Let p be a prime number, and let $a \in \mathbb{Z}$. Then either p|a, so that $a^i \equiv 0 \pmod{p}$ for all i, or $p \nmid a$ and $a^{p-1} \equiv 1 \pmod{p}$.

Let p be a prime number, and let $a \in \mathbb{Z}$. Then either p|a, so that $a^i \equiv 0 \pmod{p}$ for all i, or

$$p \nmid a$$
 and $a^{p-1} \equiv 1 \pmod{p}$.

Note that this is not true if the modulus is not prime...

Let p be a prime number, and let $a\in\mathbb{Z}.$ Then either $p|a, \qquad \text{so that } a^i\equiv 0 \pmod{p} \text{ for all } i,$ or

$$p \nmid a$$
 and $a^{p-1} \equiv 1 \pmod{p}$.

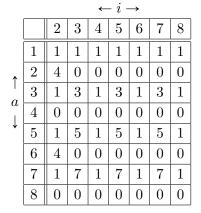
Note that this is not true if the modulus is not prime... Example: $a^i \pmod{6}$

		$\leftarrow i \rightarrow$				
		2	3	4	5	6
	1	1	1	1	1	1
1	2	4	2	4	2	4
a	3	3	3	3	3	3
\downarrow	4	4	4	4	4	4
	5	1	5	1	5	1
	6	0	0	0	0	0

Let p be a prime number, and let $a\in\mathbb{Z}.$ Then either $p|a, \qquad \text{so that } a^i\equiv 0 \pmod{p} \text{ for all } i,$ or

$$p \nmid a$$
 and $a^{p-1} \equiv 1 \pmod{p}$.

Note that this is not true if the modulus is not prime... Example: $a^i \pmod{8}$



Let p be a prime number, and let $a \in \mathbb{Z}$. Then either $p|a, \qquad \text{so that } a^i \equiv 0 \pmod{p} \text{ for all } i,$ or

$$p \nmid a$$
 and $a^{p-1} \equiv 1 \pmod{p}$.

For what a and n are there solutions to

Let p be a prime number, and let $a\in\mathbb{Z}.$ Then either $p|a, \qquad \text{so that } a^i\equiv 0 \pmod{p} \text{ for all } i,$ or

$$p \nmid a$$
 and $a^{p-1} \equiv 1 \pmod{p}$.

For what a and n are there solutions to

 $a^i \equiv 1 \pmod{n}$?

1. If n is prime and $n \nmid a$, then i = n - 1 is a solution.

Let p be a prime number, and let $a\in\mathbb{Z}.$ Then either $p|a, \qquad \text{so that } a^i\equiv 0 \pmod{p} \text{ for all } i,$ or

$$p \nmid a$$
 and $a^{p-1} \equiv 1 \pmod{p}$.

For what a and n are there solutions to

 $a^i \equiv 1 \pmod{n}$?

1. If n is prime and $n \nmid a$, then i = n - 1 is a solution.

2. If n|a, then there is no solution.

Let p be a prime number, and let $a\in\mathbb{Z}.$ Then either $p|a,\qquad \text{so that }a^i\equiv 0\pmod{p} \text{ for all }i,$ or

$$p \nmid a$$
 and $a^{p-1} \equiv 1 \pmod{p}$.

For what a and n are there solutions to

- 1. If n is prime and $n \nmid a$, then i = n 1 is a solution.
- 2. If n|a, then there is no solution.
- 3. If $gcd(n, a) \neq 1$, then there is no solution

Let p be a prime number, and let $a\in\mathbb{Z}.$ Then either $p|a, \qquad \text{so that } a^i\equiv 0 \pmod{p} \text{ for all } i,$ or

$$p \nmid a$$
 and $a^{p-1} \equiv 1 \pmod{p}$.

For what a and n are there solutions to

- 1. If n is prime and $n \nmid a$, then i = n 1 is a solution.
- 2. If n|a, then there is no solution.
- 3. If $gcd(n, a) \neq 1$, then there is no solution: If $a^i \equiv 1 \pmod{n}$, then there is some $k \in \mathbb{Z}$ such that $a^i - 1 = kn$

Let p be a prime number, and let $a\in\mathbb{Z}.$ Then either $p|a, \qquad \text{so that } a^i\equiv 0 \pmod{p} \text{ for all } i,$ or

$$p \nmid a$$
 and $a^{p-1} \equiv 1 \pmod{p}$.

For what a and n are there solutions to

- 1. If n is prime and $n \nmid a$, then i = n 1 is a solution.
- 2. If n|a, then there is no solution.
- 3. If $gcd(n, a) \neq 1$, then there is no solution: If $a^i \equiv 1 \pmod{n}$, then there is some $k \in \mathbb{Z}$ such that $a^i - 1 = kn$, so $a(a^{i-1}) + (-k)n = 1$.

Let p be a prime number, and let $a\in\mathbb{Z}.$ Then either $p|a, \qquad \text{so that } a^i\equiv 0 \pmod{p} \text{ for all } i,$ or

$$p \nmid a$$
 and $a^{p-1} \equiv 1 \pmod{p}$.

For what a and n are there solutions to

- 1. If n is prime and $n \nmid a$, then i = n 1 is a solution.
- 2. If n|a, then there is no solution.
- 3. If $gcd(n, a) \neq 1$, then there is no solution: If $a^i \equiv 1 \pmod{n}$, then there is some $k \in \mathbb{Z}$ such that $a^i - 1 = kn$, so $a(a^{i-1}) + (-k)n = 1$. But we have gcd(n, a) divides every integer combination of nand a. $\frac{i}{2}$

Let p be a prime number, and let $a\in\mathbb{Z}.$ Then either $p|a, \qquad \text{so that } a^i\equiv 0 \pmod{p} \text{ for all } i,$ or

$$p \nmid a$$
 and $a^{p-1} \equiv 1 \pmod{p}$.

For what a and n are there solutions to

 $a^i \equiv 1 \pmod{n}$?

- 1. If n is prime and $n \nmid a$, then i = n 1 is a solution.
- 2. If n|a, then there is no solution.
- 3. If $gcd(n, a) \neq 1$, then there is no solution: If $a^i \equiv 1 \pmod{n}$, then there is some $k \in \mathbb{Z}$ such that $a^i - 1 = kn$, so $a(a^{i-1}) + (-k)n = 1$. But we have gcd(n, a) divides every integer combination of nand a. $\frac{i}{4}$

So what if gcd(a, n) = 1, but n is not prime?

Are there solutions to $a^i \equiv 1 \pmod{n}$ when $\gcd(a,n) = 1,$ but n is not prime?

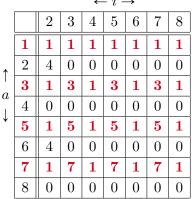
.

Example: $a^i \pmod{6}$

		$\leftarrow \iota \rightarrow$				
		2	3	4	5	6
	1	1	1	1	1	1
Î	2	4	2	4	2	4
a	3	3	3	3	3	3
\downarrow	4	4	4	4	4	4
	5	1	5	1	5	1
	6	0	0	0	0	0

Are there solutions to $a^i \equiv 1 \pmod{n}$ when gcd(a, n) = 1, but n is not prime?

Example: $a^i \pmod{8}$



 $\leftarrow i \rightarrow$

Are there solutions to $a^i \equiv 1 \pmod{n}$ when gcd(a, n) = 1, but n is not prime?

Example: $a^i \pmod{10}$

$$\leftarrow i \rightarrow$$

How did we prove Fermat's little theorem for prime modulus?

How did we prove Fermat's little theorem for prime modulus?

Step 1: Show that the numbers $a, 2a, 3a, \ldots, (p-1)a$ form the same set as $1, 2, \ldots, p-1$ modulo p.

How did we prove Fermat's little theorem for prime modulus?

Step 1: Show that the numbers $a, 2a, 3a, \ldots, (p-1)a$ form the same set as $1, 2, \ldots, p-1$ modulo p. Step 2: Multiply all these numbers together to find $(p-1)!a^{p-1} \equiv (p-1)! \pmod{p}$.

How did we prove Fermat's little theorem for prime modulus?

Step 1: Show that the numbers $a, 2a, 3a, \ldots, (p-1)a$ form the same set as $1, 2, \ldots, p-1$ modulo p. Step 2: Multiply all these numbers together to find $(p-1)!a^{p-1} \equiv (p-1)! \pmod{p}$.

Step 3: Since (p-1)! is relatively prime to p, we can cancel.

Are there solutions to $a^i \equiv 1 \pmod{n}$ when gcd(a, n) = 1?

Step 1 for prime modulus: Show that the numbers $a, 2a, 3a, \ldots, (p-1)a$

form the same set as

1, 2, ...,
$$p-1$$
 modulo p .

Are there solutions to $a^i \equiv 1 \pmod{n}$ when gcd(a, n) = 1?

Step 1 for prime modulus: Show that the numbers $a, 2a, 3a, \ldots, (p-1)a$

form the same set as

1, 2, ...,
$$p-1$$
 modulo p .

Analog for composite modulus: Consider the set of numbers $1 \le a \le n-1$ that are relatively prime to n.

Are there solutions to $a^i \equiv 1 \pmod{n}$ when gcd(a, n) = 1?

Step 1 for prime modulus: Show that the numbers $a, 2a, 3a, \ldots, (p-1)a$

form the same set as

1, 2, ...,
$$p-1$$
 modulo p .

Analog for composite modulus: Consider the set of numbers $1 \le a \le n-1$ that are relatively prime to n.

n	$\{1 \leqslant a \leqslant n-1 \mid \gcd(a,n) = 1\}$
2	{1}
3	$\{1, 2\}$
4	$\{1,3\}$
5	$\{1, 2, 3, 4\}$
6	$\{1,5\}$
7	$\{1, 2, 3, 4, 5, 6\}$
8	$\{1, 3, 5, 7\}$

Are there solutions to $a^i \equiv 1 \pmod{n}$ when gcd(a, n) = 1?

Step 1 for prime modulus: Show that the numbers $a, 2a, 3a, \ldots, (p-1)a$

form the same set as

$$1, 2, \ldots, p-1$$
 modulo p .

Analog for composite modulus: Consider the set of numbers $1 \le a \le n-1$ that are relatively prime to n.

×	1 3	
1	1	3
3	3	1

Are there solutions to $a^i \equiv 1 \pmod{n}$ when gcd(a, n) = 1?

Step 1 for prime modulus: Show that the numbers $a, 2a, 3a, \ldots, (p-1)a$

form the same set as

1, 2,
$$\ldots$$
, $p-1$ modulo p .

Analog for composite modulus: Consider the set of numbers $1 \le a \le n-1$ that are relatively prime to n.

mod 4:

mod 6:

×	1	3
1	1	3
3	3	1

mou o.				
×	1	5		
1	1	5		

Are there solutions to $a^i \equiv 1 \pmod{n}$ when gcd(a, n) = 1?

Step 1 for prime modulus: Show that the numbers $a, 2a, 3a, \ldots, (p-1)a$

form the same set as

1, 2,
$$\ldots$$
, $p-1$ modulo p .

Analog for composite modulus: Consider the set of numbers $1 \le a \le n-1$ that are relatively prime to n.

mod 4:

×	1	5
1	1	5
5	5	1

mod 8:

\times	1	3	5	7
1	1	3	5	7
3	3	1	7	5
5	5	7	1	3
7	7	5	3	1

Are there solutions to $a^i \equiv 1 \pmod{n}$ when gcd(a, n) = 1?

Step 1 for prime modulus: Show that the numbers $a, 2a, 3a, \ldots, (p-1)a$

form the same set as

1, 2,
$$\ldots$$
, $p-1$ modulo p .

Analog for composite modulus: Consider the set of numbers $1 \leq a \leq n-1$ that are relatively prime to n.

> mod 4: 3 X

mod 6:

3 1 3 3

×

5 5 1 1 55

mod 8:

×	1	3	5	7
1	1	3	5	7
3	3	1	7	5
5	5	7	1	3
7	7	5	3	1

You try: Compute the integers $1 \le a \le 11$ that are relatively prime to 10, and compute their multiplication table modulo 10.

Are there solutions to $a^i \equiv 1 \pmod{n}$ when gcd(a, n) = 1?

Step 1 for prime modulus: Show that the numbers $a, 2a, 3a, \ldots, (p-1)a$

form the same set as

1, 2, ...,
$$p-1$$
 modulo p .

Lemma

Let $\Phi(n) = \{x_1, x_2, \ldots, x_m\}$ be the set of numbers between 1 and n-1 that are relatively prime to n. Then, for any integer a with gcd(a, n) = 1, the numbers

 $x_1a, x_2a, x_3a, \ldots, x_ma$

form the same set as $\Phi(n)$ modulo n.

Are there solutions to $a^i \equiv 1 \pmod{n}$ when gcd(a, n) = 1?

Step 1 for prime modulus: Show that the numbers $a, 2a, 3a, \ldots, (p-1)a$

form the same set as

1, 2, ...,
$$p-1$$
 modulo p .

Lemma

Let $\Phi(n) = \{x_1, x_2, \dots, x_m\}$ be the set of numbers between 1 and n-1 that are relatively prime to n. Then, for any integer a with gcd(a, n) = 1, the numbers

 $x_1a, x_2a, x_3a, \ldots, x_ma$

form the same set as $\Phi(n)$ modulo n. Proof: Suppose $x_k a \equiv x_\ell a \pmod{n}$.

Are there solutions to $a^i \equiv 1 \pmod{n}$ when gcd(a, n) = 1?

Step 1 for prime modulus: Show that the numbers $a, 2a, 3a, \ldots, (p-1)a$

form the same set as

1, 2, ...,
$$p-1$$
 modulo p .

Lemma

Let $\Phi(n) = \{x_1, x_2, \dots, x_m\}$ be the set of numbers between 1 and n-1 that are relatively prime to n. Then, for any integer a with gcd(a, n) = 1, the numbers

$$x_1a, x_2a, x_3a, \ldots, x_ma$$

form the same set as $\Phi(n)$ modulo n.

Proof: Suppose $x_k a \equiv x_\ell a \pmod{n}$. Since gcd(a, n) = 1, we can cancel the *a*'s.

Are there solutions to $a^i \equiv 1 \pmod{n}$ when gcd(a, n) = 1?

Step 1 for prime modulus: Show that the numbers $a, 2a, 3a, \ldots, (p-1)a$

form the same set as

1, 2, ...,
$$p-1$$
 modulo p .

Lemma

Let $\Phi(n) = \{x_1, x_2, \dots, x_m\}$ be the set of numbers between 1 and n-1 that are relatively prime to n. Then, for any integer a with gcd(a, n) = 1, the numbers

$$x_1a, x_2a, x_3a, \ldots, x_ma$$

form the same set as $\Phi(n)$ modulo n.

Proof: Suppose $x_k a \equiv x_\ell a \pmod{n}$. Since gcd(a, n) = 1, we can cancel the *a*'s. But the x_k 's are all distinct (mod *n*), so $k = \ell$. \Box

Are there solutions to $a^i \equiv 1 \pmod{n}$ when gcd(a, n) = 1?

Step 1 for prime modulus: Show that the numbers $a, 2a, 3a, \ldots, (p-1)a$

form the same set as

1, 2, ...,
$$p-1$$
 modulo p .

Lemma

Let $\Phi(n) = \{x_1, x_2, \dots, x_m\}$ be the set of numbers between 1 and n-1 that are relatively prime to n. Then, for any integer a with gcd(a, n) = 1, the numbers

 $x_1a, x_2a, x_3a, \ldots, x_ma$

form the same set as $\Phi(n)$ modulo n.

Proof: Suppose $x_k a \equiv x_\ell a \pmod{n}$. Since gcd(a, n) = 1, we can cancel the *a*'s. But the x_k 's are all distinct (mod *n*), so $k = \ell$. \Box Step 1 \checkmark

Are there solutions to $a^i \equiv 1 \pmod{n}$ when gcd(a, n) = 1?

Step 2: Multiply all these numbers together to find $(p-1)!a^{p-1} \equiv (p-1)! \pmod{p}.$

Are there solutions to $a^i \equiv 1 \pmod{n}$ when gcd(a, n) = 1?

Step 2: Multiply all these numbers together to find $(p-1)!a^{p-1} \equiv (p-1)! \pmod{p}.$

Analog for composite modulus:

Let $a \in \mathbb{Z}$ with gcd(a, n) = 1, and let $\{x_1, x_2, \ldots, x_m\}$ be the set of numbers between 1 and n - 1 relatively prime to n.

Are there solutions to $a^i \equiv 1 \pmod{n}$ when gcd(a, n) = 1?

Step 2: Multiply all these numbers together to find $(p-1)!a^{p-1} \equiv (p-1)! \pmod{p}.$

Analog for composite modulus:

Let $a \in \mathbb{Z}$ with gcd(a, n) = 1, and let $\{x_1, x_2, \ldots, x_m\}$ be the set of numbers between 1 and n - 1 relatively prime to n. Since

$$\{x_1, x_2, \dots, x_m\} \equiv_n \{x_1 a, x_2 a, x_3 a, \dots, x_m a\},\$$

we have

 $x_1x_2\cdots x_m \equiv_n (x_1a)(x_2a)\cdots (ax_m)$

Are there solutions to $a^i \equiv 1 \pmod{n}$ when gcd(a, n) = 1?

Step 2: Multiply all these numbers together to find $(p-1)!a^{p-1} \equiv (p-1)! \pmod{p}.$

Analog for composite modulus:

Let $a \in \mathbb{Z}$ with gcd(a, n) = 1, and let $\{x_1, x_2, \ldots, x_m\}$ be the set of numbers between 1 and n - 1 relatively prime to n. Since

$$\{x_1, x_2, \dots, x_m\} \equiv_n \{x_1 a, x_2 a, x_3 a, \dots, x_m a\},\$$

we have

$$x_1x_2\cdots x_m \equiv_n (x_1a)(x_2a)\cdots (ax_m) \equiv_n (x_1x_2\cdots x_m)a^m.$$

Are there solutions to $a^i \equiv 1 \pmod{n}$ when gcd(a, n) = 1?

Step 2: Multiply all these numbers together to find $(p-1)!a^{p-1} \equiv (p-1)! \pmod{p}.$

Analog for composite modulus:

Let $a \in \mathbb{Z}$ with gcd(a, n) = 1, and let $\{x_1, x_2, \ldots, x_m\}$ be the set of numbers between 1 and n - 1 relatively prime to n. Since

$$\{x_1, x_2, \dots, x_m\} \equiv_n \{x_1 a, x_2 a, x_3 a, \dots, x_m a\},\$$

we have

$$x_1 x_2 \cdots x_m \equiv_n (x_1 a) (x_2 a) \cdots (a x_m) \equiv_n (x_1 x_2 \cdots x_m) a^m.$$

Step 2 \checkmark

Are there solutions to $a^i \equiv 1 \pmod{n}$ when gcd(a, n) = 1?

Step 3: Since (p-1)! is relatively prime to p, we can cancel.

Are there solutions to $a^i \equiv 1 \pmod{n}$ when gcd(a, n) = 1?

Step 3: Since (p-1)! is relatively prime to p, we can cancel.

Analog for composite modulus:

Let $a \in \mathbb{Z}$ with gcd(a, n) = 1, and let $\{x_1, x_2, \ldots, x_m\}$ be the set of numbers between 1 and n - 1 relatively prime to n. So

 $a^m x \equiv x \pmod{n}$, where $x = x_1 x_2 \cdots x_m$.

Are there solutions to $a^i \equiv 1 \pmod{n}$ when gcd(a, n) = 1?

Step 3: Since (p-1)! is relatively prime to p, we can cancel.

Analog for composite modulus:

Let $a \in \mathbb{Z}$ with gcd(a, n) = 1, and let $\{x_1, x_2, \ldots, x_m\}$ be the set of numbers between 1 and n - 1 relatively prime to n. So

 $a^m x \equiv x \pmod{n}$, where $x = x_1 x_2 \cdots x_m$.

Now, since x_j and n share no prime divisors, neither do x and n (by the fundamental theorem of arithmetic).

Are there solutions to $a^i \equiv 1 \pmod{n}$ when gcd(a, n) = 1?

Step 3: Since (p-1)! is relatively prime to p, we can cancel.

Analog for composite modulus:

Let $a \in \mathbb{Z}$ with gcd(a, n) = 1, and let $\{x_1, x_2, \ldots, x_m\}$ be the set of numbers between 1 and n - 1 relatively prime to n. So

 $a^m x \equiv x \pmod{n}$, where $x = x_1 x_2 \cdots x_m$.

Now, since x_j and n share no prime divisors, neither do x and n (by the fundamental theorem of arithmetic).

In other words, gcd(x, n) = 1

Are there solutions to $a^i \equiv 1 \pmod{n}$ when gcd(a, n) = 1?

Step 3: Since (p-1)! is relatively prime to p, we can cancel.

Analog for composite modulus:

Let $a \in \mathbb{Z}$ with gcd(a, n) = 1, and let $\{x_1, x_2, \ldots, x_m\}$ be the set of numbers between 1 and n - 1 relatively prime to n. So

$$a^m x \equiv x \pmod{n}$$
, where $x = x_1 x_2 \cdots x_m$.

Now, since x_j and n share no prime divisors, neither do x and n (by the fundamental theorem of arithmetic).

In other words, gcd(x, n) = 1, so we can cancel:

 $a^m x \equiv x \pmod{n}$ implies $a^m \equiv 1 \pmod{n}$.

Are there solutions to $a^i \equiv 1 \pmod{n}$ when gcd(a, n) = 1?

Step 3: Since (p-1)! is relatively prime to p, we can cancel.

Analog for composite modulus:

Let $a \in \mathbb{Z}$ with gcd(a, n) = 1, and let $\{x_1, x_2, \ldots, x_m\}$ be the set of numbers between 1 and n - 1 relatively prime to n. So

$$a^m x \equiv x \pmod{n}$$
, where $x = x_1 x_2 \cdots x_m$.

Now, since x_j and n share no prime divisors, neither do x and n (by the fundamental theorem of arithmetic).

In other words, gcd(x, n) = 1, so we can cancel:

$$a^m x \equiv x \pmod{n}$$
 implies $a^m \equiv 1 \pmod{n}$.
Step 3 \checkmark

Are there solutions to $a^i \equiv 1 \pmod{n}$ when gcd(a, n) = 1?

Step 3: Since (p-1)! is relatively prime to p, we can cancel.

Analog for composite modulus:

Let $a \in \mathbb{Z}$ with gcd(a, n) = 1, and let $\{x_1, x_2, \ldots, x_m\}$ be the set of numbers between 1 and n - 1 relatively prime to n. So

$$a^m x \equiv x \pmod{n}$$
, where $x = x_1 x_2 \cdots x_m$.

Now, since x_j and n share no prime divisors, neither do x and n (by the fundamental theorem of arithmetic).

In other words, gcd(x, n) = 1, so we can cancel:

$$a^m x \equiv x \pmod{n}$$
 implies $a^m \equiv 1 \pmod{n}$.
Step 3 \checkmark

Answer (Euler's formula): $a^i \equiv 1 \pmod{n}$ has a solution if and only if gcd(a, n) = 1, in which case it is solved by

 $i = #\{$ numbers between 1 and n - 1 relatively prime to $n \}$.

Are there solutions to $a^i \equiv 1 \pmod{n}$ when gcd(a, n) = 1?

Step 3: Since (p-1)! is relatively prime to p, we can cancel.

Analog for composite modulus:

Let $a \in \mathbb{Z}$ with gcd(a, n) = 1, and let $\{x_1, x_2, \ldots, x_m\}$ be the set of numbers between 1 and n - 1 relatively prime to n. So

 $a^m x \equiv x \pmod{n}$, where $x = x_1 x_2 \cdots x_m$.

Now, since x_j and n share no prime divisors, neither do x and n (by the fundamental theorem of arithmetic).

In other words, gcd(x, n) = 1, so we can cancel:

$$a^m x \equiv x \pmod{n}$$
 implies $a^m \equiv 1 \pmod{n}$.
Step 3

Answer (Euler's formula): $a^i \equiv 1 \pmod{n}$ has a solution if and only if gcd(a, n) = 1, in which case it is solved by

 $i = #\{$ numbers between 1 and n - 1 relatively prime to $n \}$. What is this value?

Let

 $\Phi(n)=\{ \text{ integers } 1\leqslant x\leqslant n-1 \text{ relatively prime to } n \; \}, \text{ and define } \phi(n)=|\Phi(n)|.$

Examples:

n	$\{1 \leqslant a \leqslant n-1 \mid \gcd(a,n) = 1\}$	$\phi(n)$
2	{1}	1
3	$\{1, 2\}$	2
4	$\{1,3\}$	2
5	$\{1, 2, 3, 4\}$	4
6	$\{1,5\}$	2
7	$\{1, 2, 3, 4, 5, 6\}$	6
8	$\{1, 3, 5, 7\}$	4

Let

 $\Phi(n)=\{ \text{ integers } 1\leqslant x\leqslant n-1 \text{ relatively prime to } n \; \}, \text{ and define } \phi(n)=|\Phi(n)|.$

Examples:

n	$\{1 \leqslant a \leqslant n-1 \mid \gcd(a,n) = 1\}$	$\phi(n)$
2	{1}	1
3	$\{1, 2\}$	2
4	$\{1,3\}$	2
5	$\{1, 2, 3, 4\}$	4
6	$\{1,5\}$	2
7	$\{1, 2, 3, 4, 5, 6\}$	6
8	$\{1, 3, 5, 7\}$	4

From your example: What is $\phi(10)$?

Let

 $\Phi(n)=\{ \text{ integers } 1\leqslant x\leqslant n-1 \text{ relatively prime to } n \; \}, \text{ and define } \phi(n)=|\Phi(n)|.$

Examples:

n	$\{1 \leqslant a \leqslant n-1 \mid \gcd(a,n) = 1\}$	$\phi(n)$
2	{1}	1
3	$\{1, 2\}$	2
4	$\{1,3\}$	2
5	$\{1, 2, 3, 4\}$	4
6	$\{1,5\}$	2
7	$\{1, 2, 3, 4, 5, 6\}$	6
8	$\{1, 3, 5, 7\}$	4

From your example: What is $\phi(10)$?

Example: For any prime p, $\phi(p) = p - 1$ (all #s between 1 and p - 1).

Let

 $\Phi(n)=\{ \text{ integers } 1\leqslant x\leqslant n-1 \text{ relatively prime to } n \; \}, \text{ and define } \phi(n)=|\Phi(n)|.$

Example: For any prime p, $\phi(p) = p - 1$ (all #s between 1 and p - 1).

Let

 $\Phi(n)=\{ \text{ integers } 1\leqslant x\leqslant n-1 \text{ relatively prime to } n \; \}, \text{ and define } \phi(n)=|\Phi(n)|.$

Example: For any prime p, $\phi(p) = p - 1$ (all #s between 1 and p - 1). Example: Computing $\phi(p^k)$ fo some $k \in \mathbb{Z}_{>0}$.

Let

 $\Phi(n)=\{ \text{ integers } 1\leqslant x\leqslant n-1 \text{ relatively prime to } n \; \}, \text{ and define } \phi(n)=|\Phi(n)|.$

Example: For any prime p, $\phi(p) = p - 1$ (all #s between 1 and p - 1).

Example: Computing $\phi(p^k)$ fo some $k \in \mathbb{Z}_{>0}$. Aside: For sets, if $A \subseteq B$, then

$$|\{b \in B \mid b \notin B\}| = |B| - |A|.$$

Let

 $\Phi(n)=\{ \text{ integers } 1\leqslant x\leqslant n-1 \text{ relatively prime to } n \; \}, \text{ and define } \phi(n)=|\Phi(n)|.$

Example: For any prime p, $\phi(p) = p - 1$ (all #s between 1 and p - 1).

Example: Computing $\phi(p^k)$ fo some $k \in \mathbb{Z}_{>0}$. Aside: For sets, if $A \subseteq B$, then

$$|\{b \in B \mid b \notin B\}| = |B| - |A|.$$

Consider

$$B = \{ \text{ integers } 1 \leqslant x \leqslant p^k - 1 \}$$

$$A=\{b\in B\ |\ \gcd(b,p^k)>1\}$$

Let

 $\Phi(n)=\{ \text{ integers } 1\leqslant x\leqslant n-1 \text{ relatively prime to } n \; \}, \text{ and define } \phi(n)=|\Phi(n)|.$

Example: For any prime p, $\phi(p) = p - 1$ (all #s between 1 and p - 1).

Example: Computing $\phi(p^k)$ fo some $k \in \mathbb{Z}_{>0}$. Aside: For sets, if $A \subseteq B$, then

$$|\{b \in B \mid b \notin B\}| = |B| - |A|.$$

Consider

$$B = \{ \text{ integers } 1 \leqslant x \leqslant p^k - 1 \}$$

$$A = \{b \in B \mid \gcd(b, p^k) > 1\} = \{b \in B \mid p \text{ divides } b\}$$

Let

 $\Phi(n)=\{ \text{ integers } 1\leqslant x\leqslant n-1 \text{ relatively prime to } n \; \}, \text{ and define } \phi(n)=|\Phi(n)|.$

Example: For any prime p, $\phi(p) = p - 1$ (all #s between 1 and p - 1).

Example: Computing $\phi(p^k)$ fo some $k \in \mathbb{Z}_{>0}$. Aside: For sets, if $A \subseteq B$, then

$$|\{b \in B \mid b \notin B\}| = |B| - |A|.$$

Consider

$$B = \{ \text{ integers } 1 \leqslant x \leqslant p^k - 1 \}$$

$$A = \{b \in B \mid \gcd(b, p^k) > 1\} = \{b \in B \mid p \text{ divides } b\}$$
$$= \{ \text{ multiples of } p \text{ between } 1 \text{ and } p^k - 1 \}.$$

Let

 $\Phi(n)=\{ \text{ integers } 1\leqslant x\leqslant n-1 \text{ relatively prime to } n \; \}, \text{ and define } \phi(n)=|\Phi(n)|.$

Example: For any prime p, $\phi(p) = p - 1$ (all #s between 1 and p - 1).

Example: Computing $\phi(p^k)$ fo some $k \in \mathbb{Z}_{>0}$. Aside: For sets, if $A \subseteq B$, then

$$|\{b \in B \mid b \notin B\}| = |B| - |A|.$$

Consider

$$B = \{ \text{ integers } 1 \leqslant x \leqslant p^k - 1 \}$$

$$\begin{split} A &= \{b \in B \ | \ \gcd(b, p^k) > 1\} = \{b \in B \ | \ p \text{ divides } b\} \\ &= \{ \ \text{multiples of } p \text{ between } 1 \text{ and } p^k - 1 \ \}. \end{split}$$
 So $|B| = p^k - 1$

Let

 $\Phi(n)=\{ \text{ integers } 1\leqslant x\leqslant n-1 \text{ relatively prime to } n \; \}, \text{ and define } \phi(n)=|\Phi(n)|.$

Example: For any prime p, $\phi(p) = p - 1$ (all #s between 1 and p - 1).

Example: Computing $\phi(p^k)$ fo some $k \in \mathbb{Z}_{>0}$. Aside: For sets, if $A \subseteq B$, then

$$|\{b \in B \mid b \notin B\}| = |B| - |A|.$$

Consider

$$B = \{ \text{ integers } 1 \leqslant x \leqslant p^k - 1 \}$$

$$\begin{split} A &= \{b \in B \ | \ \gcd(b, p^k) > 1\} = \{b \in B \ | \ p \text{ divides } b\} \\ &= \{ \ \text{multiples of } p \text{ between } 1 \text{ and } p^k - 1 \ \}. \end{split}$$

So $|B| = p^k - 1$ and $|A| = \lfloor (p^k - 1)/p \rfloor$

Let

 $\Phi(n)=\{ \text{ integers } 1\leqslant x\leqslant n-1 \text{ relatively prime to } n \; \}, \text{ and define } \phi(n)=|\Phi(n)|.$

Example: For any prime p, $\phi(p) = p - 1$ (all #s between 1 and p - 1).

Example: Computing $\phi(p^k)$ fo some $k \in \mathbb{Z}_{>0}$. Aside: For sets, if $A \subseteq B$, then

$$|\{b \in B \mid b \notin B\}| = |B| - |A|.$$

Consider

$$B = \{ \text{ integers } 1 \leqslant x \leqslant p^k - 1 \}$$

$$\begin{split} A &= \{b \in B \ | \ \gcd(b, p^k) > 1\} = \{b \in B \ | \ p \text{ divides } b\} \\ &= \{ \ \text{multiples of } p \text{ between } 1 \text{ and } p^k - 1 \ \}. \\ \text{So } |B| &= p^k - 1 \text{ and } |A| = \lfloor (p^k - 1)/p \rfloor = p^{k-1} - 1. \end{split}$$

Let

 $\Phi(n)=\{ \text{ integers } 1\leqslant x\leqslant n-1 \text{ relatively prime to } n \; \}, \text{ and define } \phi(n)=|\Phi(n)|.$

Example: For any prime p, $\phi(p) = p - 1$ (all #s between 1 and p - 1).

Example: Computing $\phi(p^k)$ fo some $k \in \mathbb{Z}_{>0}$. Aside: For sets, if $A \subseteq B$, then

$$|\{b \in B \mid b \notin B\}| = |B| - |A|.$$

Consider

$$B = \{ \text{ integers } 1 \leqslant x \leqslant p^k - 1 \}$$

$$\begin{split} A &= \{b \in B \ | \ \gcd(b, p^k) > 1\} = \{b \in B \ | \ p \text{ divides } b\} \\ &= \{ \ \text{multiples of } p \text{ between } 1 \text{ and } p^k - 1 \ \}. \\ \text{So } |B| &= p^k - 1 \text{ and } |A| = \lfloor (p^k - 1)/p \rfloor = p^{k-1} - 1. \text{ And therefore,} \\ \phi(p^k) &= |\Phi(p^k)| \end{split}$$

Let

 $\Phi(n)=\{ \text{ integers } 1\leqslant x\leqslant n-1 \text{ relatively prime to } n \; \}, \text{ and define } \phi(n)=|\Phi(n)|.$

Example: For any prime p, $\phi(p) = p - 1$ (all #s between 1 and p - 1).

Example: Computing $\phi(p^k)$ fo some $k \in \mathbb{Z}_{>0}$. Aside: For sets, if $A \subseteq B$, then

$$|\{b \in B \mid b \notin B\}| = |B| - |A|.$$

Consider

$$B = \{ \text{ integers } 1 \leqslant x \leqslant p^k - 1 \}$$

$$\begin{split} A &= \{b \in B \ | \ \gcd(b, p^k) > 1\} = \{b \in B \ | \ p \text{ divides } b\} \\ &= \{ \ \text{multiples of } p \text{ between } 1 \text{ and } p^k - 1 \ \}. \\ \text{So } |B| &= p^k - 1 \text{ and } |A| = \lfloor (p^k - 1)/p \rfloor = p^{k-1} - 1. \text{ And therefore,} \\ \phi(p^k) &= |\Phi(p^k)| = |B| - |A| \end{split}$$

Let

 $\Phi(n)=\{ \text{ integers } 1\leqslant x\leqslant n-1 \text{ relatively prime to } n \; \}, \text{ and define } \phi(n)=|\Phi(n)|.$

Example: For any prime p, $\phi(p) = p - 1$ (all #s between 1 and p - 1).

Example: Computing $\phi(p^k)$ fo some $k \in \mathbb{Z}_{>0}$. Aside: For sets, if $A \subseteq B$, then

$$|\{b \in B \mid b \notin B\}| = |B| - |A|.$$

Consider

$$B = \{ \text{ integers } 1 \leqslant x \leqslant p^k - 1 \}$$

$$\begin{split} A &= \{ b \in B \ | \ \gcd(b, p^k) > 1 \} = \{ b \in B \ | \ p \text{ divides } b \} \\ &= \{ \ \text{multiples of } p \text{ between } 1 \text{ and } p^k - 1 \ \}. \\ \text{So } |B| &= p^k - 1 \text{ and } |A| = \lfloor (p^k - 1)/p \rfloor = p^{k-1} - 1. \text{ And therefore,} \\ \phi(p^k) &= |\Phi(p^k)| = |B| - |A| = (p^k - 1) - (p^{k-1} - 1) \end{split}$$

Let

 $\Phi(n)=\{ \text{ integers } 1\leqslant x\leqslant n-1 \text{ relatively prime to } n \; \}, \text{ and define } \phi(n)=|\Phi(n)|.$

Example: For any prime p, $\phi(p) = p - 1$ (all #s between 1 and p - 1).

Example: Computing $\phi(p^k)$ fo some $k \in \mathbb{Z}_{>0}$. Aside: For sets, if $A \subseteq B$, then

$$|\{b \in B \mid b \notin B\}| = |B| - |A|.$$

Consider

$$B = \{ \text{ integers } 1 \leqslant x \leqslant p^k - 1 \}$$

$$\begin{split} A &= \{b \in B \mid \ \gcd(b, p^k) > 1\} = \{b \in B \mid p \text{ divides } b\} \\ &= \{ \text{ multiples of } p \text{ between } 1 \text{ and } p^k - 1 \}. \\ \text{So } |B| &= p^k - 1 \text{ and } |A| = \lfloor (p^k - 1)/p \rfloor = p^{k-1} - 1. \text{ And therefore,} \\ b(p^k) &= |\Phi(p^k)| = |B| - |A| = (p^k - 1) - (p^{k-1} - 1) = \boxed{p^{k-1}(p-1)}. \end{split}$$

Let $\Phi(n) = \{ \text{ integers } 1 \leqslant x \leqslant n-1 \text{ relatively prime to } n \},$ and define $\phi(n) = |\Phi(n)|.$

Example: For any prime p, $\phi(p) = p - 1$ (all #s between 1 and p - 1).

Example: Computing $\phi(p^k)$ fo some $k \in \mathbb{Z}_{>0}$. Aside: For sets, if $A \subseteq B$, then

$$|\{b \in B \ | \ b \notin B\}| = |B| - |A|.$$

Consider

$$B = \{ \text{ integers } 1 \leqslant x \leqslant p^k - 1 \}$$

$$\begin{split} A &= \{ b \in B \ | \ \gcd(b, p^k) > 1 \} = \{ b \in B \ | \ p \text{ divides } b \} \\ &= \{ \ \text{multiples of } p \text{ between } 1 \text{ and } p^k - 1 \ \}. \\ \text{So } |B| &= p^k - 1 \text{ and } |A| = \lfloor (p^k - 1)/p \rfloor = p^{k-1} - 1. \text{ And therefore,} \\ \phi(p^k) &= |\Phi(p^k)| = |B| - |A| = (p^k - 1) - (p^{k-1} - 1) = \boxed{p^{k-1}(p-1)}. \\ \text{Next time: } \phi(mn) &= \phi(m)\phi(n) \text{ whenever } \gcd(m, n) = 1. \end{split}$$