Theorem (Fermats Little Theorem)

Let p be a prime number, and let a € Z. Then either
pla, so that a* =0 (mod p) for all 4,
or
pta and a?~! =1 (mod p).

Note that this is not true if the modulus is not prime. ..

Example: a' (mod 6)
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Theorem (Fermats Little Theorem)

Let p be a prime number, and let a € Z. Then either
pla, so that a* = 0 (mod p) for all 4,
or
pta and a?~1 =1 (mod p).
Note that this is not true if the modulus is not prime. ..

Example: a* (mod 8)
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Theorem (Fermats Little Theorem)
Let p be a prime number, and let a € Z. Then either
pla, so that a® = 0 (mod p) for all i,
or
pta and a?~! =1 (mod p).
For what a and n are there solutions to
a* =1 (mod n)?
1. If nis prime and n 1 a, then i = n — 1 is a solution.
2. If n|a, then there is no solution.

3. If ged(n,a) # 1, then there is no solution:
If a* =1 (mod n), then there is some k € Z such that
a'—1=kn, soa(a1)+(=k)n=1.
But we have ged(n, a) divides every integer combination of n
and a. 4

So what if ged(a,n) = 1, but n is not prime?

Are there solutions to a’ =1 (mod n) when ged(a,n) =1, but n
is not prime?

Example: a* (mod 6)
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1 (mod n) when ged(a,n) =1, but n
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1 (mod n) when ged(a,n) =1, but n

Sl | o |o|vw|lo|la|x|~|o
|| N | |||~ |o
V| | O | OO [O |~ O | |O
I~ |0~ | |0 |omialo|lo
Ol [ H|D OO |0 |[H|m™ |
O (=[N |N|[FH|(O|O ||| |D
[~ | O~ | OO0 |O |~ | O ™~ O
N[O |FHF (DO N AN | |O
N[ FHF|IDHD OO |O O [|[H| ™|
||| (oo~ oS
— 3 —




Big question:
Are there solutions to a’ =1 (mod n) when ged(a,n) = 17

How did we prove Fermat's little theorem for prime modulus?

Step 1: Show that the numbers

a, 2a, 3a, ..., (p—1a
form the same set as
1,2, ..., p—1 modulo p.

Step 2: Multiply all these numbers together to find
(p—DlaP~t = (p—1)! (mod p).

Step 3: Since (p — 1)! is relatively prime to p, we can cancel.



Big question:
Are there solutions to @’ =1 (mod n) when ged(a,n) = 17

Step 1 for prime modulus: Show that the numbers
a, 2a, 3a, ..., (p—1a
form the same set as
1,2, ..., p—1 modulo p.

Analog for composite modulus: Consider the set of numbers
1 < a < n—1 that are relatively prime to n.
ni{l<a<n-1] gcd(a,n) =1}
{1}

{1,2}

{1,3}

{1,2,3,4}

{1,5}

{1,2,3,4,5,6}

{1,3,5,7}
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Big question:
Are there solutions to a’ = 1 (mod n) when ged(a,n) = 17

Step 1 for prime modulus: Show that the numbers

a, 2a, 3a, ..., (p—1a
form the same set as
1,2, ..., p—1 modulo p.

Analog for composite modulus: Consider the set of numbers
1 < a < n—1 that are relatively prime to n.

mod 8:
mod 4: mod 6: x 111357
x 1113 x 1115 11113517
1113 115 313|175
3131 5151 515|713
7175131

You try: Compute the integers 1 < a < 11 that are relatively prime
to 10, and compute their multiplication table modulo 10.



Big question:
Are there solutions to a’ = 1 (mod n) when ged(a,n) = 17

Step 1 for prime modulus: Show that the numbers

a, 2a, 3a, ..., (p—1a
form the same set as
1,2, ..., p—1 modulo p.
Lemma
Let ®(n) = {x1,x2,...,xm} be the set of numbers between 1 and

n — 1 that are relatively prime to n. Then, for any integer a with
ged(a,n) = 1, the numbers

rija, roa, r3a, ..., Tma

form the same set as ®(n) modulo n.

Proof: Suppose zra = xya (mod n). Since ged(a,n) = 1, we can
cancel the a's. But the x1's are all distinct (mod n), so k = ¢. o
Step 1 v

Big question:
Are there solutions to a’ =1 (mod n) when ged(a,n) = 17

Step 2: Multiply all these numbers together to find
(p—DlaP~t = (p—1)! (mod p).

Analog for composite modulus:

Let a € Z with ged(a,n) =1, and let {z1,x2,..., 2y} be the set
of numbers between 1 and n — 1 relatively prime to n.

Since

{x1,29,...,2m} =p {T10, 220,230, . .., THma},
we have

T1T2 - Ty =p (z10)(220) - -+ (X)) =5 (T1272 -+ Ty )a™.

Step 2 vV



Big question:
Are there solutions to a’ = 1 (mod n) when ged(a,n) = 17?

Step 3: Since (p — 1)! is relatively prime to p, we can cancel.

Analog for composite modulus:
Let a € Z with ged(a,n) =1, and let {z1,x2,..., 2y} be the set
of numbers between 1 and n — 1 relatively prime to n. So

amx =1z (mod n), wherez =129 Tp,.

Now, since z; and n share no prime divisors, neither do = and n
(by the fundamental theorem of arithmetic).
In other words, gcd(x,n) = 1, so we can cancel:

ar=x (mod n) implies a™ =1 (mod n).

Step 3 vV
Answer (Euler's formula): a* =1 (mod n) has a solution if and
only if ged(a,n) = 1, in which case it is solved by
i = #{ numbers between 1 and n — 1 relatively prime to n }.
What is this value?



Euler’'s phi function

Let
®(n) = { integers 1 < x < n — 1 relatively prime to n },
and define ¢(n) = |®(n)|.

Examples:

{1<a<n—1| gcd(a,n)=1}

{1}

{1,2}

{1,3}

{1,2,3,4}

{1,5}

{1,2,3,4,5,6}
81{1,3,5,7}

From your example: What is ¢(10)?
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Example: For any prime p, | ¢(p) = p — 1| (all #s between 1 and p— 1).

Euler’'s phi function

Let ®(n) = { integers 1 < x < n — 1 relatively prime to n },
and define ¢(n) = |®(n).

Example: For any prime p, | ¢(p) = p — 1| (all #s between 1 and p— 1).

Example: Computing ¢(p*) fo some k € Z-.
Aside: For sets, if A < B, then

{be B|b¢ B} =|B|-[A]
Consider
B={integers 1<x<p’—1}
and
A={be B | gcd(b,p¥) > 1} = {be B | p divides b}
= { multiples of p between 1 and p* — 1 }.
So |B| =p*—1and |A| = |(p¥ —1)/p| = p"~! — 1. And therefore,

o(p*) = |®(p*)| = |B| - |A] = (p* = 1) — ("1 = 1) =|p"(p—1)|

Next time: ¢(mn) = ¢(m)p(n) whenever ged(m,n) = 1.



