Math 345 - Wednesday 11/15/17

Exercise 45. Let p be an odd prime.
(a) If $a=b^{2}$ is a perfect square, explain why it is impossible for a to be a primitive root modulo p.
(b) Let g be a primitive root modulo p. Prove that g^{k} is a quadratic residue modulo p if and only if k is even.
(c) If k divides $p-1$, show that the congruence $x^{k} \equiv 1(\bmod p)$ has exactly k distinct solutions modulo p.

Exercise 46. Use the discrete logarithm table for $p=37$ to find all solutions to the following congruences.
(a) $12 x \equiv 23(\bmod 37)$
(b) $5 x^{23} \equiv 18(\bmod 37)$
(c) $x^{12} \equiv 11(\bmod 37)$
(d) $7 x^{20} \equiv 34(\bmod 37)$

Exercise 47. Create a discrete logarithm table for $p=17$, and use it to find all solutions to $5 x^{6} \equiv 7(\bmod 17)$.

