Math 345 - Monday 9/25/17

Exercise 17. Prove the following.
(a) If $x=x_{0}$ is a solution to $a+x \equiv b(\bmod n)$, then so is $x=x_{0}+k n$ for all $k \in \mathbb{Z}$.
(b) If $x=x_{0}$ is a solution to $a x \equiv b(\bmod n)$, then so is $x=x_{0}+k n$ for all $k \in \mathbb{Z}$.

Exercise 18. For each of the following congruences, decide if there are any solutions. If there are, give a maximal set of distinct (non-congruent) solutions.
[For examples involving numbers larger than 20, use a computer to calculate relevant data to start the problem. For example, in problem (e), you'll use a computer to calculate $\operatorname{gcd}(21,91)$, as well as one example of $u \in \mathbb{Z}$ such that $21 u \equiv \operatorname{gcd}(21,91)(\bmod 91)$. Use functions that allow you to reduce modulo n easily.]
(a) $7 x \equiv 3(\bmod 15)$
(b) $6 x \equiv 5(\bmod 15)$
(c) $8 x \equiv 6(\bmod 14)$
(d) $66 x \equiv 100(\bmod 121)$
(e) $21 x \equiv 14(\bmod 91)$
(f) $72 x \equiv 47(\bmod 200)$
(g) $4183 x \equiv 5781(\bmod 15087)$
(h) $1537 x \equiv 2863(\bmod 6731)$

Exercise 19. (a) Show that $a \in \mathbb{Z}_{>0}$ is divisible by 4 if and only if its last two digits are divisible by 4 . [Hint: consider an equivalence modulo 100.]
(b) The number $a \in \mathbb{Z}_{>0}$ is divisible by 3 if and only if the sum of its digits is divisible by 3 . [Hint: Express a number as integral combination of powers of 10, and reduce modulo 3.]
(c) The number $a \in \mathbb{Z}_{>0}$ is divisible by 9 if and only if the sum of its digits is divisible by 9 . [Hint: Express a number as integral combination of powers of 10 , and reduce modulo 9.]

Exercise 20.

(a) Use a computer to compute a maximal set of (non-congruent) solutions to the following.
(i) $x^{2} \equiv 1(\bmod 8)$
(ii) $x^{2} \equiv 2(\bmod 7)$
(iii) $x^{2} \equiv 3(\bmod 7)$
(iv) $x^{4}+5 x^{3}+4 x^{2}-6 x=4 \equiv 0(\bmod 11)$
(b) For $x^{2} \equiv 1(\bmod 8)$, you should have gotten more than 2 solutions. Note that these are all solutions to $x^{2}-1 \equiv 0(\bmod 8)$. Why isn't this a contradiction to the Polynomial Roots Mod p Theorem?
(c) Let p and q be distinct primes. What is the maximum number of possible non-congruent solutions to a congruence of the form $x^{2}-a \equiv 0(\bmod p q)$.

