Math 345 - Wednesday 9/27/17

Exercise 21. Use Fermat's Little Theorem to do the following without the use of a computer (show your work!).
(a) Find the least residue of $9^{794}(\bmod 73)$.
(b) Solve $x^{86} \equiv 6(\bmod 29)$.
(c) Solve $x^{39} \equiv 3(\bmod 13)$.

Exercise 22. Recall the quantity $(p-1)!(\bmod p)$ appeared in our proof of Fermats Little Theorem (without actually having to compute it).
(a) Use a computer to calculate $(p-1)!(\bmod p)$ for primes p up to 13.
(b) Make a conjecture for what $(p-1)$! $(\bmod p)$ is in general, and prove it. [Hint: Do a few examples by hand - say for $p=2,3$, and 5 , and try to discover why $(p-1)$! $(\bmod p)$ has the value it does. Then generalize your observation to prove the formula for all values of p.]
(c) Compute the value of $(m-1)$! $(\bmod m)$ for some small values of m that are not prime $(m=$ $4,6, \ldots)$. Do you find the same pattern as you found for primes? Do you see any pattern?

