Math 345 - Monday 9/18/17

Exercise 13. Consider positive integers a, b, and c.
(a) Suppose $\operatorname{gcd}(a, b)=1$.
(i) Show that if a divides the product $b c$, then a must divide c.
(ii) Show that if a and b both divide c, then $a b$ must also divide c.
(b) Give examples of a, b, and c where $\operatorname{gcd}(a, b) \neq 1$ and...
(i) a divides the product $b c$, but a does not divide c;
(ii) a and b both divide c, but $a b$ does not divide c.

Exercise 14. Let s and t be odd integers with $s>t \geq 1$ and $\operatorname{gcd}(s, t)=1$. Prove that the three numbers

$$
s t, \quad \frac{s^{2}-t^{2}}{2}, \quad \text { and } \quad \frac{s^{2}+t^{2}}{2}
$$

are pairwise relatively prime (i.e. each pair of them is relatively prime). This fact was needed to complete the proof of the Pythagorean triples theorem (Theorem 2.1 on page 17). [Hint. Assume that there is a common prime factor and use the fact (Lemma 7.1) that if a prime divides a product, then it divides one of the factors.]

Exercise 15. Group the numbers $-10 \leq i \leq 10$ into sets according to which numbers are pairwise congruent modulo 4 . [You should have 4 sets of roughly the same size.]

Exercise 16. Fix $n \geq 1$.
(a) Prove that congruence is an equivalence relation by showing
(i) reflexivity: $a \equiv a(\bmod n)$ for all $a \in \mathbb{Z}$;
(ii) symmetry: if $a \equiv b(\bmod n)$, then $b \equiv a(\bmod n)$; and
(iii) transitivity: if $a \equiv b(\bmod n)$ and $b \equiv c(\bmod n)$, then $a \equiv c(\bmod n)$.
(b) Suppose $a_{1} \equiv b_{1}(\bmod n)$ and $a_{2} \equiv b_{2}(\bmod n)$.
(i) Show that $a_{1}+a_{2} \equiv b_{1}+b_{2}(\bmod n)$ and $a_{1}-a_{2} \equiv b_{1}-b_{2}(\bmod n)$
(ii) Show that $a_{1} a_{2} \equiv b_{1} b_{2}(\bmod n)$.
(c) Division.
(i) Give an example of a, b, c, and n, with $c \not \equiv 0(\bmod n)$, where

$$
a c \equiv b c \quad(\bmod n), \quad \text { but } \quad a \not \equiv b \quad(\bmod n) .
$$

(ii) Show that if $\operatorname{gcd}(c, n)=1$, then

$$
a c \equiv b c \quad(\bmod n) \quad \text { implies } \quad a \equiv b \quad(\bmod n) .
$$

