For integers a, b, we say a is congruent to $b \mod (mod) n$, written

$$a \equiv b \pmod{n}$$
 or $a \equiv_n b$,

if a and b have the same remainders when divided by n.

Equivalently: $a \equiv b \pmod{n}$ if and only if n divides a - b.

For integers a, b, we say a is congruent to b modulo (mod) n, written

$$a \equiv b \pmod{n}$$
 or $a \equiv_n b$,

if a and b have the same remainders when divided by n.

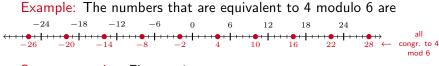
Equivalently: $a \equiv b \pmod{n}$ if and only if n divides a - b.

For integers a, b, we say a is congruent to b modulo (mod) n, written

$$a \equiv b \pmod{n}$$
 or $a \equiv_n b$,

if a and b have the same remainders when divided by n.

Equivalently: $a \equiv b \pmod{n}$ if and only if n divides a - b.



Some properties: Fix $n \ge 1$.

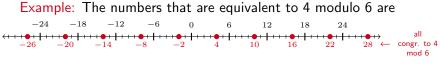
1. "Congruent" is an equivalence relation.

For integers a, b, we say a is congruent to $b \mod (mod) n$, written

$$a \equiv b \pmod{n}$$
 or $a \equiv_n b$,

if a and b have the same remainders when divided by n.

Equivalently: $a \equiv b \pmod{n}$ if and only if n divides a - b.



Some properties: Fix $n \ge 1$.

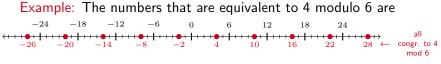
 "Congruent" is an equivalence relation. The least residue of a modulo n is the remainder when a is divided by n. (This is the *favorite representative* of all numbers that are congruent to a mod n.)

For integers a, b, we say a is congruent to $b \mod (mod) n$, written

$$a \equiv b \pmod{n}$$
 or $a \equiv_n b$,

if a and b have the same remainders when divided by n.

Equivalently: $a \equiv b \pmod{n}$ if and only if n divides a - b.



Some properties: Fix $n \ge 1$.

 "Congruent" is an equivalence relation. The least residue of a modulo n is the remainder when a is divided by n. (This is the *favorite representative* of all numbers that are congruent to a mod n.)

2. If
$$a_1 \equiv b_1 \pmod{n}$$
 and $a_2 \equiv b_2 \pmod{n}$, then

(a)
$$a_1 + a_2 \equiv b_1 + b_2 \pmod{n}$$
, and
(b) $a_1 a_2 \equiv b_1 b_2 \pmod{n}$.

If
$$a_1 \equiv b_1 \pmod{n}$$
 and $a_2 \equiv b_2 \pmod{n}$, then
(a) $a_1 + a_2 \equiv b_1 + b_2 \pmod{n}$, and
(b) $a_1a_2 \equiv b_1b_2 \pmod{n}$.
Division. In the integers, suppose you want to solve

$$ax = b, \qquad a, b \in \mathbb{Z}.$$

If
$$a_1 \equiv b_1 \pmod{n}$$
 and $a_2 \equiv b_2 \pmod{n}$, then
(a) $a_1 + a_2 \equiv b_1 + b_2 \pmod{n}$, and
(b) $a_1a_2 \equiv b_1b_2 \pmod{n}$.
Division. In the integers, suppose you want to solve
 $ax = b$, $a, b \in \mathbb{Z}$.

Either $b/a \in \mathbb{Z}$, or there is no solution.

If
$$a_1 \equiv b_1 \pmod{n}$$
 and $a_2 \equiv b_2 \pmod{n}$, then
(a) $a_1 + a_2 \equiv b_1 + b_2 \pmod{n}$, and
(b) $a_1a_2 \equiv b_1b_2 \pmod{n}$.
Division. In the integers, suppose you want to solve
 $ax = b$, $a, b \in \mathbb{Z}$.
Either $b/a \in \mathbb{Z}$, or there is no solution.

In modular arithmetic, there are three possibilities:

If
$$a_1 \equiv b_1 \pmod{n}$$
 and $a_2 \equiv b_2 \pmod{n}$, then
(a) $a_1 + a_2 \equiv b_1 + b_2 \pmod{n}$, and
(b) $a_1a_2 \equiv b_1b_2 \pmod{n}$.
Division. In the integers, suppose you want to sol

Division. In the integers, suppose you want to solve $ax = b, \qquad a, b \in \mathbb{Z}.$ Either $b/a \in \mathbb{Z}$, or there is no solution.

In modular arithmetic, there are three possibilities: The equation $ax \equiv b \pmod{n}$ either

- 1. has no solutions;
- 2. has one solution (up to congruence);
- 3. has multiple solutions (up to congruence).

If
$$a_1 \equiv b_1 \pmod{n}$$
 and $a_2 \equiv b_2 \pmod{n}$, then
(a) $a_1 + a_2 \equiv b_1 + b_2 \pmod{n}$, and
(b) $a_1a_2 \equiv b_1b_2 \pmod{n}$.
Division in the integers suppose you want to set

Division. In the integers, suppose you want to solve $ax = b, \qquad a, b \in \mathbb{Z}.$ Either $b/a \in \mathbb{Z}$, or there is no solution.

In modular arithmetic, there are three possibilities: The equation $ax \equiv b \pmod{n}$ either

- 1. has no solutions;
- 2. has one solution (up to congruence);
- 3. has multiple solutions (up to congruence).

Here, up to congruence means that we consider two solutions $x_1 \neq x_2$ to be the "same" if $x_1 \equiv x_2 \pmod{n}$. For example, x = 2 is a solution to $3x \equiv 6 \pmod{10}$.

If
$$a_1 \equiv b_1 \pmod{n}$$
 and $a_2 \equiv b_2 \pmod{n}$, then
(a) $a_1 + a_2 \equiv b_1 + b_2 \pmod{n}$, and
(b) $a_1a_2 \equiv b_1b_2 \pmod{n}$.
Division in the integers suppose you want to set

Division. In the integers, suppose you want to solve $ax = b, \qquad a, b \in \mathbb{Z}.$ Either $b/a \in \mathbb{Z}$, or there is no solution.

In modular arithmetic, there are three possibilities: The equation $ax \equiv b \pmod{n}$ either

- 1. has no solutions;
- 2. has one solution (up to congruence);
- 3. has multiple solutions (up to congruence).

Here, up to congruence means that we consider two solutions $x_1 \neq x_2$ to be the "same" if $x_1 \equiv x_2 \pmod{n}$. For example, x = 2 is a solution to $3x \equiv 6 \pmod{10}$. But so are 12, 22, 31, ..., as well as $-8, -18, -28, \ldots$

On the homework, you prove that if gcd(c, n) = 1, then

 $ac \equiv bc \pmod{n}$ implies $a \equiv b \pmod{n}$.

On the homework, you prove that if gcd(c, n) = 1, then

 $ac \equiv bc \pmod{n}$ implies $a \equiv b \pmod{n}$.

This turns out to be an if and only if:

Claim: if $gcd(c, n) \neq 1$, then there are a and b such that $ac \equiv bc \pmod{n}$ but $a \not\equiv b \pmod{n}$.

On the homework, you prove that if gcd(c, n) = 1, then

 $ac \equiv bc \pmod{n}$ implies $a \equiv b \pmod{n}$.

This turns out to be an if and only if:

Claim: if $gcd(c, n) \neq 1$, then there are a and b such that $ac \equiv bc \pmod{n}$ but $a \not\equiv b \pmod{n}$. Proof: Letting gcd(n, c) = g > 1, there are $2 \leq k < n$ and $2 \leq \ell < c$ such that kg = n and $\ell g = c$.

On the homework, you prove that if gcd(c, n) = 1, then

 $ac \equiv bc \pmod{n}$ implies $a \equiv b \pmod{n}$.

This turns out to be an if and only if:

Claim: if $gcd(c, n) \neq 1$, then there are a and b such that $ac \equiv bc \pmod{n}$ but $a \not\equiv b \pmod{n}$. Proof: Letting gcd(n, c) = g > 1, there are $2 \leq k < n$ and $2 \leq \ell < c$ such that kg = n and $\ell g = c$. So $ck = \ell gk = \ell n$.

On the homework, you prove that if gcd(c, n) = 1, then

 $ac \equiv bc \pmod{n}$ implies $a \equiv b \pmod{n}$.

This turns out to be an if and only if:

Claim: if $gcd(c, n) \neq 1$, then there are a and b such that $ac \equiv bc \pmod{n}$ but $a \not\equiv b \pmod{n}$. Proof: Letting gcd(n, c) = g > 1, there are $2 \leq k < n$ and $2 \leq \ell < c$ such that kg = n and $\ell g = c$. So $ck = \ell gk = \ell n$. Therefore

$$ck \equiv_n 0$$

On the homework, you prove that if gcd(c, n) = 1, then

 $ac \equiv bc \pmod{n}$ implies $a \equiv b \pmod{n}$.

This turns out to be an if and only if:

Claim: if $gcd(c, n) \neq 1$, then there are a and b such that $ac \equiv bc \pmod{n}$ but $a \not\equiv b \pmod{n}$. Proof: Letting gcd(n, c) = g > 1, there are $2 \leq k < n$ and $2 \leq \ell < c$ such that kg = n and $\ell g = c$. So $ck = \ell gk = \ell n$. Therefore

$$ck \equiv_n 0 \equiv_n c \cdot 0.$$

On the homework, you prove that if gcd(c, n) = 1, then

 $ac \equiv bc \pmod{n}$ implies $a \equiv b \pmod{n}$.

This turns out to be an if and only if:

Claim: if $gcd(c, n) \neq 1$, then there are a and b such that $ac \equiv bc \pmod{n}$ but $a \not\equiv b \pmod{n}$. Proof: Letting gcd(n, c) = g > 1, there are $2 \leq k < n$ and $2 \leq \ell < c$ such that kg = n and $\ell g = c$. So $ck = \ell gk = \ell n$. Therefore

$$ck \equiv_n 0 \equiv_n c \cdot 0.$$
 But since $2 \leqslant k < n$, $k \not\equiv 0 \pmod{0}.$

If $a_1 \equiv b_1 \pmod{n}$ and $a_2 \equiv b_2 \pmod{n}$, then (a) $a_1 + a_2 \equiv b_1 + b_2 \pmod{n}$, and (b) $a_1a_2 \equiv b_1b_2 \pmod{n}$. And if gcd(n,c) = 1 and $ac \equiv bc \pmod{n}$, then $a \equiv b \pmod{n}$.

If
$$a_1 \equiv b_1 \pmod{n}$$
 and $a_2 \equiv b_2 \pmod{n}$, then
(a) $a_1 + a_2 \equiv b_1 + b_2 \pmod{n}$, and
(b) $a_1a_2 \equiv b_1b_2 \pmod{n}$.
And if $gcd(n, c) = 1$ and $ac \equiv bc \pmod{n}$, then $a \equiv b \pmod{n}$.

Solving congruences: If $a + x \equiv b \pmod{n}$, then

$$x \equiv_n a + x - a \equiv_n b - a$$

If
$$a_1 \equiv b_1 \pmod{n}$$
 and $a_2 \equiv b_2 \pmod{n}$, then
(a) $a_1 + a_2 \equiv b_1 + b_2 \pmod{n}$, and
(b) $a_1a_2 \equiv b_1b_2 \pmod{n}$.
And if $gcd(n, c) = 1$ and $ac \equiv bc \pmod{n}$, then $a \equiv b \pmod{n}$.

Solving congruences: If $a + x \equiv b \pmod{n}$, then $x \equiv_n a + x - a \equiv_n b - a$.

Again, solving equations with multiplication is trickier!

If
$$a_1 \equiv b_1 \pmod{n}$$
 and $a_2 \equiv b_2 \pmod{n}$, then
(a) $a_1 + a_2 \equiv b_1 + b_2 \pmod{n}$, and
(b) $a_1a_2 \equiv b_1b_2 \pmod{n}$.
And if $gcd(n, c) = 1$ and $ac \equiv bc \pmod{n}$, then $a \equiv b \pmod{n}$.

Solving congruences: If $a + x \equiv b \pmod{n}$, then $x \equiv_n a + x - a \equiv_n b - a$.

Again, solving equations with multiplication is trickier!

Example: $4x \equiv 8 \pmod{7}$.

If
$$a_1 \equiv b_1 \pmod{n}$$
 and $a_2 \equiv b_2 \pmod{n}$, then
(a) $a_1 + a_2 \equiv b_1 + b_2 \pmod{n}$, and
(b) $a_1a_2 \equiv b_1b_2 \pmod{n}$.
And if $gcd(n, c) = 1$ and $ac \equiv bc \pmod{n}$, then $a \equiv b \pmod{n}$.

Solving congruences: If $a + x \equiv b \pmod{n}$, then $x \equiv_n a + x - a \equiv_n b - a$.

Again, solving equations with multiplication is trickier!

Example: $4x \equiv 8 \pmod{7}$.

Since gcd(4,7) = 1, and $8 \equiv_7 4 \cdot 2$, we have $x \equiv 2 \pmod{7}$.

If
$$a_1 \equiv b_1 \pmod{n}$$
 and $a_2 \equiv b_2 \pmod{n}$, then
(a) $a_1 + a_2 \equiv b_1 + b_2 \pmod{n}$, and
(b) $a_1a_2 \equiv b_1b_2 \pmod{n}$.
And if $gcd(n, c) = 1$ and $ac \equiv bc \pmod{n}$, then $a \equiv b \pmod{n}$.

Solving congruences: If $a + x \equiv b \pmod{n}$, then $x \equiv_n a + x - a \equiv_n b - a$.

Again, solving equations with multiplication is trickier!

Example: $4x \equiv 8 \pmod{7}$. Since gcd(4,7) = 1, and $8 \equiv_7 4 \cdot 2$, we have $x \equiv 2 \pmod{7}$. Example: $4x \equiv 8 \pmod{10}$.

If
$$a_1 \equiv b_1 \pmod{n}$$
 and $a_2 \equiv b_2 \pmod{n}$, then
(a) $a_1 + a_2 \equiv b_1 + b_2 \pmod{n}$, and
(b) $a_1a_2 \equiv b_1b_2 \pmod{n}$.
And if $gcd(n, c) = 1$ and $ac \equiv bc \pmod{n}$, then $a \equiv b \pmod{n}$.

Solving congruences: If $a + x \equiv b \pmod{n}$, then $x \equiv_n a + x - a \equiv_n b - a$.

Again, solving equations with multiplication is trickier!

Example: $4x \equiv 8 \pmod{7}$. Since gcd(4,7) = 1, and $8 \equiv_7 4 \cdot 2$, we have $x \equiv 2 \pmod{7}$. Example: $4x \equiv 8 \pmod{10}$. Since gcd(4,10) = 2, we end up having several solutions...

If
$$a_1 \equiv b_1 \pmod{n}$$
 and $a_2 \equiv b_2 \pmod{n}$, then
(a) $a_1 + a_2 \equiv b_1 + b_2 \pmod{n}$, and
(b) $a_1a_2 \equiv b_1b_2 \pmod{n}$.
And if $gcd(n, c) = 1$ and $ac \equiv bc \pmod{n}$, then $a \equiv b \pmod{n}$.

Solving congruences: If $a + x \equiv b \pmod{n}$, then $x \equiv_n a + x - a \equiv_n b - a$.

Again, solving equations with multiplication is trickier!

Example: $4x \equiv 8 \pmod{7}$. Since gcd(4,7) = 1, and $8 \equiv_7 4 \cdot 2$, we have $x \equiv 2 \pmod{7}$. Example: $4x \equiv 8 \pmod{10}$. Since gcd(4,10) = 2, we end up having several solutions...

Again: If a = qn + r with $0 \le r < n$, then we call r the least residue of $a \mod n$.

If
$$a_1 \equiv b_1 \pmod{n}$$
 and $a_2 \equiv b_2 \pmod{n}$, then
(a) $a_1 + a_2 \equiv b_1 + b_2 \pmod{n}$, and
(b) $a_1a_2 \equiv b_1b_2 \pmod{n}$.
And if $gcd(n,c) = 1$ and $ac \equiv bc \pmod{n}$, then $a \equiv b \pmod{n}$.

Solving congruences: If $a + x \equiv b \pmod{n}$, then $x \equiv_n a + x - a \equiv_n b - a$.

Again, solving equations with multiplication is trickier!

Example: $4x \equiv 8 \pmod{7}$. Since gcd(4,7) = 1, and $8 \equiv_7 4 \cdot 2$, we have $x \equiv 2 \pmod{7}$. Example: $4x \equiv 8 \pmod{10}$. Since gcd(4,10) = 2, we end up having several solutions...

Again: If a = qn + r with $0 \le r < n$, then we call r the least residue of $a \mod n$. And if x is a solution to a congruence, then so are x + nk for all $k \in \mathbb{Z}$ (homework).

If
$$a_1 \equiv b_1 \pmod{n}$$
 and $a_2 \equiv b_2 \pmod{n}$, then
(a) $a_1 + a_2 \equiv b_1 + b_2 \pmod{n}$, and
(b) $a_1a_2 \equiv b_1b_2 \pmod{n}$.
And if $gcd(n,c) = 1$ and $ac \equiv bc \pmod{n}$, then $a \equiv b \pmod{n}$.

Solving congruences: If $a + x \equiv b \pmod{n}$, then $x \equiv_n a + x - a \equiv_n b - a$.

Again, solving equations with multiplication is trickier!

Example: $4x \equiv 8 \pmod{7}$. Since gcd(4,7) = 1, and $8 \equiv_7 4 \cdot 2$, we have $x \equiv 2 \pmod{7}$. Example: $4x \equiv 8 \pmod{10}$. Since gcd(4,10) = 2, we end up having several solutions...

Again: If a = qn + r with $0 \le r < n$, then we call r the least residue of $a \mod n$. And if x is a solution to a congruence, then so are x + nk for all $k \in \mathbb{Z}$ (homework). So we only really care about the least residue solutions.

Solving congruences: If $a + x \equiv b \pmod{n}$, then $x \equiv_n a + x - a \equiv_n b - a$.

Again, solving equations with multiplication is trickier!

Example: $4x \equiv 8 \pmod{7}$. Since gcd(4,7) = 1, and $8 \equiv_7 4 \cdot 2$, we have $x \equiv 2 \pmod{7}$. Example: $4x \equiv 8 \pmod{10}$. Since gcd(4,10) = 2, we end up having several solutions...

Again: If a = qn + r with $0 \le r < n$, then we call r the least residue of $a \mod n$. And if x is a solution to a congruence, then so are x + nk for all $k \in \mathbb{Z}$ (homework). So we only really care about the least residue solutions.

x	0	1	2	3	4	5	6	7	8	9
4x	0	4	8	12	16	20	24	28	32	36
least residue	0	4	8	2	6	0	4	8	2	6

Solving congruences: If $a + x \equiv b \pmod{n}$, then $x \equiv_n a + x - a \equiv_n b - a$.

Again, solving equations with multiplication is trickier!

Example: $4x \equiv 8 \pmod{7}$. Since gcd(4,7) = 1, and $8 \equiv_7 4 \cdot 2$, we have $x \equiv 2 \pmod{7}$. Example: $4x \equiv 8 \pmod{10}$. Since gcd(4,10) = 2, we end up having several solutions...

Again: If a = qn + r with $0 \le r < n$, then we call r the least residue of $a \mod n$. And if x is a solution to a congruence, then so are x + nk for all $k \in \mathbb{Z}$ (homework). So we only really care about the least residue solutions.

x	0	1	2	3	4	5	6	7	8	9
4x	0	4	8	12	16	20	24	28	32	36
least residue	0	4	8	2	6	0	4	8	2	6

Example: Solve $4x \equiv 3 \pmod{19}$.

Example: Solve $4x \equiv 3 \pmod{19}$. "Dividing by 4" becomes "multiply by $m \text{ s.t. } 4m \equiv 1 \pmod{19}$.

Example: Solve $4x \equiv 3 \pmod{19}$. "Dividing by 4" becomes "multiply by $m \text{ s.t. } 4m \equiv 1 \pmod{19}$.

If gcd(a,n) = 1, then there are $k, \ell \in \mathbb{Z}$ satisfying $ka + \ell n = 1$.

Example: Solve $4x \equiv 3 \pmod{19}$. "Dividing by 4" becomes "multiply by $m \text{ s.t. } 4m \equiv 1 \pmod{19}$.

If gcd(a, n) = 1, then there are $k, \ell \in \mathbb{Z}$ satisfying

$$ka + \ell n = 1$$
. So $1 - ka = \ell n$

Example: Solve $4x \equiv 3 \pmod{19}$. "Dividing by 4" becomes "multiply by m s.t. $4m \equiv 1 \pmod{19}$.

If gcd(a, n) = 1, then there are $k, \ell \in \mathbb{Z}$ satisfying

 $ka + \ell n = 1$. So $1 - ka = \ell n$, implying $ka \equiv_n 1$.

Example: Solve $4x \equiv 3 \pmod{19}$. "Dividing by 4" becomes "multiply by m s.t. $4m \equiv 1 \pmod{19}$.

If gcd(a, n) = 1, then there are $k, \ell \in \mathbb{Z}$ satisfying

$$ka + \ell n = 1$$
. So $1 - ka = \ell n$, implying $ka \equiv_n 1$.

Therefore

if $ax \equiv b \pmod{n}$, then $x \equiv_n kax \equiv kb$.

Example: Solve $4x \equiv 3 \pmod{19}$. "Dividing by 4" becomes "multiply by m s.t. $4m \equiv 1 \pmod{19}$.

If gcd(a, n) = 1, then there are $k, \ell \in \mathbb{Z}$ satisfying

$$ka + \ell n = 1$$
. So $1 - ka = \ell n$, implying $ka \equiv_n 1$.

Therefore

if
$$ax \equiv b \pmod{n}$$
, then $x \equiv_n kax \equiv kb$.

In our example above, $5 \cdot 4 = 20 \equiv 1 \pmod{19}$.

Example: Solve $4x \equiv 3 \pmod{19}$. "Dividing by 4" becomes "multiply by m s.t. $4m \equiv 1 \pmod{19}$.

If gcd(a, n) = 1, then there are $k, \ell \in \mathbb{Z}$ satisfying

$$ka + \ell n = 1$$
. So $1 - ka = \ell n$, implying $ka \equiv_n 1$.

Therefore

if
$$ax \equiv b \pmod{n}$$
, then $x \equiv_n kax \equiv kb$.

In our example above, $5 \cdot 4 = 20 \equiv 1 \pmod{19}$. So

$$x \equiv_{19} 5 \cdot 4 \cdot x \equiv_{19} 5 \cdot 3 \equiv_{19} 15.$$

Example: Solve $4x \equiv 3 \pmod{19}$. "Dividing by 4" becomes "multiply by m s.t. $4m \equiv 1 \pmod{19}$.

If gcd(a, n) = 1, then there are $k, \ell \in \mathbb{Z}$ satisfying

$$ka + \ell n = 1$$
. So $1 - ka = \ell n$, implying $ka \equiv_n 1$.

Therefore

if
$$ax \equiv b \pmod{n}$$
, then $x \equiv_n kax \equiv kb$.

In our example above, $5 \cdot 4 = 20 \equiv 1 \pmod{19}$. So

$$x \equiv_{19} 5 \cdot 4 \cdot x \equiv_{19} 5 \cdot 3 \equiv_{19} 15.$$

If gcd(a, n) = 1 and $ax \equiv b \pmod{n}$, then

- 1. compute $1 \leq k < n$ such that $ka \equiv 1 \pmod{n}$, so that
- 2. $x \equiv kb \pmod{n}$.

Example: Solve $4x \equiv 3 \pmod{19}$. "Dividing by 4" becomes "multiply by m s.t. $4m \equiv 1 \pmod{19}$.

If gcd(a, n) = 1, then there are $k, \ell \in \mathbb{Z}$ satisfying

$$ka + \ell n = 1$$
. So $1 - ka = \ell n$, implying $ka \equiv_n 1$.

Therefore

if
$$ax \equiv b \pmod{n}$$
, then $x \equiv_n kax \equiv kb$.

In our example above, $5 \cdot 4 = 20 \equiv 1 \pmod{19}$. So

$$x \equiv_{19} 5 \cdot 4 \cdot x \equiv_{19} 5 \cdot 3 \equiv_{19} 15.$$

If gcd(a, n) = 1 and $ax \equiv b \pmod{n}$, then

- 1. compute $1 \leq k < n$ such that $ka \equiv 1 \pmod{n}$, so that
- 2. $x \equiv kb \pmod{n}$.

You try: Compute x such that

(1) $3x \equiv 7 \pmod{10}$ (2) $5x \equiv 2 \pmod{9}$ and check your answer.

Example: Solve $4x \equiv 3 \pmod{6}$.

Example: Solve $4x \equiv 3 \pmod{6}$. This is equivalent to

$$6|(4x-3).$$

Example: Solve $4x \equiv 3 \pmod{6}$. This is equivalent to

$$6|(4x-3)$$
. This is not possible!

Example: Solve $4x \equiv 3 \pmod{6}$. This is equivalent to

6|(4x-3). This is not possible!

Note that

$$ax \equiv b \pmod{n}$$
 iff $n|(ax-b)|$

Example: Solve $4x \equiv 3 \pmod{6}$. This is equivalent to

6|(4x-3). This is not possible!

Note that

 $ax \equiv b \pmod{n}$ iff n|(ax-b), i.e. ax - b = nk, for some $k \in \mathbb{Z}$.

Example: Solve $4x \equiv 3 \pmod{6}$. This is equivalent to

6|(4x-3). This is not possible!

Note that

 $ax \equiv b \pmod{n}$ iff n|(ax-b), i.e. ax - b = nk,

for some $k \in \mathbb{Z}$. Therefore

 $ax \equiv b \pmod{n}$ if and only if b = ax - nk.

Example: Solve $4x \equiv 3 \pmod{6}$. This is equivalent to

6|(4x-3). This is not possible!

Note that

 $ax \equiv b \pmod{n}$ iff n|(ax-b), i.e. ax - b = nk,

for some $k \in \mathbb{Z}$. Therefore $ax \equiv b \pmod{n}$ if and only if b = ax - nk.

Now, suppose gcd(a, n) = d > 1.

Example: Solve $4x \equiv 3 \pmod{6}$. This is equivalent to

6|(4x-3). This is not possible!

Note that

 $ax \equiv b \pmod{n}$ iff n|(ax-b), i.e. ax - b = nk,

for some $k \in \mathbb{Z}$. Therefore $ax \equiv b \pmod{n}$ if and only if b = ax - nk.

Now, suppose gcd(a, n) = d > 1. Then d|a and d|n imply d|b.

Example: Solve $4x \equiv 3 \pmod{6}$. This is equivalent to

6|(4x-3). This is not possible!

Note that

 $ax \equiv b \pmod{n}$ iff n|(ax-b), i.e. ax - b = nk,

for some $k \in \mathbb{Z}$. Therefore $ax \equiv b \pmod{n}$ if and only if b = ax - nk.

Now, suppose gcd(a, n) = d > 1. Then d|a and d|n imply d|b. Therefore,

if $gcd(a, n) \nmid b$, then there is no solution to $ax \equiv b \pmod{n}$.

Example: Solve $4x \equiv 2 \pmod{6}$.

4x	0	4	8	12	16	20
least residue	0	4	2	0	4	2

Example: Solve $4x \equiv 2 \pmod{6}$.

x	0	1	2	3	4	5
4x	0	4	8	12	16	20
least residue	0	4	2	0	4	2

Example: Solve $4x \equiv 2 \pmod{6}$. x4xleast residue 0 4 Suppose gcd(a, n) = d > 1. Then

if $gcd(a, n) \nmid b$, then there is no solution to $ax \equiv b \pmod{n}$.

Example: Solve $4x \equiv 2 \pmod{6}$. x4xleast residue $0 \mid 4$ Suppose gcd(a, n) = d > 1. Then

if $gcd(a, n) \nmid b$, then there is no solution to $ax \equiv b \pmod{n}$. Otherwise, d|b.

Example: Solve $4x \equiv 2 \pmod{6}$. x4xleast residue $0 \mid 4$ Suppose gcd(a, n) = d > 1. Then

if $gcd(a, n) \nmid b$, then there is no solution to $ax \equiv b \pmod{n}$.

Otherwise, d|b. So b = dk for some $k \in \mathbb{Z}$.

Example: Solve $4x \equiv 2 \pmod{6}$. x4x $0 \mid 4$ least residue Suppose gcd(a, n) = d > 1. Then

if $gcd(a, n) \nmid b$, then there is no solution to $ax \equiv b \pmod{n}$. Otherwise, d|b. So b = dk for some $k \in \mathbb{Z}$. Let $u, v \in \mathbb{Z}$ satisfy

$$d = ua + vn.$$

Example: Solve $4x \equiv 2 \pmod{6}$. x4xleast residue 0 4

Suppose gcd(a, n) = d > 1. Then

if $gcd(a, n) \nmid b$, then there is no solution to $ax \equiv b \pmod{n}$. Otherwise, d|b. So b = dk for some $k \in \mathbb{Z}$. Let $u, v \in \mathbb{Z}$ satisfy

d = ua + vn. Then b = dk

Example: Solve $4x \equiv 2 \pmod{6}$. x4x0 | 4 |least residue

Suppose gcd(a, n) = d > 1. Then

if $gcd(a, n) \notin b$, then there is no solution to $ax \equiv b \pmod{n}$. Otherwise, d|b. So b = dk for some $k \in \mathbb{Z}$. Let $u, v \in \mathbb{Z}$ satisfy

d = ua + vn. Then b = dk = (ku)a + (kv)n.

Example: Solve $4x \equiv 2 \pmod{6}$.

	x	0	1	2	3	4	5	
	4x	0	4	8	12	16	20	
	least residue	0	4	2	0	4	2	
Suppose $gcd(a, n) = d > 1$. Then								

if $gcd(a, n) \nmid b$, then there is no solution to $ax \equiv b \pmod{n}$. Otherwise, d|b. So b = dk for some $k \in \mathbb{Z}$. Let $u, v \in \mathbb{Z}$ satisfy

d = ua + vn. Then b = dk = (ku)a + (kv)n.

Therefore $a(ku) \equiv b \pmod{n}$.

Example: Solve $4x \equiv 2 \pmod{6}$.

	x	0	1	2	3	4	5	
	4x	0	4	8	12	16	20	-
least	residue	0	4	2	0	4	2	-
$\operatorname{prcd}(a, n) = d > 1$ Then								

Suppose gcd(a, n) = d > 1. Then

if $gcd(a, n) \nmid b$, then there is no solution to $ax \equiv b \pmod{n}$. Otherwise, d|b. So b = dk for some $k \in \mathbb{Z}$. Let $u, v \in \mathbb{Z}$ satisfy

d = ua + vn. Then b = dk = (ku)a + (kv)n.

Therefore $a(ku) \equiv b \pmod{n}$. (So x = uk = u(b/d) is a solution.)

Example: Solve $4x \equiv 2 \pmod{6}$.

	x	0	1	2	3	4	5	
	4x	0	4	8	12	16	20	-
least	residue	0	4	2	0	4	2	-
$\operatorname{rcd}(a, n) = d > 1$ Then								

Suppose gcd(a, n) = d > 1. Then

if $gcd(a, n) \nmid b$, then there is no solution to $ax \equiv b \pmod{n}$. Otherwise, d|b. So b = dk for some $k \in \mathbb{Z}$. Let $u, v \in \mathbb{Z}$ satisfy

d = ua + vn. Then b = dk = (ku)a + (kv)n.

Therefore $a(ku) \equiv b \pmod{n}$. (So x = uk = u(b/d) is a solution.)

Recall all solutions to u'a + v'n = d are of the form

$$u' = u + \ell(n/d)$$
 and $v' = v - \ell(a/d)$.

Example: Solve $4x \equiv 2 \pmod{6}$.

x	0	1	2	3	4	5	
4x	0	4	8	12	16	20	
least residue	0	4	2	0	4	2	
cd(a, n) = d > 1. Then							

Suppose gcd(a, n) = d > 1. Then

if $gcd(a, n) \nmid b$, then there is no solution to $ax \equiv b \pmod{n}$. Otherwise, d|b. So b = dk for some $k \in \mathbb{Z}$. Let $u, v \in \mathbb{Z}$ satisfy

$$d = ua + vn$$
. Then $b = dk = (ku)a + (kv)n$.

Therefore $a(ku) \equiv b \pmod{n}$. (So x = uk = u(b/d) is a solution.)

Recall all solutions to u'a + v'n = d are of the form

$$u' = u + \ell(n/d)$$
 and $v' = v - \ell(a/d)$.

All solutions: Find one solution $u, v \in \mathbb{Z}$ to d = ua + vn. If d|b, then the solutions to $ax \equiv b \pmod{n}$ are given by

$$x = u(b/d) + \ell(n/d),$$
 for $\ell = 0, 1, \dots, d-1.$

To summarize

We've solved congruences of the form

 $ax \equiv b \pmod{n}$.

Namely, we have two cases: Calculate d = gcd(a, n).

- 1. If $d \nmid b$, then there are no solutions.
- 2. If d|b, then there are exactly d solutions (mod n). Find them as follows:

(a) Find one solution, either by guessing...

If d = 1 and you can find an a' satisfying $a'a \equiv 1 \pmod{n}$, then $x \equiv_n (a'a)x \equiv_n a'(ax) \equiv_n a'b.$

... or by using the Euclidean algorithm to calculate

ua + vn = d, so that b = (b/d)d = (b/d)ua + (b/d)vn.

Thus x = (b/d)u is one solution.

(b) For the rest, add n/d until you have a full set.

Theorem (Polynomial Roots Mod p Theorem) Let p be prime in $\mathbb{Z}_{>0}$, and let

$$f(x) = a_0 + a_1 x + \dots + a_n x^n \in \mathbb{Z}[x],$$

with $n \ge 1$ and $p \nmid a_n$. Then the congruence

 $f(x) \equiv 0 \pmod{n}$

has at most n incongruent solutions.