Last time: Congruences

For integers a, b, we say a is congruent to $b \mod (mod) n$, written

 $a \equiv b \pmod{n}$ or $a \equiv_n b$,

if a and b have the same remainders when divided by n.

Equivalently: $a \equiv b \pmod{n}$ if and only if n divides a - b.

Example: The numbers that are equivalent to 4 modulo 6 are

Some properties: Fix $n \ge 1$.

- "Congruent" is an equivalence relation. The least residue of a modulo n is the remainder when a is divided by n. (This is the *favorite representative* of all numbers that are congruent to a mod n.)
- 2. If $a_1 \equiv b_1 \pmod{n}$ and $a_2 \equiv b_2 \pmod{n}$, then

(a) $a_1 + a_2 \equiv b_1 + b_2 \pmod{n}$, and

(b) $a_1a_2 \equiv b_1b_2 \pmod{n}$.

Arithmetic

If $a_1 \equiv b_1 \pmod{n}$ and $a_2 \equiv b_2 \pmod{n}$, then

(a) $a_1 + a_2 \equiv b_1 + b_2 \pmod{n}$, and

(b) $a_1 a_2 \equiv b_1 b_2 \pmod{n}$.

Division. In the integers, suppose you want to solve

 $ax = b, \qquad a, b \in \mathbb{Z}.$

Either $b/a \in \mathbb{Z}$, or there is no solution.

In modular arithmetic, there are three possibilities: The equation $ax \equiv b \pmod{n}$ either

- 1. has no solutions;
- 2. has one solution (up to congruence);
- 3. has multiple solutions (up to congruence).

Here, up to congruence means that we consider two solutions $x_1 \neq x_2$ to be the "same" if $x_1 \equiv x_2 \pmod{n}$. For example, x = 2 is a solution to $3x \equiv 6 \pmod{10}$. But so are

12, 22, 31, ..., as well as $-8, -18, -28, \ldots$

Division

On the homework, you prove that if gcd(c, n) = 1, then

$$ac \equiv bc \pmod{n}$$
 implies $a \equiv b \pmod{n}$.

This turns out to be an if and only if:

Claim: if $gcd(c, n) \neq 1$, then there are a and b such that $ac \equiv bc \pmod{n}$ but $a \not\equiv b \pmod{n}$. Proof: Letting gcd(n, c) = g > 1, there are $2 \leq k < n$ and $2 \leq \ell < c$ such that kg = n and $\ell g = c$. So $ck = \ell gk = \ell n$. Therefore

$$ck \equiv_n 0 \equiv_n c \cdot 0.$$

But since $2 \leq k < n$, $k \not\equiv 0 \pmod{0}$.

Solving congruences

Solving congruences: If $a + x \equiv b \pmod{n}$, then $x \equiv_n a + x - a \equiv_n b - a$.

Again, solving equations with multiplication is trickier!

Example: $4x = 8 \pmod{7}$. Since gcd(4,7) = 1, and $8 \equiv_7 4 \cdot 2$, we have $x = 2 \pmod{7}$.

Example: $4x = 8 \pmod{10}$. Since gcd(4, 10) = 2, we end up having several solutions...

Again: If a = qn + r with $0 \le r < n$, then we call r the least residue of $a \mod n$. And if x is a solution to a congruence, then so are x + nk for all $k \in \mathbb{Z}$ (homework). So we only really care about the least residue solutions.

x	0	1	2	3	4	5	6	7	8	9	
4x	0	4	8	12	16	20	24	28	32	36	
least residue	0	4	8	2	6	0	4	8	2	6	

Division

Example: Solve $4x \equiv 3 \pmod{19}$. "Dividing by 4" becomes "multiply by m s.t. $4m \equiv 1 \pmod{19}$. If gcd(a, n) = 1, then there are $k, l \in \mathbb{Z}$ satisfying ka + ln = 1. So 1 - ka = ln, implying $ka \equiv_n 1$. Therefore if $ax \equiv b \pmod{n}$, then $x \equiv_n kax \equiv kb$. In our example above, $5 \cdot 4 = 20 \equiv 1 \pmod{19}$. So $x \equiv_{19} 5 \cdot 4 \cdot x \equiv_{19} 5 \cdot 3 \equiv_{19} 15$. If gcd(a, n) = 1 and $ax \equiv b \pmod{n}$, then 1. compute $1 \leq k < n$ such that $ka \equiv 1 \pmod{n}$, so that 2. $x \equiv kb \pmod{n}$. You try: Compute x such that $(1) \ 3x \equiv 7 \pmod{10}$ (2) $5x \equiv 2 \pmod{9}$ and check your answer.

Division

Example: Solve $4x \equiv 3 \pmod{6}$. This is equivalent to 6|(4x-3). This is not possible!

Note that

$$ax \equiv b \pmod{n}$$
 iff $n|(ax-b)$, i.e. $ax - b = nk$,

for some $k \in \mathbb{Z}$. Therefore

 $ax \equiv b \pmod{n}$ if and only if b = ax - nk.

Now, suppose gcd(a, n) = d > 1. Then d|a and d|n imply d|b. Therefore,

if $gcd(a, n) \nmid b$, then there is no solution to $ax \equiv b \pmod{n}$.

Division

Example: Solve $4x \equiv 2 \pmod{6}$.										
	x	0	1	2	3	4	5			
	4x	0	4	8	12	16	20			
	least residue	0	4	2	0	4	2			

Suppose gcd(a, n) = d > 1. Then

if $gcd(a, n) \notin b$, then there is no solution to $ax \equiv b \pmod{n}$. Otherwise, d|b. So b = dk for some $k \in \mathbb{Z}$. Let $u, v \in \mathbb{Z}$ satisfy

d = ua + vn. Then b = dk = (ku)a + (kv)n.

Therefore $a(ku) \equiv b \pmod{n}$. (So x = uk = u(b/d) is a solution.) Recall all solutions to u'a + v'n = d are of the form

$$u' = u + \ell(n/d)$$
 and $v' = v - \ell(a/d)$

All solutions: Find one solution $u, v \in \mathbb{Z}$ to d = ua + vn. If d|b, then the solutions to $ax \equiv b \pmod{n}$ are given by

$$x = u(b/d) + \ell(n/d),$$
 for $\ell = 0, 1, \dots, d-1.$

Nonlinear congruences

Theorem (Polynomial Roots Mod p Theorem) Let p be prime in $\mathbb{Z}_{>0}$, and let

$$f(x) = a_0 + a_1 x + \dots + a_n x^n \in \mathbb{Z}[x],$$

with $n \ge 1$ and $p \nmid a_n$. Then the congruence

$$f(x) \equiv 0 \pmod{n}$$

has at most d incongruent solutions.