Warmup

Recall that a "proof by induction" is done as follows: for a statement $S(n)$ that depends on an integer n,

1. prove a base (smallest) case; and
2. show that if $S(n)$ is true (the "induction hypothesis"), then so is $S(n+1)$.

You try: Prove the following identities using proof by induction.
(a) $1+2+3+\cdots+n=n(n+1) 2$
(b) For $a \neq 1$,

$$
1+a+a^{2}+\cdots+a^{n}=\frac{1-a^{n+1}}{1-a}
$$

Strong induction: The inductive hypothesis becomes "assume $S(m)$ is true for all (base case) $\leqslant m \leqslant n$ "; then the inductive step is to show $S(n+1)$ is true using any of those $S(m)$ for smaller m.

Primes and their properties

A prime number is a number $p \geqslant 2$ whose only (positive) divisors are 1 and p.
In $\mathbb{Z}_{>0}$:
Primes: 2, 3, 5, 7, ...; Composites: 4, 6, 8, 9, ...; Unit: 1.
Lemma
Let p be a prime number, and suppose that p divides the product $a b$. Then p divides a or b or both.
To prove, recall that there are some integers x and y such that

$$
a x+p y=\operatorname{gcd}(a, p) .
$$

Theorem (Prime Divisibility Property)
Let p be a prime number, and suppose that p divides the product $a_{1} a_{2} \cdots a_{r}$, where $a_{i} \in \mathbb{Z}$. Then p divides at least one of the factors $a_{1}, a_{2}, \ldots, a_{r}$.

Today's goal: Every positive integer has a unique prime factorization.

Why is this important/special?? We've been taking this result for granted in doing many examples. But it turns out to be non-trivial.

Let's look at examples where "unique factorization into primes" fails. . .

Even numbers

Let $2 \mathbb{Z}_{>0}$ be the set of positive even integers:

$$
2 \mathbb{Z}_{>0}=\left\{2 z \mid z \in \mathbb{Z}_{>0}\right\} .
$$

Defining divisibility: We say a divides b in $2 \mathbb{Z}_{>0}$ if there is some $k \in 2 \mathbb{Z}_{>0}$ such that $a k=b$. For example,

2 divides 4 , but not $6 \quad\left(6 / 2=3 \notin 2 \mathbb{Z}_{>0}\right)$.
Defining primes: $2 \mathbb{Z}_{>0}$ doesn't have any units, so we define a prime as a number p that has no other divisors in $2 \mathbb{Z}_{>0}$. For example,

$$
2,6,10,14,18,22,26,30, \ldots .
$$

But now, notice: $6,8,10$, and 30 are all prime in $2 \mathbb{Z}_{>0}$, but

$$
6 * 30=180=8 * 10 .
$$

Integers+

Recall $\mathbb{Z}[x]$ is the set of polynomials in x with integer coefficients.
Now let

$$
\mathbb{Z}[\sqrt{5}]=\{p(\sqrt{5}) \mid p(x) \in \mathbb{Z}[x]\} .
$$

Since

$$
\sqrt{5}^{0}, \sqrt{5}^{2}, \sqrt{5}^{4}, \cdots \in \mathbb{Z}
$$

and

$$
\sqrt{5}^{1}, \sqrt{5}^{3}, \sqrt{5}^{5}, \cdots \in \sqrt{5} \mathbb{Z}
$$

we have

$$
\mathbb{Z}[\sqrt{5}]=\{n+m \sqrt{5} \mid n, m \in \mathbb{Z}\} .
$$

Notice that $\mathbb{Z} \subset \mathbb{Z}[\sqrt{5}]$ (all the numbers where $m=0$).

Integers+

$$
\mathbb{Z}[\sqrt{5}]=\{n+m \sqrt{5} \mid n, m \in \mathbb{Z}\} .
$$

Defining divisibility: We say a divides b in $\mathbb{Z}[\sqrt{5}]$ if there is some $k \in \mathbb{Z}[\sqrt{5}]$ such that $a k=b$. For example,

$$
2 \text { divides } 4 \text { and } 6 \text {, and also } 2+2 \sqrt{5} \text {. }
$$

Defining primes: $\mathbb{Z}[\sqrt{5}]$ has a unit, so primes are back to what we expect-a prime as a number p whose only divisors in $\mathbb{Z}[\sqrt{5}]$ are ± 1 and $\pm p$. For example,

$$
\pm 2, \pm 3, \pm 5, \pm 7, \pm 11, \ldots \text { and also } 1+\sqrt{5}, 1-\sqrt{5}, 2+3 \sqrt{5}, \ldots
$$

(To check: for a supposed prime p, what integers $m, n, m^{\prime}, n^{\prime}$ satisfy

$$
\left.p=(n+m \sqrt{5})\left(n^{\prime}+m^{\prime} \sqrt{5}\right)=\left(n n^{\prime}+5 m m^{\prime}\right)+\left(n m^{\prime}+m n^{\prime}\right) \sqrt{5} ?\right)
$$

But now, notice: ± 2 and $1 \pm \sqrt{5}$ are all prime in $\mathbb{Z}[\sqrt{5}]$, but

$$
2(-2)=-4=(1+\sqrt{5})(1-\sqrt{5}) .
$$

Back to positive integers. . .

Theorem (The Fundamental Theorem of Arithmetic)
Every integer $n \geqslant 2$ can be factored uniquely as

$$
n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{r}^{a_{r}}
$$

with $p_{1}<p_{2}<\cdots<p_{r}$ prime.

To prove, we show

1. Existence: The number n can be factored into a product of primes in some way. (Strong induction)
2. Uniqueness: There is only one such factorization. (Lemma)

Congruences

Recall the division algorithm says for any $a, n \in \mathbb{Z}$ with $n \neq 0$, there are unique integers q and r satisfying

$$
a=n q+r \quad \text { and } \quad 0 \leqslant r<|b| .
$$

Now, for two integers a, b, we say a is congruent to b modulo (mod) n, written

$$
a \equiv b \quad(\bmod n) \quad \text { or } \quad a \equiv_{n} b,
$$

if a and b have the same remainders when divided by n.
Example: Letting $n=6$, since

$$
100=16 * 6+4 \quad \text { and } \quad 22=3 * 6+4
$$

we have $100 \equiv 22(\bmod 6)$.
More:

Congruences

For integers a, b, n, with $n \neq 0$, we say a is congruent to b modulo (mod) n, written

$$
a \equiv b(\bmod n) \quad \text { or } \quad a \equiv_{n} b,
$$

if a and b have the same remainders when divided by n.
Notice, if a and b both have remainder r, then

$$
a=q_{a} n+r \quad \text { and } \quad b=q_{b} n+r .
$$

So

$$
a-b=\left(q_{a} n+r\right)-\left(q_{b} n+r\right)=\left(q_{a}-q_{b}\right) n .
$$

Thus $n \mid(a-b)$.
Similarly, suppose a and b are integers satisfying $n \mid(a-b)$, i.e. $n k=a-b$ for some $k \in \mathbb{Z}$. Then writing

$$
a=q_{a} n+r_{a} \quad \text { and } \quad b=q_{b} n+r_{b}, \quad 0 \leqslant r_{a}, r_{b}<n,
$$

we have

$$
n k=a-b=\left(q_{a} n+r_{a}\right)-\left(q_{b} n+r_{b}\right)=\left(q_{a}-q_{b}\right) n+\left(r_{a}-r_{b}\right) .
$$

So $r_{a}-r_{b}$ is a multiple of n. But $-n<r_{a}-r_{b}<n$. So $r_{a}=r_{b}$.

Congruences

Theorem

For integers a, b, n, with $n \neq 0$, the following are equivalent:

1. a and b have the same remainders when divided by n;
2. n divides $a-b$.

Either way, we say that a is congruent to b modulo (mod) n, written

$$
a \equiv b(\bmod n) \quad \text { or } \quad a \equiv_{n} b .
$$

Some properties: Fix $n \geqslant 1$.

1. Congruent is an equivalence relation (reflexive, symmetric, transitive).
2. If $a_{1} \equiv b_{1}(\bmod n)$ and $a_{2} \equiv b_{2}(\bmod n)$, then
(a) $a_{1}+a_{2} \equiv b_{1}+b_{2}(\bmod n)$, and
(b) $a_{1} a_{2} \equiv b_{1} b_{2}(\bmod n)$.
