
Warmup

Recall that a “proof by induction” is done as follows: for a

statement Spnq that depends on an integer n,

1. prove a base (smallest) case; and

2. show that if Spnq is true (the “induction hypothesis”), then

so is Spn ` 1q.

You try: Prove the following identities using proof by induction.

(a) 1 ` 2 ` 3 ` ¨ ¨ ¨ ` n “ npn ` 1q2
(b) For a ‰ 1,

1 ` a ` a

2 ` ¨ ¨ ¨ ` a

n “ 1 ´ a

n`1

1 ´ a

.

Strong induction: The inductive hypothesis becomes “assume

Spmq is true for all (base case)§ m § n”; then the inductive step

is to show Spn ` 1q is true using any of those Spmq for smaller m.



Primes and their properties

A prime number is a number p • 2 whose only (positive) divisors

are 1 and p.

In Z°0 :

Primes: 2, 3, 5, 7, . . . ; Composites: 4, 6, 8, 9, . . . ; Unit: 1.

Lemma

Let p be a prime number, and suppose that p divides the product

ab. Then p divides a or b or both.

To prove, recall that there are some integers x and y such that

ax ` py “ gcdpa, pq.
Theorem (Prime Divisibility Property)

Let p be a prime number, and suppose that p divides the product

a1a2 ¨ ¨ ¨ ar, where ai P Z. Then p divides at least one of the

factors a1, a2, . . . , ar.



Today’s goal: Every positive integer has a unique prime

factorization.

Why is this important/special?? We’ve been taking this result for

granted in doing many examples. But it turns out to be non-trivial.

Let’s look at examples where “unique factorization into primes”

fails. . .

Even numbers

Let 2Z°0 be the set of positive even integers:

2Z°0 “ t2z | z P Z°0u.
Defining divisibility: We say a divides b in 2Z°0 if there is some

k P 2Z°0 such that ak “ b. For example,

2 divides 4, but not 6 (6{2 “ 3 R 2Z°0).

Defining primes: 2Z°0 doesn’t have any units, so we define a prime

as a number p that has no other divisors in 2Z°0. For example,

2, 6, 10, 14, 18, 22, 26, 30, . . . .

But now, notice: 6, 8, 10, and 30 are all prime in 2Z°0, but

6 ˚ 30 “ 180 “ 8 ˚ 10.



Integers+

Recall Zrxs is the set of polynomials in x with integer coe�cients.

Now let

Zr
?
5s “ tpp

?
5q | ppxq P Zrxsu.

Since ?
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,
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we have

Zr
?
5s “ tn ` m

?
5 | n,m P Zu.

Notice that Z Ä Zr
?
5s (all the numbers where m “ 0).

Defining divisibility: We say a divides b in Zr
?
5s if there is some

k P Zr
?
5s such that ak “ b. For example,

2 divides 4 and 6, and also 2 ` 2

?
5.

Defining primes: Zr
?
5s has a unit, so primes are back to what we

expect–a prime as a number p whose only divisors in Zr
?
5s are ˘1

and ˘p.

Integers+

Zr
?
5s “ tn ` m

?
5 | n,m P Zu.

Defining divisibility: We say a divides b in Zr
?
5s if there is some

k P Zr
?
5s such that ak “ b. For example,

2 divides 4 and 6, and also 2 ` 2

?
5.

Defining primes: Zr
?
5s has a unit, so primes are back to what we

expect–a prime as a number p whose only divisors in Zr
?
5s are ˘1

and ˘p. For example,

˘2,˘3,˘5,˘7,˘11, . . . and also 1 `
?
5, 1 ´

?
5, 2 ` 3

?
5, . . . .

(To check: for a supposed prime p, what integers m,n,m

1
, n

1
satisfy

p “ pn ` m

?
5qpn1 ` m

1?
5q “ pnn1 ` 5mm

1q ` pnm1 ` mn

1q
?
5?q

But now, notice: ˘2 and 1 ˘
?
5 are all prime in Zr

?
5s, but

2p´2q “ ´4 “ p1 `
?
5qp1 ´

?
5q.



Back to positive integers. . .

Theorem (The Fundamental Theorem of Arithmetic)

Every integer n • 2 can be factored uniquely as

n “ p

a1
1 p

a2
2 ¨ ¨ ¨ parr

with p1 † p2 † ¨ ¨ ¨ † pr prime.

To prove, we show

1. Existence: The number n can be factored into a product of

primes in some way. (Strong induction)

2. Uniqueness: There is only one such factorization. (Lemma)



Congruences

Recall the division algorithm says for any a, n P Z with n ‰ 0,

there are unique integers q and r satisfying

a “ nq ` r and 0 § r † |b|.

Now, for two integers a, b, we say a is congruent to b modulo

(mod) n, written

a ” b pmod nq or a ”n b,

if a and b have the same remainders when divided by n.

Example: Letting n “ 6, since

100 “ 16 ˚ 6 ` 4 and 22 “ 3 ˚ 6 ` 4,

we have 100 ” 22 pmod 6q.
More:

´24 ´18 ´12 ´6 0 6 12 18 24

´26 ´20 ´14 ´8 ´2 4 10 16 22 28
all

congr. to 4

mod 6

Congruences

For integers a, b, n, with n ‰ 0, we say a is congruent to b modulo

(mod) n, written

a ” b pmod nq or a ”n b,

if a and b have the same remainders when divided by n.

Notice, if a and b both have remainder r, then

a “ qan ` r and b “ qbn ` r.

So

a ´ b “ pqan ` rq ´ pqbn ` rq “ pqa ´ qbqn.
Thus n|pa ´ bq.
Similarly, suppose a and b are integers satisfying n|pa ´ bq, i.e.
nk “ a ´ b for some k P Z. Then writing

a “ qan ` ra and b “ qbn ` rb, 0 § ra, rb † n,

we have

nk “ a ´ b “ pqan ` raq ´ pqbn ` rbq “ pqa ´ qbqn ` pra ´ rbq.
So ra ´ rb is a multiple of n. But ´n † ra ´ rb † n. So ra “ rb.



Congruences

Theorem

For integers a, b, n, with n ‰ 0, the following are equivalent:

1. a and b have the same remainders when divided by n;

2. n divides a ´ b.

Either way, we say that a is congruent to b modulo (mod) n,

written

a ” b pmod nq or a ”n b.

Some properties: Fix n • 1.

1. Congruent is an equivalence relation (reflexive, symmetric,

transitive).

2. If a1 ” b1 pmod nq and a2 ” b2 pmod nq, then
(a) a1 ` a2 ” b1 ` b2 pmod nq, and
(b) a1a2 ” b1b2 pmod nq.


