Math 345 - Wednesday 10/4/17

Exercise 25.

- (a) Compute $\phi(97)$ and $\phi(8800)$.
- (b) For $n \ge 3$, show $\phi(n)$ is even.
- (c) Fill in the blank and prove: $\phi(n)$ is a multiple of 4 if and only if _____.
- (d) Suppose that p_1, p_2, \ldots, p_r are the distinct primes that divide n (for example, if n = 7000, then this list is 2, 5, and 7). Use what we already know about $\phi(n)$ to prove that

$$\phi(n) = n\left(1 - \frac{1}{p_1}\right)\left(1 - \frac{1}{p_2}\right)\cdots\left(1 - \frac{1}{p_r}\right).$$

Use this formula to double check the value of $\phi(7000)$ (calculated in class), and to compute 1000000. Compare your answer to the other formula for $\phi(n)$.

(e) Find at least one solution to $x^{8644} = 16 \pmod{2025}$.

Exercise 26.

- (a) Find an x that satisfies both $x \equiv 3 \pmod{7}$ and $x \equiv 5 \pmod{9}$.
- (b) Find an x that satisfies both $x \equiv 3 \pmod{37}$ and $x \equiv 1 \pmod{87}$.