Last time: Congruences

For integers a, b, we say a is congruent to b modulo (mod) n, written

$$
a \equiv b(\bmod n) \quad \text { or } \quad a \equiv_{n} b,
$$

if a and b have the same remainders when divided by n.
Equivalently: $a \equiv b(\bmod n)$ if and only if n divides $a-b$.
Example: The numbers that are equivalent to 4 modulo 6 are

Some properties: Fix $n \geqslant 1$.

1. "Congruent" is an equivalence relation. The least residue of a modulo n is the remainder when a is divided by n. (This is the favorite representative of all numbers that are congruent to $a \bmod n$.)
2. If $a_{1} \equiv b_{1}(\bmod n)$ and $a_{2} \equiv b_{2}(\bmod n)$, then
(a) $a_{1}+a_{2} \equiv b_{1}+b_{2}(\bmod n)$, and
(b) $a_{1} a_{2} \equiv b_{1} b_{2}(\bmod n)$.

Arithmetic

If $a_{1} \equiv b_{1}(\bmod n)$ and $a_{2} \equiv b_{2}(\bmod n)$, then
(a) $a_{1}+a_{2} \equiv b_{1}+b_{2}(\bmod n)$, and
(b) $a_{1} a_{2} \equiv b_{1} b_{2}(\bmod n)$.

Division. In the integers, suppose you want to solve

$$
a x=b, \quad a, b \in \mathbb{Z} .
$$

Either $b / a \in \mathbb{Z}$, or there is no solution.
In modular arithmetic, there are three possibilities:
The equation $a x \equiv b(\bmod n)$ either

1. has no solutions;
2. has one solution (up to congruence);
3. has multiple solutions (up to congruence).

Here, up to congruence means that we consider two solutions $x_{1} \neq x_{2}$ to be the "same" if $x_{1} \equiv x_{2}(\bmod n)$.
For example, $x=2$ is a solution to $3 x \equiv 6(\bmod 10)$. But so are
$12,22,31, \ldots$, as well as $-8,-18,-28, \ldots$.

Division

On the homework, you prove that if $\operatorname{gcd}(c, n)=1$, then

$$
a c \equiv b c \quad(\bmod n) \quad \text { implies } \quad a \equiv b \quad(\bmod n) .
$$

This turns out to be an if and only if:
Claim: if $\operatorname{gcd}(c, n) \neq 1$, then there are a and b such that

$$
a c \equiv b c(\bmod n) \quad \text { but } \quad a \not \equiv b(\bmod n) .
$$

Proof: Letting $\operatorname{gcd}(n, c)=g>1$, there are $2 \leqslant k<n$ and
$2 \leqslant \ell<c$ such that $k g=n$ and $\ell g=c$. So $c k=\ell g k=\ell n$.
Therefore

$$
c k \equiv_{n} 0 \equiv_{n} c \cdot 0 .
$$

But since $2 \leqslant k<n, k \not \equiv 0(\bmod 0)$.

Solving congruences

Solving congruences: If $a+x \equiv b(\bmod n)$, then

$$
x \equiv_{n} a+x-a \equiv_{n} b-a .
$$

Again, solving equations with multiplication is trickier!
Example: $4 x=8(\bmod 7)$.
Since $\operatorname{gcd}(4,7)=1$, and $8 \equiv_{7} 4 \cdot 2$, we have $x=2(\bmod 7)$.
Example: $4 x=8(\bmod 10)$.
Since $\operatorname{gcd}(4,10)=2$, we end up having several solutions. . .
Again: If $a=q n+r$ with $0 \leqslant r<n$, then we call r the least residue of $a \bmod n$. And if x is a solution to a congruence, then so are $x+n k$ for all $k \in \mathbb{Z}$ (homework). So we only really care about the least residue solutions.

x	0	1	2	3	4	5	6	7	8	9
$4 x$	0	4	8	12	16	20	24	28	32	36
least residue	0	4	8	2	6	0	4	8	2	6

Division

Example: Solve $4 x \equiv 3(\bmod 19)$.
"Dividing by 4 " becomes "multiply by m s.t. $4 m \equiv 1(\bmod 19)$.
If $\operatorname{gcd}(a, n)=1$, then there are $k, \ell \in \mathbb{Z}$ satisfying

$$
k a+\ell n=1 . \quad \text { So } 1-k a=\ell n, \quad \text { implying } k a \equiv_{n} 1 .
$$

Therefore

$$
\text { if } a x \equiv b(\bmod n), \quad \text { then } \quad x \equiv_{n} k a x \equiv k b .
$$

In our example above, $5 \cdot 4=20 \equiv 1(\bmod 19)$. So

$$
x \equiv_{19} 5 \cdot 4 \cdot x \equiv_{19} 5 \cdot 3 \equiv_{19} 15 .
$$

If $\operatorname{gcd}(a, n)=1$ and $a x \equiv b(\bmod n)$, then

1. compute $1 \leqslant k<n$ such that $k a \equiv 1(\bmod n)$, so that
2. $x \equiv k b(\bmod n)$.

You try: Compute x such that
(1) $3 x \equiv 7(\bmod 10)$
(2) $5 x \equiv 2(\bmod 9)$
and check your answer.

Division

Example: Solve $4 x \equiv 3(\bmod 6)$.
This is equivalent to

$$
6 \mid(4 x-3) . \quad \text { This is not possible! }
$$

Note that

$$
a x \equiv b \quad(\bmod n) \quad \text { iff } \quad n \mid(a x-b), \quad \text { i.e. } a x-b=n k,
$$

for some $k \in \mathbb{Z}$. Therefore

$$
a x \equiv b(\bmod n) \quad \text { if and only if } \quad b=a x-n k .
$$

Now, suppose $\operatorname{gcd}(a, n)=d>1$. Then $d \mid a$ and $d \mid n$ imply $d \mid b$.
Therefore, if $\operatorname{gcd}(a, n) \nmid b$, then there is no solution to $a x \equiv b(\bmod n)$.

Division

Example: Solve $4 x \equiv 2(\bmod 6)$.

x	0	1	2	3	4	5
$4 x$	0	4	8	12	16	20
least residue	0	4	2	0	4	2

Suppose $\operatorname{gcd}(a, n)=d>1$. Then
if $\operatorname{gcd}(a, n) \nmid b$, then there is no solution to $a x \equiv b(\bmod n)$.
Otherwise, $d \mid b$. So $b=d k$ for some $k \in \mathbb{Z}$. Let $u, v \in \mathbb{Z}$ satisfy

$$
d=u a+v n . \quad \text { Then } b=d k=(k u) a+(k v) n .
$$

Therefore $a(k u) \equiv b(\bmod n)$. (So $x=u k=u(b / d)$ is a solution.)
Recall all solutions to $u^{\prime} a+v^{\prime} n=d$ are of the form

$$
u^{\prime}=u+\ell(n / d) \quad \text { and } \quad v^{\prime}=v-\ell(a / d) .
$$

All solutions: Find one solution $u, v \in \mathbb{Z}$ to $d=u a+v n$. If $d \mid b$, then the solutions to $a x \equiv b(\bmod n)$ are given by

$$
x=u(b / d)+\ell(n / d), \quad \text { for } \quad \ell=0,1, \ldots, d-1 .
$$

Nonlinear congruences

Theorem (Polynomial Roots Mod p Theorem)
Let p be prime in $\mathbb{Z}_{>0}$, and let

$$
f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in \mathbb{Z}[x],
$$

with $n \geqslant 1$ and $p \nmid a_{n}$. Then the congruence

$$
f(x) \equiv 0 \quad(\bmod n)
$$

has at most d incongruent solutions.

