Math 345 - Monday 10/30/17

Exercise 32. Find one solution to the following congruences. Make a careful and detailed list of each of your steps. You may use a computer to do any of the intermediate computations.
(a) $x^{329} \equiv 452(\bmod 1147)$
(b) $x^{275} \equiv 139(\bmod 588)$
[Careful: 1147 and 588 aren't prime.]
Exercise 33. In Chapter 17, we described how to compute one k th root of b modulo n, but there may be other solutions. For example, if $a^{2} \equiv_{n} b$, then we also have $(-a)^{2} \equiv_{n} b$.
(a) Let b, k, and n be integers that satisfy

$$
\operatorname{gcd}(b, n)=1 \quad \text { and } \quad \operatorname{gcd}(k, \phi(n))=1 .
$$

Show that b has exactly one k th root modulo n.
[Hint: You know there's at least one, so you just have to show there isn't more than one. So start by supposing a and a^{\prime} are both k th roots of b modulo n, i.e. $a^{k} \equiv_{n} b$ and $\left(a^{\prime}\right)^{k} \equiv_{n} b$. Now use the tools for finding solutions from class to show that $a \equiv_{n} a^{\prime}$.]
(b) Why doesn't part (a) contradict our example above? Namely why doesn't the fact that there is more than one solution to $a^{2} \equiv_{n} b$ for most n and b provide a counterexample to part (a)?
(c) Look at some examples were n is prime and try to find a formula for the number of k th roots of b modulo n (assuming that it has at least one). (Don't try to prove your formula.)
[Try setting $n=3,5$, and 7 and use a computer to compute $a^{k}(\bmod n)$ for $a=2,3, \ldots, n-1$ and $k=1,2, \ldots, n-1$. If you need more data, do more prime n 's.]
(d) BONUS. If you have taken abstract algebra, the following is possible to show: Suppose that $\operatorname{gcd}(k, \phi(n))>1$. Then either b has no k th roots modulo n, or else it has at least two k th roots modulo n. [Hint: Consider the group of units of $\mathbb{Z} / n \mathbb{Z}$.]
Exercise 34. Our method for solving $x^{k} \equiv_{n} b$ is first to find positive integers u and v satisfying $k u-\phi(n) v=1$, and then the solution is $x \equiv_{n} b u$. However, we only showed that this works provided that $\operatorname{gcd}(b, m)=1$, since we used Eulers formula $b^{\phi(n)} \equiv_{n} 1$.
(a) If n is a product of distinct primes, show that $x \equiv_{n} b^{u}$ (with u as above) is always a solution $x \equiv_{n} b u$, even if $\operatorname{gcd}(b, n)>1$.
[Hint: Check that n divides $\left(b^{u}\right)^{k}-b$ by checking that each prime divisor of n divides $\left(b^{u}\right)^{k}-b$. To do that, if $p \mid n$, then break into cases where $p \mid b$ or $p \nmid b$. If $p \mid b$, what can you conclude? If $p \nmid b$, check that $p-1 \mid \phi(n)$, and then plug that information into " $k u=\phi(n) v+1$ ", and compute $\left(b^{u}\right)^{k}(\bmod p)$ using Fermat.]
(b) Show that our method does not work for the congruence $x^{5} \equiv 6(\bmod 9)$ (by finding u and plugging in).

