Theorem (Fermats Little Theorem)

Let p be a prime number, and let $a \in \mathbb{Z}$. Then either p|a, so that $a^i \equiv 0 \pmod p$ for all i,

or

$$p \nmid a$$
 and $a^{p-1} \equiv 1 \pmod{p}$.

Note that this is not true if the modulus is not prime. . .

Example: $a^i \pmod{6}$

		$\leftarrow i \rightarrow$						
		2	3	4	5	6		
	1	1	1	1	1	1		
\uparrow	2	4	2	4	2	4		
a	3	3	3	3	3	3		
\downarrow	4	4	4	4	4	4		
	5	1	5	1	5	1		
	6	0	0	0	0	0		

Theorem (Fermats Little Theorem)

Let p be a prime number, and let $a \in \mathbb{Z}$. Then either p|a, so that $a^i \equiv 0 \pmod p$ for all i,

or

$$p \nmid a$$
 and $a^{p-1} \equiv 1 \pmod{p}$.

Note that this is not true if the modulus is not prime. . .

Example: $a^i \pmod{8}$

	,			←	- <i>i</i> -	\rightarrow		
		2	3	4	5	6	7	8
	1	1	1	1	1	1	1	1
↑	2	4	0	0	0	0	0	0
a	3	1	3	1	3	1	3	1
	4	0	0	0	0	0	0	0
	5	1	5	1	5	1	5	1
	6	4	0	0	0	0	0	0
	7	1	7	1	7	1	7	1
	8	0	0	0	0	0	0	0

Theorem (Fermats Little Theorem)

Let p be a prime number, and let $a \in \mathbb{Z}$. Then either p|a, so that $a^i \equiv 0 \pmod{p}$ for all i,

or

$$p \nmid a$$
 and $a^{p-1} \equiv 1 \pmod{p}$.

For what a and n are there solutions to

$$a^i \equiv 1 \pmod{n}$$
?

- 1. If n is prime and $n \nmid a$, then i = n 1 is a solution.
- 2. If n|a, then there is no solution.
- 3. If $\gcd(n,a) \neq 1$, then there is no solution: If $a^i \equiv 1 \pmod{n}$, then there is some $k \in \mathbb{Z}$ such that $a^i 1 = kn$, so $a(a^{i-1}) + (-k)n = 1$. But we have $\gcd(n,a)$ divides every integer combination of n and a. If

So what if gcd(a, n) = 1, but n is not prime?

Are there solutions to $a^i \equiv 1 \pmod n$ when $\gcd(a,n) = 1$, but n is not prime?

Example: $a^i \pmod{6}$

		$\leftarrow i \rightarrow$						
		2	3	4	5	6		
	1	1	1	1	1	1		
↑	2	4	2	4	2	4		
a	3	3	3	3	3	3		
\downarrow	4	4	4	4	4	4		
	5	1	5	1	5	1		
	6	0	0	0	0	0		

Are there solutions to $a^i \equiv 1 \pmod n$ when $\gcd(a,n) = 1$, but n is not prime?

Example: $a^i \pmod{8}$

			$\leftarrow i \rightarrow$						
		2	3	4	5	6	7	8	
	1	1	1	1	1	1	1	1	
↑	2	4	0	0	0	0	0	0	
$\uparrow a \downarrow$	3	1	3	1	3	1	3	1	
	4	0	0	0	0	0	0	0	
*	5	1	5	1	5	1	5	1	
	6	4	0	0	0	0	0	0	
	7	1	7	1	7	1	7	1	
	8	0	0	0	0	0	0	0	

Are there solutions to $a^i \equiv 1 \pmod n$ when $\gcd(a,n) = 1$, but n is not prime?

Example: $a^i \pmod{10}$

					←	-i	\rightarrow			
		2	3	4	5	6	7	8	9	10
	1	1	1	1	1	1	1	1	1	1
	2	4	8	6	2	4	8	6	2	4
^	3	9	7	1	3	9	7	1	3	9
↑	4	6	4	6	4	6	4	6	4	6
a	5	5	5	5	5	5	5	5	5	5
\downarrow	6	6	6	6	6	6	6	6	6	6
	7	9	3	1	7	9	3	1	7	9
	8	4	2	6	8	4	2	6	8	4
	9	1	9	1	9	1	9	1	9	1
	10	0	0	0	0	0	0	0	0	0

Are there solutions to $a^i \equiv 1 \pmod{n}$ when gcd(a, n) = 1?

How did we prove Fermat's little theorem for prime modulus?

Step 1: Show that the numbers

$$a, 2a, 3a, \ldots, (p-1)a$$

form the same set as

$$1, 2, \ldots, p-1$$
 modulo p .

Step 2: Multiply all these numbers together to find

$$(p-1)!a^{p-1} \equiv (p-1)! \pmod{p}.$$

Step 3: Since (p-1)! is relatively prime to p, we can cancel.

Are there solutions to $a^i \equiv 1 \pmod{n}$ when gcd(a, n) = 1?

Step 1 for prime modulus: Show that the numbers

$$a, 2a, 3a, \ldots, (p-1)a$$

form the same set as

$$1, 2, \ldots, p-1$$
 modulo p .

Analog for composite modulus: Consider the set of numbers $1 \le a \le n-1$ that are relatively prime to n.

n	$\{1 \leqslant a \leqslant n - 1 \mid \gcd(a, n) = 1\}$							
2	{1}							
3	$\{1,2\}$							
4	$\{1,3\}$							
5	$\{1, 2, 3, 4\}$							
6	$\{1,5\}$							
7	$\{1, 2, 3, 4, 5, 6\}$							
8	$\{1, 3, 5, 7\}$							

Big question:

Are there solutions to $a^i \equiv 1 \pmod{n}$ when gcd(a, n) = 1?

Step 1 for prime modulus: Show that the numbers

$$a, 2a, 3a, \ldots, (p-1)a$$

form the same set as

$$1, 2, \ldots, p-1$$
 modulo p .

Analog for composite modulus: Consider the set of numbers $1 \le a \le n-1$ that are relatively prime to n.

mod 4:			mo	d 6:	
×	1	3	×	1	
1	1	3	1	1	
3	3	1	5	5	

illou o.							
×	1	3	5	7			
1	1	3	5	7			
3	3	1	7	5			
5	5	7	1	3			
7	7	5	3	1			

mod 8.

You try: Compute the integers $1 \le a \le 11$ that are relatively prime to 10, and compute their multiplication table modulo 10.

Are there solutions to $a^i \equiv 1 \pmod{n}$ when gcd(a, n) = 1?

Step 1 for prime modulus: Show that the numbers

$$a, 2a, 3a, \ldots, (p-1)a$$

form the same set as

$$1, 2, \ldots, p-1$$
 modulo p .

Lemma

Let $\Phi(n) = \{x_1, x_2, \dots, x_m\}$ be the set of numbers between 1 and n-1 that are relatively prime to n. Then, for any integer a with $\gcd(a,n)=1$, the numbers

$$x_1a, x_2a, x_3a, \ldots, x_ma$$

form the same set as $\Phi(n)$ modulo n.

Proof: Suppose $x_k a \equiv x_\ell a \pmod{n}$. Since $\gcd(a,n) = 1$, we can cancel the a's. But the x_k 's are all distinct \pmod{n} , so $k = \ell$. \Box Step 1 \checkmark

Big question:

Are there solutions to $a^i \equiv 1 \pmod{n}$ when $\gcd(a, n) = 1$?

Step 2: Multiply all these numbers together to find

$$(p-1)!a^{p-1} \equiv (p-1)! \pmod{p}.$$

Analog for composite modulus:

Let $a \in \mathbb{Z}$ with $\gcd(a,n)=1$, and let $\{x_1,x_2,\ldots,x_m\}$ be the set of numbers between 1 and n-1 relatively prime to n. Since

$$\{x_1, x_2, \dots, x_m\} \equiv_n \{x_1 a, x_2 a, x_3 a, \dots, x_m a\},\$$

we have

$$x_1x_2\cdots x_m \equiv_n (x_1a)(x_2a)\cdots (ax_m) \equiv_n (x_1x_2\cdots x_m)a^m$$
.

Are there solutions to $a^i \equiv 1 \pmod{n}$ when gcd(a, n) = 1?

Step 3: Since (p-1)! is relatively prime to p, we can cancel.

Analog for composite modulus:

Let $a \in \mathbb{Z}$ with gcd(a, n) = 1, and let $\{x_1, x_2, \dots, x_m\}$ be the set of numbers between 1 and n-1 relatively prime to n. So

$$a^m x \equiv x \pmod{n}$$
, where $x = x_1 x_2 \cdots x_m$.

Now, since x_j and n share no prime divisors, neither do x and n (by the fundamental theorem of arithmetic).

In other words, gcd(x, n) = 1, so we can cancel:

$$a^m x \equiv x \pmod{n}$$
 implies $a^m \equiv 1 \pmod{n}$.

Step 3 ✓

Answer (Euler's formula): $a^i \equiv 1 \pmod{n}$ has a solution if and only if gcd(a, n) = 1, in which case it is solved by

 $i=\#\{ \text{ numbers between } 1 \text{ and } n-1 \text{ relatively prime to } n \}.$ What is this value?

Euler's phi function

Let

 $\Phi(n)=\{ \text{ integers } 1\leqslant x\leqslant n-1 \text{ relatively prime to } n \ \},$ and define $\phi(n)=|\Phi(n)|.$

Examples:

n	$\{1 \leqslant a \leqslant n-1 \mid \gcd(a,n) = 1\}$	$\phi(n)$
2	{1}	1
3	$\{1,2\}$	2
4	$\{1, 3\}$	2
5	$\{1, 2, 3, 4\}$	4
6	$\{1,5\}$	2
7	$\{1, 2, 3, 4, 5, 6\}$	6
8	$\{1, 3, 5, 7\}$	4

From your example: What is $\phi(10)$?

Example: For any prime p, $\phi(p) = p - 1$ (all #s between 1 and p - 1).

Euler's phi function

Let $\Phi(n)=\{ \text{ integers } 1\leqslant x\leqslant n-1 \text{ relatively prime to } n \},$ and define $\phi(n)=|\Phi(n)|.$

Example: For any prime p, $\phi(p) = p - 1$ (all #s between 1 and p - 1).

Example: Computing $\phi(p^k)$ fo some $k \in \mathbb{Z}_{>0}$.

Aside: For sets, if $A \subseteq B$, then

$$|\{b \in B \mid b \notin B\}| = |B| - |A|.$$

Consider

$$B = \{ \text{ integers } 1 \leqslant x \leqslant p^k - 1 \}$$

and

$$A = \{b \in B \mid \gcd(b, p^k) > 1\} = \{b \in B \mid p \text{ divides } b\}$$
$$= \{ \text{ multiples of } p \text{ between } 1 \text{ and } p^k - 1 \}.$$

So
$$|B|=p^k-1$$
 and $|A|=\lfloor (p^k-1)/p\rfloor=p^{k-1}-1$. And therefore,

$$\phi(p^k) = |\Phi(p^k)| = |B| - |A| = (p^k - 1) - (p^{k-1} - 1) = \boxed{p^{k-1}(p-1)}.$$

Next time: $\phi(mn) = \phi(m)\phi(n)$ whenever $\gcd(m,n) = 1$.