Warmup

Compute the least residues of $a^i \mod n$ in each of the following examples.

- 1. a = 2, n = 5, i = 1, 2, 3, 4, 5.
- 2. a = 2, n = 6, i = 1, 2, 3, 4, 5, 6.
- 3. a = 4, n = 5, i = 1, 2, 3, 4, 5.
- **4**. a = 3, n = 4, i = 1, 2, 3, 4.

Pro tip: For bigger and bigger i, instead of computing a^i and then reducing, instead take the reduced a^{i-1} and multiply it by a. For example, since

$$3^3 = 27 \equiv 7 \pmod{10},$$

you know

$$3^4 \equiv_{10} 3 * 7 \equiv_{10} 21 \equiv_{10} 1.$$

Last time

We solved congruences of the form

$$ax \equiv b \pmod{n}$$
.

Namely, we had two cases: Calculate $d = \gcd(a, n)$.

- 1. If $d \nmid b$, then there are no solutions.
- 2. If d|b, then there are exactly d solutions (mod n). Find them as follows:
 - (a) Find one solution, either by guessing. . .

```
If d=1 and you can find an a' satisfying a'a\equiv 1\pmod n, then x\equiv_n (a'a)x\equiv_n a'(ax)\equiv_n a'b.
```

...or by using the Euclidean algorithm to calculate

$$ua + vn = d$$
, so that $b = (b/d)d = (b/d)ua + (b/d)vn$.

Thus x = (b/d)u is one solution.

(b) For the rest, add n/d until you have a full set.

Nonlinear congruences

Theorem (Polynomial Roots Mod p Theorem)

Let p be prime in $\mathbb{Z}_{>0}$, and let

$$f(x) = a_0 + a_1 x + \dots + a_n x^n \in \mathbb{Z}[x],$$

with $n \geqslant 1$ and $p \nmid a_n$. Then the congruence

$$f(x) \equiv 0 \pmod{p}$$

has at most p incongruent solutions. (See book for proof.)

Lemma

Let p be a prime number, and let $a \in \mathbb{Z}$. Then either p|a, so that $a^i \equiv 0 \pmod p$ for all i, or the list of the least residues of

 $a, 2a, 3a, \ldots, pa$

is a rearrangement of the numbers

$$0,1, 2, 3, \ldots, (p-1)$$

Lemma

Let p be a prime number, and let $a \in \mathbb{Z}$. Then either p|a, so that $a^i \equiv 0 \pmod p$ for all i,

or the list of the least residues of

$$a, 2a, 3a, \ldots, pa$$
 is a rearrangement of the numbers

$$0, 1, 2, 3, \ldots, (p-1)$$

Example: let n = 5. The values of $ak \pmod{5}$ are as follows:

	$\longleftarrow k \longrightarrow$								
		1	2	3	4	5			
- a ↓	1	1	2	3	4	0			
	2	2	4	1	3	0			
	3	3	1	4	2	0			
	4	4	3	2	1	0			
	5	0	0	0	0	0			

Let p be a prime number, and let $a\in\mathbb{Z}$. Then either $p|a,\qquad \text{so that }a^i\equiv 0\pmod p \text{ for all }i,$

or

 $p \nmid a$ and $a^{p-1} \equiv 1 \pmod{p}$.

Let p be a prime number, and let $a \in \mathbb{Z}$. Then either p|a, so that $a^i \equiv 0 \pmod{p}$ for all i,

or

$$p \nmid a$$
 and $a^{p-1} \equiv 1 \pmod{p}$.

Proof. Consider the product $a(2a)(3a)\cdots((p-1)a)...$

Let p be a prime number, and let $a\in\mathbb{Z}$. Then either $p|a,\qquad \text{so that }a^i\equiv 0\pmod p \text{ for all }i,$ or

p
mid a and $a^{p-1} \equiv 1 \pmod p$.

Proof. Consider the product $a(2a)(3a)\cdots((p-1)a)...$

Now what can we do with this?

Let p be a prime number, and let $a\in\mathbb{Z}$. Then either $p|a,\qquad \text{so that }a^i\equiv 0\pmod p \text{ for all }i,$ or

$$p \nmid a$$
 and $a^{p-1} \equiv 1 \pmod{p}$.

Proof. Consider the product $a(2a)(3a)\cdots((p-1)a)...$

Now what can we do with this?

Examples

1. Compute $2^{35} \pmod{7}$.

Let p be a prime number, and let $a\in\mathbb{Z}$. Then either $p|a,\qquad \text{so that }a^i\equiv 0\pmod p \text{ for all }i,$ or

 $p \nmid a$ and $a^{p-1} \equiv 1 \pmod{p}$.

Proof. Consider the product $a(2a)(3a)\cdots((p-1)a)\dots$

Now what can we do with this?

Examples

- 1. Compute $2^{35} \pmod{7}$.
- 2. Solve $x^{103} \equiv 4 \pmod{11}$.