Warmup

Compute the least residues of $a^i \mod n$ in each of the following examples.

1.
$$a = 2$$
, $n = 5$, $i = 1, 2, 3, 4, 5$.
2. $a = 2$, $n = 6$, $i = 1, 2, 3, 4, 5, 6$.
3. $a = 4$, $n = 5$, $i = 1, 2, 3, 4, 5$.
4. $a = 3$, $n = 4$, $i = 1, 2, 3, 4$.

Pro tip: For bigger and bigger *i*, instead of computing a^i and then reducing, instead take the reduced a^{i-1} and multiply it by *a*. For example, since

$$3^3 = 27 \equiv 7 \pmod{10},$$

you know

$$3^4 \equiv_{10} 3 * 7 \equiv_{10} 21 \equiv_{10} 1.$$

Last time

We solved congruences of the form

 $ax \equiv b \pmod{n}$.

Namely, we had two cases: Calculate d = gcd(a, n).

- 1. If $d \nmid b$, then there are no solutions.
- 2. If d|b, then there are exactly d solutions (mod n). Find them as follows:
 - (a) Find one solution, either by guessing...
 - If d = 1 and you can find an a' satisfying $a'a \equiv 1 \pmod{n}$, then $x \equiv_n (a'a)x \equiv_n a'(ax) \equiv_n a'b.$

... or by using the Euclidean algorithm to calculate

ua + vn = d, so that b = (b/d)d = (b/d)ua + (b/d)vn.

Thus x = (b/d)u is one solution.

(b) For the rest, add n/d until you have a full set.

Nonlinear congruences

Theorem (Polynomial Roots Mod p Theorem) Let p be prime in $\mathbb{Z}_{>0}$, and let

$$f(x) = a_0 + a_1 x + \dots + a_n x^n \in \mathbb{Z}[x],$$

with $n \ge 1$ and $p \nmid a_n$. Then the congruence

$$f(x) \equiv 0 \pmod{p}$$

has at most p incongruent solutions. (See book for proof.)

Lemma

Let p be a prime number, and let $a \in \mathbb{Z}$. Then either p|a, so that $a^i \equiv 0 \pmod{p}$ for all i, or the list of the least residues of

$$a, 2a, 3a, \ldots, pa$$

is a rearrangement of the numbers

$$0, 1, 2, 3, \ldots, (p-1)$$

Example: let n = 5. The values of $ak \pmod{5}$ are as follows:

$\longleftarrow k \longrightarrow$						
		1	2	3	4	5
$\uparrow \\ a \\ \downarrow$	1	1	2	3	4	0
	2	2	4	1	3	0
	3	3	1	4	2	0
	4	4	3	2	1	0
	5	0	0	0	0	0

Theorem (Fermats Little Theorem)

Let p be a prime number, and let $a \in \mathbb{Z}$. Then either p|a, so that $a^i \equiv 0 \pmod{p}$ for all i, or

 $p \nmid a$ and $a^{p-1} \equiv 1 \pmod{p}$.

Proof. Consider the product $a(2a)(3a) \cdots ((p-1)a) \dots$

Now what can we do with this?

Examples

- **1.** Compute $2^{35} \pmod{7}$.
- **2.** Solve $x^{103} \equiv 4 \pmod{11}$.