Math 345 – Monday 11/20/17

Exercise 48. Write each of the following quantities in the form a + bi.

(a) $(3-2i) \cdot (1+4i)$ (b) $\frac{3-2i}{1+4i}$ (c) $\left(\frac{1+i}{\sqrt{2}}\right)^2$

Exercise 49. Solve the equation $x^2 = 95 - 168i$ using complex numbers. [Hint. First set $(u + vi)^2 = 95 - 168i$, then expand the left-hand side and solve for u and v.]

Exercise 50. For each part, check whether α divides β (in $\mathbb{Z}[i]$) and, if it does, find the quotient.

(a) $\alpha = 3 + 5i$ and $\beta = 11 - 8i$

- (b) $\alpha = 2 3i$ and $\beta = 4 + 7i$
- (c) $\alpha = 3 39i$ and $\beta = 3 5i$

Exercise 51.

- (a) Show that a + bi divides c + di in $\mathbb{Z}[i]$ if and only if $a^2 + b^2$ divides both ac + bd and -ad + bc in \mathbb{Z} .
- (b) Suppose that a + bi divides c + di in $\mathbb{Z}[i]$. Show that $a^2 + b^2$ divides $c^2 + d^2$.