Math 345 - Monday 10/2/17

Exercise 23.

(a) Solve the following congruences:
(i) $x^{101} \equiv 7(\bmod 12)$
(ii) $10^{x} \equiv 1(\bmod 27)$
(b) The number 3750 satisfies $\phi(3750)=1000$. Find an integer $1 \leq a \leq 5000$ that is not a multiple of 7 , that satisfies $a \equiv 7^{3003}(\bmod 3750)$ [This integer need not be reduced modulo 3750].
(c) Show that if $m=561=3 \cdot 11 \cdot 17$, then $a^{m-1} \equiv 1(\bmod m)$ for all a relatively prime to m. [Hint: There may be 320 values of a between 1 and m that are relatively prime to m, but it is not necessary (nor called for) to actually compute $a^{m-1} \equiv 1(\bmod m)$ for all those values. Instead, use Fermats Little Theorem to check that $a^{m-1} \equiv 1(\bmod p)$ for each prime p dividing m, and then explain why this implies that $\left.a^{m-1} \equiv 1(\bmod m).\right]$

Exercise 24. Let $b_{1}<b_{2}<\cdots<b_{\phi(n)}$ be the integers $1 \leq b_{i}<n$ that are relatively prime to n, and let $B=b_{1} b_{2} b_{3} \cdots b_{\phi(n)}$ be their product. [This number came up during the proof of Euler's formula.]
(a) Compute B for $n=4,5,6$, and 8 , modulo n. Note that in each case, $B \equiv 1(\bmod n)$ or $B \equiv n-1(\bmod n)$, which, together, is the same as $B \equiv \pm 1(\bmod n)$.
(b) Prove that $B \equiv \pm 1(\bmod n)$ in general. [Hint: Think about multiplicative inverses - when does an integer a have an inverse? How many are there modulo n ?]
(c) Try to find a pattern for when B is equivalent to $+1(\bmod n)$ and when it is equivalent to +1 $(\bmod n)$. Can you prove your conjecture?

