Math 345 - Wednesday 10/25/17

a	0	1	2	3	4	5	6	7	8	9	10
2^{a}	1	2	4	8	16	32	64	128	256	512	1024

Exercise 29. Computing $5^{n}(\bmod 1147)$. Note that $1147=31 * 37$.
(a) Verify $\operatorname{gcd}(5,1147)=1$. What does Euler's formula tell us for powers of 5 modulo 1147?
(b) Using successive squaring, compute a table of $55^{\left(2^{a}\right)}(\bmod 1147)$ (reducing at each step). According to part (a), how high must your table go?
(c) For $n=10,1200$, and 10,000 :
(i) Use Euler's formula, if possible, to reduce $5^{n}(\bmod 1147)$ to a smaller problem if possible. Let m be the resulting power such that $5^{m} \equiv_{1147} 5^{n}$.
(ii) Rewrite m in base 2 .
(iii) Use your table in part (b) to reduce $5^{m}(\bmod 1147)$ into a smaller product.
(iv) Use successive reduction of your product to compute a value $1 \leq x<1147$ such that $x \equiv_{1147} 5^{n}$.
Exercise 30. Repeat the previous exercise for $7^{n}(\bmod 1375)$. Note that $1375=5^{3} \cdot 11$.
Exercise 31. Prime testing.
(a) Compute $7^{7386}(\bmod 7387)$ by the method of successive squaring. Is 7387 prime?
(b) Compute $7^{7392}(\bmod 7393)$ by the method of successive squaring. Is 7393 prime?

