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Let p be a prime number, and let a € Z. Then either
pla, so that a® = 0 (mod p) for all i,

or
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Are there solutions to a’ = 1 (mod n) when ged(a,n) = 1, but n
is not prime?

Example: a' (mod 6)
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Are there solutions to a’ = 1 (mod n) when ged(a,n) = 1, but n
is not prime?
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a, 2a, 3a, ..., (p—1a
form the same set as
1,2, ..., p—1 modulo p.

Analog for composite modulus: Consider the set of numbers

1 < a <n—1 that are relatively prime to n.
’n‘{léagn—ﬂ gcd(a,n)zl}‘

2 {1}

{1,2}

{1,3}

{1,2,3,4}

{1,5}

{1,2,3,4,5,6}

{1,3,5,7}

D NSO =W




Big question:
Are there solutions to a’ = 1 (mod n) when ged(a,n) = 17

Step 1 for prime modulus: Show that the numbers
a, 2a, 3a, ..., (p—1a
form the same set as
1,2, ..., p—1 modulo p.

Analog for composite modulus: Consider the set of numbers
1 < a < n—1 that are relatively prime to n.
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Step 1 for prime modulus: Show that the numbers
a, 2a, 3a, ..., (p—1a
form the same set as
1,2, ..., p—1 modulo p.

Analog for composite modulus: Consider the set of numbers
1 < a < n—1 that are relatively prime to n.
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Are there solutions to a’ = 1 (mod n) when ged(a,n) = 17

Step 1 for prime modulus: Show that the numbers
a, 2a, 3a, ..., (p—1a
form the same set as
1,2, ..., p—1 modulo p.

Analog for composite modulus: Consider the set of numbers
1 < a < n—1 that are relatively prime to n.
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Big question:
Are there solutions to a’ = 1 (mod n) when ged(a,n) = 17

Step 1 for prime modulus: Show that the numbers
a, 2a, 3a, ..., (p—1a
form the same set as
1,2, ..., p—1 modulo p.

Analog for composite modulus: Consider the set of numbers
1 < a < n—1 that are relatively prime to n.

mod 8:
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You try: Compute the integers 1 < a < 11 that are relatively prime
to 10, and compute their multiplication table modulo 10.
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Step 1 for prime modulus: Show that the numbers
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Step 3: Since (p — 1)! is relatively prime to p, we can cancel.

Analog for composite modulus:
Let a € Z with ged(a,n) = 1, and let {x1,x9,...,2,,} be the set
of numbers between 1 and n — 1 relatively prime to n. So
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Are there solutions to a’ = 1 (mod n) when ged(a,n) = 17

Step 3: Since (p — 1)! is relatively prime to p, we can cancel.

Analog for composite modulus:
Let a € Z with ged(a,n) = 1, and let {x1,x9,...,2,,} be the set
of numbers between 1 and n — 1 relatively prime to n. So
a™r =z (mod n), wherez =xzix9- Ty
Now, since z; and n share no prime divisors, neither do x and n
(by the fundamental theorem of arithmetic).
In other words, ged(z,n) = 1, so we can cancel:
a™r =z (mod n) implies a™ =1 (mod n).
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Answer (Euler's formula): a’ =1 (mod n) has a solution if and
only if ged(a,n) = 1, in which case it is solved by

i = #{ numbers between 1 and n — 1 relatively prime to n }.
What is this value?
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Euler's phi function

Let
®(n) = { integers 1 <z < n — 1 relatively prime to n },
and define ¢(n) = |®(n)|.

|
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{1}
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Let
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and define ¢(n) = |®(n)].
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Euler's phi function
Let

®(n) = { integers 1 <z < n — 1 relatively prime to n },
and define ¢(n) = |®(n)].
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Aside: For sets, if A < B, then
{be B |b¢ B} = |B| —|A]
Consider
B={integers 1<z <pF—1}
and
A={be B | ged(b,p*) > 1} = {be B | p divides b}
= { multiples of p between 1 and p* — 1 }.
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Euler's phi function
Let
®(n) = { integers 1 <z < n — 1 relatively prime to n },
and define ¢(n) = |®(n)].
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Let
®(n) = { integers 1 <z < n — 1 relatively prime to n },
and define ¢(n) = |®(n)].
Example: For any prime p, | ¢(p) = p — 1| (all #s between 1 and p —1).

Example: Computing ¢(p*) fo some k € Z~q.
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and
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Euler's phi function
Let
®(n) = { integers 1 <z < n — 1 relatively prime to n },
and define ¢(n) = |®(n)].
Example: For any prime p, | ¢(p) = p — 1| (all #s between 1 and p —1).

Example: Computing ¢(p*) fo some k € Z~q.
Aside: For sets, if A < B, then
{be B|b¢ B} = |B|—|A]
Consider
B={integers 1<z <pF—1}
and
A={be B | ged(b,p*) > 1} = {be B | p divides b}
= { multiples of p between 1 and p* — 1 }.
So |B| = p¥ —1and |A| = |(p* — 1)/p] = p*~! — 1. And therefore,

o(p") = |®(p¥)| = |B| — 4] = (0" — 1) = (p* 1 = 1)



Euler's phi function
Let
®(n) = { integers 1 <z < n — 1 relatively prime to n },
and define ¢(n) = |®(n)].
Example: For any prime p, | ¢(p) = p — 1| (all #s between 1 and p —1).

Example: Computing ¢(p*) fo some k € Z~q.
Aside: For sets, if A < B, then

{be B |b¢ BY| = |B| - |A].
Consider
B={integers 1<z <pF—1}
and
A={be B | ged(b,p*) > 1} = {be B | p divides b}
= { multiples of p between 1 and p* — 1 }.
So |B| = p¥ —1and |A| = |(p* — 1)/p] = p*~! — 1. And therefore,

o(p*) = 12" = |B| — [A| = (p" = 1) = ("' = 1) =[p" Hp—1)|




Euler's phi function
Let ®(n) = { integers 1 < x < n — 1 relatively prime to n },
and define ¢(n) = |®(n)].
Example: For any prime p, | ¢(p) = p — 1| (all #s between 1 and p —1).

Example: Computing ¢(p*) fo some k € Z~.
Aside: For sets, if A € B, then

{be B|b¢ B} =B —[A]
Consider
B ={integers 1 <x <pF—1}
and
A={be B| ged(b,p*) > 1} = {be B | p divides b}
= { multiples of p between 1 and p*¥ —1 }.
So |B| = p¥ —1and |A| = |(p* — 1)/p] = p*~! — 1. And therefore,

o(p*) = 12" = |B| — [A|= (" —1) = ("1 =1) =[p" p—-1)|

Next time: ¢(mn) = ¢(m)o(n) whenever ged(m,n) = 1.






