a set of 4? (Example, pick a committee of 2 people from a group of 4. This is different from the number of ways to choose a president and a vice president from a group of 4 people.)
- 2. How many ways can you choose 3 things from a set of 5?
- 3. Explain why there are exactly the same number of ways to choose 1 thing from a set of 5 as there are ways to choose 4 things from a set of 5.
- 4. How many ways are there to choose 3 things from a set of 3?4 things from a set of 4? 5 things from a set of 5?
- 5. How many ways are there to choose 0 things from a set of 3?0 things from a set of 4? 0 things from a set of 5?

6. Expand:

$$(1 + x)^2 = 1 + 2x + x^2$$

 $(1 + x)^3 =$
 $(1 + x)^4 =$

Start and end each row with a 1. The *i*th row (starting with the 0th row) has i + 1 entries. The middle entries are acquired by adding successive entries in the previous row.

(0th row) 1

Start and end each row with a 1. The *i*th row (starting with the 0th row) has i + 1 entries. The middle entries are acquired by adding successive entries in the previous row.

Define:

ways to choose k things from n = "n choose $k" = {n \choose k}$.

Start and end each row with a 1. The *i*th row (starting with the 0th row) has i + 1 entries. The middle entries are acquired by adding successive entries in the previous row.

Define:

ways to choose k things from n = "n choose $k" = {n \choose k}$. Claim: ${n \choose k}$ is the kth entry of the nth row of Pascal's triangle

Course info

Me: Professor Daugherty, zdaugherty@gmail.com Website:

https://zdaugherty.ccnysites.cuny.edu/teaching/m365s19/ **Textbook:** Discrete Mathematics and Its Applications (7th edition), by Kenneth Rosen.

Course info

Me: Professor Daugherty, zdaugherty@gmail.com **Website:**

https://zdaugherty.ccnysites.cuny.edu/teaching/m365s19/ **Textbook:** Discrete Mathematics and Its Applications (7th edition), by Kenneth Rosen.

Summary of syllabus (READ WEBSITE!!):
Grades: Homework&Quizzes: 20%, Exams: 25%/25%/30%.
Homework: due on Wednesdays in class, graded by completion.
Posted on course website. FINAL DRAFTS.
Exams: Three exams, the last of which will be on the last day of class. You highest score will count for 30%.
Quizzes: In class, first on Wednesday 2/6.

Course info

Me: Professor Daugherty, zdaugherty@gmail.com **Website:**

https://zdaugherty.ccnysites.cuny.edu/teaching/m365s19/ **Textbook:** Discrete Mathematics and Its Applications (7th edition), by Kenneth Rosen.

Summary of syllabus (READ WEBSITE!!): Grades: Homework&Quizzes: 20%, Exams: 25%/25%/30%. Homework: due on Wednesdays in class, graded by completion. Posted on course website. FINAL DRAFTS. Exams: Three exams, the last of which will be on the last day of class. You highest score will count for 30%. Quizzes: In class, first on Wednesday 2/6.

Homework 0: Before class on Monday 2/4, send me an email at zdaugherty@gmail.com with subject line "Math 365: Homework 0", answering the questions outlined on the website.

Course expectations

• Read posted sections before class, and **bring your own copy of daily** handouts and notes (posted night before class).

• Come to class, participate, ask questions, work (possibly together) on in-class exercises.

• Come to office hours at least once in the semester (worth one homework assignment). If you can't make my office hour, make an appointment.

• Out of class studying and work should be 2–3 times the amount of time spent in class (6.5 < hours/week). Find classmates to study and work with!

• Hand in "final draft" homework, on time. Get good practice with writing; using words and complete sentences—see Writing Exercise. Ok to work with other people, but write-ups should be your own. Homework submitted in LATEX receives 10% extra credit.

• If there are accessibility accommodations or exam conflicts to be organized, contact me as soon as possible.

• If you send me email, use complete sentences and be specific (ok to send pics of work!).

A set is an unordered collection of distinct objects.

(Contrast: a list is an ordered collection of objects)

A set is an unordered collection of distinct objects. (Contrast: a list is an ordered collection of objects)

Example

$$A = \{1, 2, 3\} = \{2, 1, 3\} = \{3, 2, 1\} \neq \{a, b, c\}.$$

A set is an unordered collection of distinct objects.

(Contrast: a list is an ordered collection of objects)

Example

Some special sets:

$$A = \{1, 2, 3\} = \{2, 1, 3\} = \{3, 2, 1\} \neq \{a, b, c\}.$$

Some special sets.		
notation	definition	some terms
\mathbb{Z}	Integers	$0,\pm 1,\pm 2$
$\mathbb{Z}^+, \mathbb{Z}_{>0}$	Positive integers	1, 2, 3
$\mathbb{Z}_{\geq 0}$ (N)	Natural numbers	0, 1, 2, 3
\mathbb{Q}	Rational numbers (fractions)	0, 1, -1/2, 15/1004
\mathbb{R}	Real numbers	$0, 1, 1/3, \pi, -\sqrt{2}$
\mathbb{C}	Complex numbers	$0, 1, -1/3, i = \sqrt{-1}, 5 + i\pi$
Ø	The empty set	(nothing is in here)

A set is an unordered collection of distinct objects.

(Contrast: a list is an ordered collection of objects)

Example

Course an estat aster

$$A = \{1, 2, 3\} = \{2, 1, 3\} = \{3, 2, 1\} \neq \{a, b, c\}$$

Some sp	iecial sets.	
notation	definition	some terms
\mathbb{Z}	Integers	$0,\pm 1,\pm 2$
$\mathbb{Z}^+, \mathbb{Z}_{>0}$	Positive integers	1, 2, 3
$\mathbb{Z}_{\geqslant 0}$ (N)	Natural numbers	0, 1, 2, 3
\mathbb{Q}	Rational numbers (fractions)	0, 1, -1/2, 15/1004
\mathbb{R}	Real numbers	$0, 1, 1/3, \pi, -\sqrt{2}$
\mathbb{C}	Complex numbers	$0, 1, -1/3, i = \sqrt{-1}, 5 + i\pi$
Ø	The empty set	(nothing is in here)
	1	

Notice: $\mathbb{C} \supseteq \mathbb{R} \supseteq \mathbb{Q} \supseteq \mathbb{Z} \supseteq \mathbb{Z}_{\geq 0} \supseteq \emptyset$. (Notation: \subseteq means subset, \subseteq means proper subset, and \subseteq means not a subset. The symbol \subset is unclear, and we try not to use it in this class.)

(Avoid using too much abbreviation in your writing though!)

Read | as "such that" or "that satisfy". Also useful: \in means "in" or "is an element of". (Avoid using too much abbreviation in your writing though!) Example: As a subset of \mathbb{R} , graph $\mathbb{R}_{\geq 0} = \{x \in \mathbb{R} \mid x \geq 0\}$

$$\left\{ \underbrace{\qquad}_{objects} \mid \underbrace{\qquad}_{conditions} \right\}.$$

Read | as "such that" or "that satisfy". Also useful:
 \in means "in" or "is an element of".
(Avoid using too much abbreviation in your writing though!)
Example: As a subset of \mathbb{R} , graph
 $\mathbb{R}_{\geq 0} = \{x \in \mathbb{R} \mid x \geq 0\}$

Example: As subsets of \mathbb{R}^2 , graph $A = \{(x, y) \mid x, y \in \mathbb{R}, x \ge y\} = \mathbb{R}^2_{x \ge y}$ $B = \{(x, y) \mid x, y \in \mathbb{R}, x > y\} = \mathbb{R}^2_{x > y}$

Read | as "such that" or "that satisfy". Also useful:

$$\in$$
 means "in" or "is an element of".
(Avoid using too much abbreviation in your writing though!)
Example: As a subset of \mathbb{R} , graph
 $\mathbb{R}_{\geq 0} = \{x \in \mathbb{R} \mid x \geq 0\}$

Example: As subsets of \mathbb{R}^2 , graph

.

Context matters! To graph a set, we have to define both the set itself as well as the universal set it is contained in.

Context matters! To graph a set, we have to define both the set itself as well as the universal set it is contained in.

Example

As a subset of $\mathbb R,\,\mathbb Z$ looks like

Context matters! To graph a set, we have to define both the set itself as well as the universal set it is contained in.

Example

As a subset of $\mathbb R,\,\mathbb Z$ looks like

As a subset of \mathbb{R}^2 , $B = \{(x, 0) \mid x \in \mathbb{Z}\}$ looks like

(i) The (Cartesian) product of A and B, denoted $A \times B$, is $A \times B = \{(a, b) \mid a \in A, b \in B\}.$

(i) The (Cartesian) product of A and B, denoted $A \times B$, is $A \times B = \{(a, b) \mid a \in A, b \in B\}.$

(ii) The power set of A, denoted $\mathcal{P}(A)$, is the set of subsets of A, $\mathcal{P}(A) = \{X \subseteq A\}$

(i) The (Cartesian) product of A and B, denoted $A \times B$, is $A \times B = \{(a, b) \mid a \in A, b \in B\}.$

(ii) The power set of A, denoted $\mathcal{P}(A)$, is the set of subsets of A, $\mathcal{P}(A) = \{X \subseteq A\}$

Note that \emptyset and A are always elements of $\mathcal{P}(A)$.

(i) The (Cartesian) product of A and B, denoted $A \times B$, is $A \times B = \{(a, b) \mid a \in A, b \in B\}.$

(ii) The power set of A, denoted $\mathcal{P}(A)$, is the set of subsets of A, $\mathcal{P}(A) = \{X \subseteq A\}$

Note that \emptyset and A are always elements of $\mathcal{P}(A)$.

(iii) The union of A and B is

 $A \cup B = \{c \mid c \text{ in } A \text{ or } B \text{ or both } \}.$

(i) The (Cartesian) product of A and B, denoted $A \times B$, is $A \times B = \{(a, b) \mid a \in A, b \in B\}.$

(ii) The power set of A, denoted $\mathcal{P}(A)$, is the set of subsets of A, $\mathcal{P}(A) = \{X \subseteq A\}$

Note that \emptyset and A are always elements of $\mathcal{P}(A)$.

(iii) The union of A and B is

 $A \cup B = \{c \mid c \text{ in } A \text{ or } B \text{ or both } \}.$

(iv) The intersection of A and B is $A \cap B = \{c \mid c \text{ in } A \text{ and } c \text{ in } B \}.$

(i) The (Cartesian) product of A and B, denoted $A \times B$, is $A \times B = \{(a, b) \mid a \in A, b \in B\}.$

(ii) The power set of A, denoted $\mathcal{P}(A)$, is the set of subsets of A, $\mathcal{P}(A) = \{X \subseteq A\}$

Note that \emptyset and A are always elements of $\mathcal{P}(A)$.

(iii) The union of A and B is

 $A \cup B = \{c \mid c \text{ in } A \text{ or } B \text{ or both } \}.$

(iv) The intersection of A and B is $A \cap B = \{c \mid c \text{ in } A \text{ and } c \text{ in } B \}.$ (v) The difference of A and B is

 $A - B = \{a \in A \mid a \text{ not in } B\}.$

(i) The (Cartesian) product of A and B, denoted $A \times B$, is $A \times B = \{(a, b) \mid a \in A, b \in B\}.$

(ii) The power set of A, denoted $\mathcal{P}(A)$, is the set of subsets of A, $\mathcal{P}(A) = \{X \subseteq A\}$

Note that \emptyset and A are always elements of $\mathcal{P}(A)$.

(iii) The union of A and B is

 $A \cup B = \{c \mid c \text{ in } A \text{ or } B \text{ or both } \}.$

(iv) The intersection of A and B is $A \cap B = \{c \mid c \text{ in } A \text{ and } c \text{ in } B\}.$

(v) The difference of A and B is

 $A - B = \{a \in A \mid a \text{ not in } B\}.$

(vi) After choosing the universal set for A, the complement of A (in U) is

 $\overline{A} = U - A = \{ u \in U \mid u \text{ is not in } A \}.$

(i) The (Cartesian) product of A and B, denoted $A \times B$, is $A \times B = \{(a, b) \mid a \in A, b \in B\}.$

(ii) The power set of A, denoted $\mathcal{P}(A)$, is the set of subsets of A, $\mathcal{P}(A) = \{X \subseteq A\}$

Note that \emptyset and A are always elements of $\mathcal{P}(A)$.

(iii) The union of A and B is

 $A \cup B = \{c \mid c \text{ in } A \text{ or } B \text{ or both } \}.$

(iv) The intersection of A and B is $A \cap B = \{c \mid c \text{ in } A \text{ and } c \text{ in } B \}.$

(v) The difference of A and B is

 $A - B = \{a \in A \mid a \text{ not in } B\}.$

(vi) After choosing the universal set for A, the complement of A (in U) is

 $\overline{A} = U - A = \{ u \in U \mid u \text{ is not in } A \}.$

(vii) If A has a finite number of distinct elements, the cardinality of A, denoted |A|, is the number of those elements.
 Otherwise, we say A is infinite.

Let
$$A = \mathbb{R}^2_{x \ge y}$$
, $B = \mathbb{Z} \times \{0\}$, and $U = \mathbb{R} \times \mathbb{R} = \mathbb{R}^2$.

Let
$$A = \mathbb{R}^2_{x \ge y}$$
, $B = \mathbb{Z} \times \{0\}$, and $U = \mathbb{R} \times \mathbb{R} = \mathbb{R}^2$.

Let
$$A = \mathbb{R}^2_{x \ge y}$$
, $B = \mathbb{Z} \times \{0\}$, and $U = \mathbb{R} \times \mathbb{R} = \mathbb{R}^2$.

Let
$$A = \mathbb{R}^2_{x \ge y}$$
, $B = \mathbb{Z} \times \{0\}$, and $U = \mathbb{R} \times \mathbb{R} = \mathbb{R}^2$.

$$A - B = \{x \in A \mid x \notin B\} = \xleftarrow{y}{000} x$$

Let
$$A = \mathbb{R}^2_{x \ge y}$$
, $B = \mathbb{Z} \times \{0\}$, and $U = \mathbb{R} \times \mathbb{R} = \mathbb{R}^2$.

Let
$$A = \mathbb{R}^2_{x \ge y}$$
, $B = \mathbb{Z} \times \{0\}$, and $U = \mathbb{R} \times \mathbb{R} = \mathbb{R}^2$.

Then we have

You try: Exercise 1