Math 345 - Wednesday 11/01/17

Exercise 35. Decode the following message, which was sent using the modulus $n=7081$ and the exponent $k=1789$. (Note that you will first need to factor n.)

$$
5192, \quad 2604, \quad 4222
$$

Exercise 36. It may appear that RSA decryption does not work if you are unlucky enough to choose a message a that is not relatively prime to n. Of course, if $n=p q$ and p and q are large, this is very unlikely to occur. [See Exercise 34.]
(a) Show that in fact RSA decryption does work for all messages a, regardless of whether or not they have a factor in common with n. In other words, show that RSA decryption works for all messages a as long as n is a product of distinct primes.
(b) Give an example with $n=18$ and $a=3$ where RSA decryption does not work. [Remember, k must be chosen relatively prime to $\phi(n)=6$.]

