Warmup

Compute the least residues of $a^{i} \bmod n$ in each of the following examples.

1. $a=2, n=5, i=1,2,3,4,5$.
2. $a=2, n=6, i=1,2,3,4,5,6$.
3. $a=4, n=5, i=1,2,3,4,5$.
4. $a=3, n=4, i=1,2,3,4$.

Pro tip: For bigger and bigger i, instead of computing a^{i} and then reducing, instead take the reduced a^{i-1} and multiply it by a. For example, since

$$
3^{3}=27 \equiv 7 \quad(\bmod 10)
$$

you know

$$
3^{4} \equiv_{10} 3 * 7 \equiv_{10} 21 \equiv_{10} 1
$$

Last time

We solved congruences of the form

$$
a x \equiv b \quad(\bmod n) .
$$

Namely, we had two cases: Calculate $d=\operatorname{gcd}(a, n)$.

1. If $d \nmid b$, then there are no solutions.
2. If $d \mid b$, then there are exactly d solutions $(\bmod n)$.

Find them as follows:
(a) Find one solution, either by guessing...

If $d=1$ and you can find an a^{\prime} satisfying $a^{\prime} a \equiv 1(\bmod n)$, then $x \equiv_{n}\left(a^{\prime} a\right) x \equiv_{n} a^{\prime}(a x) \equiv_{n} a^{\prime} b$.
\ldots... or by using the Euclidean algorithm to calculate

$$
u a+v n=d, \quad \text { so that } \quad b=(b / d) d=(b / d) u a+(b / d) v n .
$$

Thus $x=(b / d) u$ is one solution.
(b) For the rest, add n / d until you have a full set.

Nonlinear congruences

Theorem (Polynomial Roots Mod p Theorem)
Let p be prime in $\mathbb{Z}_{>0}$, and let

$$
f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in \mathbb{Z}[x],
$$

with $n \geqslant 1$ and $p \nmid a_{n}$. Then the congruence

$$
f(x) \equiv 0 \quad(\bmod p)
$$

has at most p incongruent solutions.
(See book for proof.)

Lemma
Let p be a prime number, and let $a \in \mathbb{Z}$. Then either

$$
p \mid a, \quad \text { so that } a^{i} \equiv 0(\bmod p) \text { for all } i,
$$

or the list of the least residues of

$$
a, 2 a, 3 a, \ldots, p a
$$

is a rearrangement of the numbers

$$
0,1,2,3, \ldots,(p-1)
$$

Example: let $n=5$. The values of $a k(\bmod 5)$ are as follows:

	1	2		3	4	5
1	1	2			4	0
$\uparrow 2$	2	4			3	0
${ }^{\text {a }} 3$	3			4	2	0
$\checkmark 4$	4	3			1	0
5	0	0			0	

Theorem (Fermats Little Theorem)

Let p be a prime number, and let $a \in \mathbb{Z}$. Then either

$$
p \mid a, \quad \text { so that } a^{i} \equiv 0(\bmod p) \text { for all } i,
$$

or

$$
p \nmid a \quad \text { and } \quad a^{p-1} \equiv 1(\bmod p) .
$$

Proof. Consider the product $a(2 a)(3 a) \cdots((p-1) a) \ldots$
Now what can we do with this?

Examples

1. Compute $2^{35}(\bmod 7)$.
2. Solve $x^{103} \equiv 4(\bmod 11)$.
