Warmup

Recall that a “proof by induction” is done as follows: for a
statement S(n) that depends on an integer n,

1. prove a base (smallest) case; and

2. show that if S(n) is true (the “induction hypothesis”), then
sois S(n +1).

You try: Prove the following identities using proof by induction.
(@) 1+2+3+---+n=n(n+1)2

(b) For a # 1,

1— an-i—l

l+a+ad®+-- +a" =
l1—-a
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Recall that a “proof by induction” is done as follows: for a
statement S(n) that depends on an integer n,
1. prove a base (smallest) case; and

2. show that if S(n) is true (the “induction hypothesis”), then
sois S(n +1).

You try: Prove the following identities using proof by induction.
(@) 1+2+3+---+n=n(n+1)2
(b) For a # 1,

1— an-i—l

l+a+a*+-- +a"
l1—-a

Strong induction: The inductive hypothesis becomes “assume
S(m) is true for all (base case)< m < n"; then the inductive step
is to show S(n + 1) is true using any of those S(m) for smaller m.
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Last time:
Let m,n € Z with m # 0. We say that m divides n if

n =mk forsome keZ, written m|n.

The greatest common divisor of a,b € Z~q, denoted gcd(a,b) is
largest number that divides both a and b. Equivalently, ged(a,b) is
the unique positive number satisfying

ged(a, b)|a and b, and if d|a and b, then d| gcd(a, b).

Theorem
Let a and b be nonzero integers, and let g = ged(a, b).

(1) For all z,y € Z, we have g|(ax + by).

(2) The equation axo + byo = ged(a, b) always has at least one
integer solution, which can be found via the Euclidean

algorithm.
(3) All integers solutions to ax + by = ged(a, b) are given by
rT=x —l—L and = —L kel
— 07 ged(a, b) v = ged(a,b)’ )
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Primes and their properties

A prime number is a number p > 2 whose only (positive) divisors
are 1 and p.

In Z>0 N
Primes: 2,3,5,7,...; Composites: 4,6,8,9,...; Unit: 1.

Lemma
Let p be a prime number, and suppose that p divides the product
ab. Then p divides a or b or both.

To prove, recall that there are some integers x and y such that
ax + py = ged(a, p).
Theorem (Prime Divisibility Property)

Let p be a prime number, and suppose that p divides the product
aias - --a., where a; € Z. Then p divides at least one of the
factors ay, as, ..., a,.
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Today's goal: Every positive integer has a unique prime
factorization.

Why is this important/special?? We've been taking this result for
granted in doing many examples. But it turns out to be non-trivial.

Let's look at examples where “unique factorization into primes”
fails. ..
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Even numbers

Let 2Z~( be the set of positive even integers:

Defining divisibility: We say a divides b in 2Z~ if there is some
k € 27~ such that ak = b. For example,

2 divides 4, but not 6 (6/2 =3¢ 2Z~y).

Defining primes: 2Z- doesn't have any units, so we define a prime
as a number p that has no other divisors in 2Z~. For example,

2,6,10, 14,18, 22, 26, 30, . ...
But now, notice: 6,8, 10, and 30 are all prime in 2Z~(, but

6+ 30 = 180 = 8 * 10.
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Integers+

Z[V5] = {n +m\/5 | n,m e Z}.
Defining divisibility: We say a divides b in Z[+/5] if there is some
k € Z[\/5] such that ak = b. For example,
2 divides 4 and 6, and also 2 + 2+/5.
Defining primes: Z[+/5] has a unit, so primes are back to what we

expect—a prime as a number p whose only divisors in Z[+/5] are +1
and +p. For example,

+2,43, 45,47, +11,... and also 1 ++/5, 1 —/5, 2+ 35, ....

(To check: for a supposed prime p, what integers m,n, m’,n’ satisfy
p = (n+m\5)(n' +m//5) = (nn’ + 5mm’) + (nm’ + mn’)+/57)

But now, notice: +2 and 1 + +/5 are all prime in Z[\/g] but

2(—2) = —4 = (1 +V5)(1 —V5).
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Back to positive integers. . .

Theorem (The Fundamental Theorem of Arithmetic)

Every integer n = 2 can be factored uniquely as

a1, a2 a
n_pl p2 ...p’rr

with p1 < pg < --- < p, prime.

To prove, we show

1. Existence: The number n can be factored into a product of
primes in some way. (Strong induction)

2. Uniqueness: There is only one such factorization. (Lemma)
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Congruences
Recall the division algorithm says for any a,n € Z with n # 0,
there are unique integers ¢ and r satisfying

a=ng+r and 0<r<|b.

Now, for two integers a, b, we say a is congruent to b modulo
(mod) n, written

a=b (modn) or a=,b,

if a and b have the same remainders when divided by n.
Example: Letting n = 6, since

100=16«6+4 and 22=3x6+4,

we have 100 = 22 (mod 6).

More:
—24 —18 —12 —6 0 6 12 18 24
all

—26 —20 —14 —8 -2 4 10 16 22 28 <«— congr. to 4
mod 6
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For integers a, b,n, with n # 0, we say a is congruent to b modulo
(mod) n, written

a=b (modn) or a=y,b,
if a and b have the same remainders when divided by n.
Notice, if @ and b both have remainder r, then
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So
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we have
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So r, — 1y is a multiple of n. But —m < r, —rp, <n. So r, = 1.
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Congruences

Theorem
For integers a, b,n, with n # 0, the following are equivalent:
1. a and b have the same remainders when divided by n;
2. n divides a — b.
Either way, we say that a is congruent to b modulo (mod) n,
written
a=b (modn) or a=,b.
Some properties: Fix n > 1.
1. Congruent is an equivalence relation (reflexive, symmetric,
transitive).
2. If ay = b1 (mod n) and ag = by (mod n), then

(a) a1 + a2 =by + by (mod n), and
(b) aias = b1by (mod n).






