Math 345 - Monday 11/20/17

Exercise 48. Write each of the following quantities in the form $a+b i$.
(a) $(3-2 i) \cdot(1+4 i)$
(b) $\frac{3-2 i}{1+4 i}$
(c) $\left(\frac{1+i}{\sqrt{2}}\right)^{2}$

Exercise 49. Solve the equation $x^{2}=95-168 i$ using complex numbers.
[Hint. First set $(u+v i)^{2}=95-168 i$, then expand the left-hand side and solve for u and v.]
Exercise 50. For each part, check whether α divides β (in $\mathbb{Z}[i]$) and, if it does, find the quotient.
(a) $\alpha=3+5 i$ and $\beta=11-8 i$
(b) $\alpha=2-3 i$ and $\beta=4+7 i$
(c) $\alpha=3-39 i$ and $\beta=3-5 i$

Exercise 51.

(a) Show that $a+b i$ divides $c+d i$ in $\mathbb{Z}[i]$ if and only if $a^{2}+b^{2}$ divides both $a c+b d$ and $-a d+b c$ in \mathbb{Z}.
(b) Suppose that $a+b i$ divides $c+d i$ in $\mathbb{Z}[i]$. Show that $a^{2}+b^{2}$ divides $c^{2}+d^{2}$.

