Theorem (Fermats Little Theorem)

Let p be a prime number, and let $a \in \mathbb{Z}$. Then either

$$
p \mid a, \quad \text { so that } a^{i} \equiv 0(\bmod p) \text { for all } i,
$$

or

$$
p \nmid a \quad \text { and } \quad a^{p-1} \equiv 1(\bmod p) .
$$

Note that this is not true if the modulus is not prime...
Example: $a^{i}(\bmod 6)$

Theorem (Fermats Little Theorem)

Let p be a prime number, and let $a \in \mathbb{Z}$. Then either

$$
p \mid a, \quad \text { so that } a^{i} \equiv 0(\bmod p) \text { for all } i,
$$

or

$$
p \nmid a \quad \text { and } \quad a^{p-1} \equiv 1(\bmod p) .
$$

Note that this is not true if the modulus is not prime...
Example: $a^{i}(\bmod 8)$

	2	3	4	5	6	7	8
1	1	1	1	1	1	1	1
2	4	0	0	0	0	0	0
3	1	3	1	3	1	3	1
4	0	0	0	0	0	0	0
5	1	5	1	5	1	5	1
6	4	0	0	0	0	0	0
7	1	7	1	7	1	7	1
8	0	0	0	0	0	0	0

Theorem (Fermats Little Theorem)
Let p be a prime number, and let $a \in \mathbb{Z}$. Then either

$$
p \mid a, \quad \text { so that } a^{i} \equiv 0(\bmod p) \text { for all } i,
$$

or

$$
p \nmid a \quad \text { and } \quad a^{p-1} \equiv 1(\bmod p) \text {. }
$$

For what a and n are there solutions to

$$
a^{i} \equiv 1(\bmod n) ?
$$

1. If n is prime and $n \nmid a$, then $i=n-1$ is a solution.
2. If $n \mid a$, then there is no solution.
3. If $\operatorname{gcd}(n, a) \neq 1$, then there is no solution:

If $a^{i} \equiv 1(\bmod n)$, then there is some $k \in \mathbb{Z}$ such that $a^{i}-1=k n, \quad$ so $a\left(a^{i-1}\right)+(-k) n=1$.
But we have $\operatorname{gcd}(n, a)$ divides every integer combination of n and a. \&

So what if $\operatorname{gcd}(a, n)=1$, but n is not prime?

Are there solutions to $a^{i} \equiv 1(\bmod n)$ when $\operatorname{gcd}(a, n)=1$, but n is not prime?

Example: $a^{i}(\bmod 6)$

$\leftarrow i \rightarrow$					
	2	3	4	5	6
1	1	1	1	1	1
2	4	2	4	2	4
3	3	3	3	3	3
4	4	4	4	4	4
5	1	5	1	5	1
6		0	0	0	0

Are there solutions to $a^{i} \equiv 1(\bmod n)$ when $\operatorname{gcd}(a, n)=1$, but n is not prime?

Example: $a^{i}(\bmod 8)$

	2	3	4	$\mathbf{5}$	6	$\mathbf{7}$	8
$\mathbf{1}$							
2	4	0	0	0	0	0	0
	\downarrow						
$\mathbf{3}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{1}$
4	0	0	0	0	0	0	0
$\mathbf{5}$	$\mathbf{1}$	$\mathbf{5}$	$\mathbf{1}$	$\mathbf{5}$	$\mathbf{1}$	$\mathbf{5}$	$\mathbf{1}$
6	4	0	0	0	0	0	0
$\mathbf{7}$	$\mathbf{1}$	$\mathbf{7}$	$\mathbf{1}$	$\mathbf{7}$	$\mathbf{1}$	$\mathbf{7}$	$\mathbf{1}$
8	0	0	0	0	0	0	0

Are there solutions to $a^{i} \equiv 1(\bmod n)$ when $\operatorname{gcd}(a, n)=1$, but n is not prime?
Example: $a^{i}(\bmod 10)$

	2	3	4	5	6	7	8	9	10
$\mathbf{1}$									
2	4	8	6	2	4	8	6	2	4
$\mathbf{3}$	$\mathbf{9}$	$\mathbf{7}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{9}$	$\mathbf{7}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{9}$
4	6	4	6	4	6	4	6	4	6
$\mathbf{5}$	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6
$\mathbf{7}$	$\mathbf{9}$	$\mathbf{3}$	$\mathbf{1}$	$\mathbf{7}$	$\mathbf{9}$	$\mathbf{3}$	$\mathbf{1}$	$\mathbf{7}$	$\mathbf{9}$
8	4	2	6	8	4	2	6	8	4
$\mathbf{9}$	$\mathbf{1}$								
$\mathbf{1 0}$	0	0	0	0	0	0	0	0	0

Big question:
Are there solutions to $a^{i} \equiv 1(\bmod n)$ when $\operatorname{gcd}(a, n)=1$?

How did we prove Fermat's little theorem for prime modulus?

Step 1: Show that the numbers

$$
a, 2 a, 3 a, \ldots,(p-1) a
$$

form the same set as

$$
1,2, \ldots, p-1 \quad \text { modulo } p
$$

Step 2: Multiply all these numbers together to find

$$
(p-1)!a^{p-1} \equiv(p-1)!(\bmod p)
$$

Step 3: Since $(p-1)$! is relatively prime to p, we can cancel.

Big question:
Are there solutions to $a^{i} \equiv 1(\bmod n)$ when $\operatorname{gcd}(a, n)=1$?
Step 1 for prime modulus: Show that the numbers

$$
a, 2 a, 3 a, \ldots,(p-1) a
$$

form the same set as

$$
1,2, \ldots, p-1 \quad \text { modulo } p .
$$

Analog for composite modulus: Consider the set of numbers $1 \leqslant a \leqslant n-1$ that are relatively prime to n.

n	$\{1 \leqslant a \leqslant n-1 \mid \operatorname{gcd}(a, n)=1\}$
2	$\{1\}$
3	$\{1,2\}$
4	$\{1,3\}$
5	$\{1,2,3,4\}$
6	$\{1,5\}$
7	$\{1,2,3,4,5,6\}$
8	$\{1,3,5,7\}$

Big question:
Are there solutions to $a^{i} \equiv 1(\bmod n)$ when $\operatorname{gcd}(a, n)=1$?
Step 1 for prime modulus: Show that the numbers

$$
a, 2 a, 3 a, \ldots,(p-1) a
$$

form the same set as

$$
1,2, \ldots, p-1 \quad \text { modulo } p \text {. }
$$

Analog for composite modulus: Consider the set of numbers $1 \leqslant a \leqslant n-1$ that are relatively prime to n.

You try: Compute the integers $1 \leqslant a \leqslant 11$ that are relatively prime to 10 , and compute their multiplication table modulo 10 .

Big question:
Are there solutions to $a^{i} \equiv 1(\bmod n)$ when $\operatorname{gcd}(a, n)=1$?
Step 1 for prime modulus: Show that the numbers

$$
a, 2 a, 3 a, \ldots,(p-1) a
$$

form the same set as

$$
1,2, \ldots, p-1 \quad \text { modulo } p
$$

Lemma
Let $\Phi(n)=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ be the set of numbers between 1 and $n-1$ that are relatively prime to n. Then, for any integer a with $\operatorname{gcd}(a, n)=1$, the numbers

$$
x_{1} a, x_{2} a, x_{3} a, \ldots, x_{m} a
$$

form the same set as $\Phi(n)$ modulo n.
Proof: Suppose $x_{k} a \equiv x_{\ell} a(\bmod n)$. Since $\operatorname{gcd}(a, n)=1$, we can cancel the a 's. But the x_{k} 's are all distinct $(\bmod n)$, so $k=\ell$. व

Step $1 \checkmark$

Big question:
Are there solutions to $a^{i} \equiv 1(\bmod n)$ when $\operatorname{gcd}(a, n)=1$?
Step 2: Multiply all these numbers together to find

$$
(p-1)!a^{p-1} \equiv(p-1)!(\bmod p)
$$

Analog for composite modulus:
Let $a \in \mathbb{Z}$ with $\operatorname{gcd}(a, n)=1$, and let $\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ be the set of numbers between 1 and $n-1$ relatively prime to n.
Since

$$
\left\{x_{1}, x_{2}, \ldots, x_{m}\right\} \equiv_{n}\left\{x_{1} a, x_{2} a, x_{3} a, \ldots, x_{m} a\right\},
$$

we have

$$
x_{1} x_{2} \cdots x_{m} \equiv_{n}\left(x_{1} a\right)\left(x_{2} a\right) \cdots\left(a x_{m}\right) \equiv_{n}\left(x_{1} x_{2} \cdots x_{m}\right) a^{m} .
$$

Big question:
Are there solutions to $a^{i} \equiv 1(\bmod n)$ when $\operatorname{gcd}(a, n)=1$?
Step 3: Since $(p-1)$! is relatively prime to p, we can cancel.
Analog for composite modulus:
Let $a \in \mathbb{Z}$ with $\operatorname{gcd}(a, n)=1$, and let $\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ be the set of numbers between 1 and $n-1$ relatively prime to n. So

$$
a^{m} x \equiv x(\bmod n), \quad \text { where } x=x_{1} x_{2} \cdots x_{m} .
$$

Now, since x_{j} and n share no prime divisors, neither do x and n (by the fundamental theorem of arithmetic).
In other words, $\operatorname{gcd}(x, n)=1$, so we can cancel:

$$
a^{m} x \equiv x(\bmod n) \quad \text { implies } \quad a^{m} \equiv 1(\bmod n) .
$$

Step $3 \checkmark$
Answer (Euler's formula): $a^{i} \equiv 1(\bmod n)$ has a solution if and only if $\operatorname{gcd}(a, n)=1$, in which case it is solved by

$$
i=\#\{\text { numbers between } 1 \text { and } n-1 \text { relatively prime to } n\} .
$$ What is this value?

Euler's phi function

Let

$$
\Phi(n)=\{\text { integers } 1 \leqslant x \leqslant n-1 \text { relatively prime to } n\}
$$ and define $\phi(n)=|\Phi(n)|$.

Examples:

n	$\{1 \leqslant a \leqslant n-1 \mid \operatorname{gcd}(a, n)=1\}$	$\phi(n)$
2	$\{1\}$	1
3	$\{1,2\}$	2
4	$\{1,3\}$	2
5	$\{1,2,3,4\}$	4
6	$\{1,5\}$	2
7	$\{1,2,3,4,5,6\}$	6
8	$\{1,3,5,7\}$	4

From your example: What is $\phi(10)$?
Example: For any prime $p, \phi(p)=p-1$ (all \#s between 1 and $p-1$).

Euler's phi function

Let $\Phi(n)=\{$ integers $1 \leqslant x \leqslant n-1$ relatively prime to $n\}$, and define $\phi(n)=|\Phi(n)|$.
Example: For any prime $p, \phi(p)=p-1$ (all \#s between 1 and $p-1$).
Example: Computing $\phi\left(p^{k}\right)$ fo some $k \in \mathbb{Z}_{>0}$.
Aside: For sets, if $A \subseteq B$, then

$$
|\{b \in B \mid b \notin B\}|=|B|-|A| .
$$

Consider

$$
B=\left\{\text { integers } 1 \leqslant x \leqslant p^{k}-1\right\}
$$

and

$$
\begin{aligned}
A= & \left\{b \in B \mid \operatorname{gcd}\left(b, p^{k}\right)>1\right\}=\{b \in B \mid p \text { divides } b\} \\
& =\left\{\text { multiples of } p \text { between } 1 \text { and } p^{k}-1\right\} .
\end{aligned}
$$

So $|B|=p^{k}-1$ and $|A|=\left\lfloor\left(p^{k}-1\right) / p\right\rfloor=p^{k-1}-1$. And therefore, $\phi\left(p^{k}\right)=\left|\Phi\left(p^{k}\right)\right|=|B|-|A|=\left(p^{k}-1\right)-\left(p^{k-1}-1\right)=p^{k-1}(p-1)$. Next time: $\phi(m n)=\phi(m) \phi(n)$ whenever $\operatorname{gcd}(m, n)=1$.

