Math 345 - Wednesday 11/08/17

Exercise 39. Use the Law of Quadratic Reciprocity to decide whether a is a square $\bmod b$.
(a) $a=85, b=101$
(b) $a=29, b=541$
(c) $a=101, b=1987$
(d) $a=31706, b=43789$

Exercise 40. Does the congruence

$$
x^{2}-3 x-1 \equiv 0 \quad(\bmod 31957)
$$

have any solutions?
[Hint. Use the quadratic formula to find out what number you need totake the square root of modulo the prime 31957.]

Exercise 41. Let p be a prime satisfying $p \equiv-1(\bmod 4)$ and suppose that a is a quadratic residue modulo p.
(a) Show that $x=a^{(p+1) / 4}$ is a solution to the congruence $x^{2} \equiv a(\bmod p)$.
(This gives an explicit way to find square roots modulo p for primes congruent to $-1(\bmod 4)$.)
(b) Find a solution to the congruence $x^{2} \equiv 7(\bmod 787)$.
(Your answer should lie between 1 and 786.)

