
Warmup

Recall that a “proof by induction” is done as follows: for a
statement Spnq that depends on an integer n,

1. prove a base (smallest) case; and

2. show that if Spnq is true (the “induction hypothesis”), then
so is Spn` 1q.

You try: Prove the following identities using proof by induction.

(a) 1` 2` 3` ¨ ¨ ¨ ` n “ npn` 1q2

(b) For a ‰ 1,

1` a` a2 ` ¨ ¨ ¨ ` an “
1´ an`1

1´ a
.

Strong induction: The inductive hypothesis becomes “assume
Spmq is true for all (base case)ď m ď n”; then the inductive step
is to show Spn` 1q is true using any of those Spmq for smaller m.
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Last time:
Let m,n P Z with m ‰ 0. We say that m divides n if

n “ mk for some k P Z, written m|n.

The greatest common divisor of a, b P Zą0, denoted gcdpa, bq is
largest number that divides both a and b.

Equivalently, gcdpa, bq is
the unique positive number satisfying

gcdpa, bq|a and b, and if d|a and b, then d| gcdpa, bq.

Theorem
Let a and b be nonzero integers, and let g “ gcdpa, bq.

(1) For all x, y P Z, we have g|pax` byq.

(2) The equation ax0 ` by0 “ gcdpa, bq always has at least one
integer solution, which can be found via the Euclidean
algorithm.

(3) All integers solutions to ax` by “ gcdpa, bq are given by

x “ x0 `
kb

gcdpa, bq
and y “ y0 ´

ka

gcdpa, bq
, k P Z.
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Primes and their properties

A prime number is a number p ě 2 whose only (positive) divisors
are 1 and p.

In Zą0 :
Primes: 2, 3, 5, 7, . . . ; Composites: 4, 6, 8, 9, . . . ; Unit: 1.

Lemma
Let p be a prime number, and suppose that p divides the product
ab. Then p divides a or b or both.

To prove, recall that there are some integers x and y such that

ax` py “ gcdpa, pq.

Theorem (Prime Divisibility Property)

Let p be a prime number, and suppose that p divides the product
a1a2 ¨ ¨ ¨ ar, where ai P Z. Then p divides at least one of the
factors a1, a2, . . . , ar.
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Today’s goal: Every positive integer has a unique prime
factorization.

Why is this important/special?? We’ve been taking this result for
granted in doing many examples. But it turns out to be non-trivial.

Let’s look at examples where “unique factorization into primes”
fails. . .



Today’s goal: Every positive integer has a unique prime
factorization.

Why is this important/special?? We’ve been taking this result for
granted in doing many examples. But it turns out to be non-trivial.

Let’s look at examples where “unique factorization into primes”
fails. . .



Today’s goal: Every positive integer has a unique prime
factorization.

Why is this important/special?? We’ve been taking this result for
granted in doing many examples. But it turns out to be non-trivial.

Let’s look at examples where “unique factorization into primes”
fails. . .



Even numbers

Let 2Zą0 be the set of positive even integers:

2Zą0 “ t2z | z P Zą0u.

Defining divisibility: We say a divides b in 2Zą0 if there is some
k P 2Zą0 such that ak “ b. For example,

2 divides 4, but not 6 (6{2 “ 3 R 2Zą0).

Defining primes: 2Zą0 doesn’t have any units, so we define a prime
as a number p that has no other divisors in 2Zą0. For example,

2, 6, 10, 14, 18, 22, 26, 30, . . . .

But now, notice: 6, 8, 10, and 30 are all prime in 2Zą0, but

6 ˚ 30 “ 180 “ 8 ˚ 10.
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Integers+
Recall Zrxs is the set of polynomials in x with integer coefficients.
Now let

Zr
?
5s “ tpp

?
5q | ppxq P Zrxsu.

Since ?
5
0
,
?
5
2
,
?
5
4
, ¨ ¨ ¨ P Z

and ?
5
1
,
?
5
3
,
?
5
5
, ¨ ¨ ¨ P

?
5Z,

we have
Zr
?
5s “ tn`m

?
5 | n,m P Zu.

Notice that Z Ă Zr
?
5s (all the numbers where m “ 0).

Defining divisibility: We say a divides b in Zr
?
5s if there is some

k P Zr
?
5s such that ak “ b. For example,

2 divides 4 and 6, and also 2` 2
?
5.

Defining primes: Zr
?
5s has a unit, so primes are back to what we

expect–a prime as a number p whose only divisors in Zr
?
5s are ˘1

and ˘p.
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Back to positive integers. . .

Theorem (The Fundamental Theorem of Arithmetic)

Every integer n ě 2 can be factored uniquely as

n “ pa11 pa22 ¨ ¨ ¨ p
ar
r

with p1 ă p2 ă ¨ ¨ ¨ ă pr prime.

To prove, we show

1. Existence: The number n can be factored into a product of
primes in some way.

(Strong induction)

2. Uniqueness: There is only one such factorization.

(Lemma)
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Congruences
Recall the division algorithm says for any a, n P Z with n ‰ 0,
there are unique integers q and r satisfying

a “ nq ` r and 0 ď r ă |b|.

Now, for two integers a, b, we say a is congruent to b modulo
(mod) n, written

a ” b pmod nq or a ”n b,

if a and b have the same remainders when divided by n.
Example: Letting n “ 6, since

100 “ 16 ˚ 6` 4 and 22 “ 3 ˚ 6` 4,

we have 100 ” 22 pmod 6q.
More:

´24 ´18 ´12 ´6 0 6 12 18 24

´26 ´20 ´14 ´8 ´2 4 10 16 22 28

all
congr. to 4

mod 6
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Congruences
For integers a, b, n, with n ‰ 0, we say a is congruent to b modulo
(mod) n, written

a ” b pmod nq or a ”n b,

if a and b have the same remainders when divided by n.

Notice, if a and b both have remainder r, then

a “ qan` r and b “ qbn` r.

So
a´ b “ pqan` rq ´ pqbn` rq “ pqa ´ qbqn.

Thus n|pa´ bq.

Similarly, suppose a and b are integers satisfying n|pa´ bq, i.e.
nk “ a´ b for some k P Z. Then writing

a “ qan` ra and b “ qbn` rb, 0 ď ra, rb ă n,

we have

nk “ a´ b “ pqan` raq ´ pqbn` rbq “ pqa ´ qbqn` pra ´ rbq.
So ra ´ rb is a multiple of n. But ´n ă ra ´ rb ă n. So ra “ rb.
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Congruences

Theorem
For integers a, b, n, with n ‰ 0, the following are equivalent:

1. a and b have the same remainders when divided by n;

2. n divides a´ b.

Either way, we say that a is congruent to b modulo (mod) n,
written

a ” b pmod nq or a ”n b.

Some properties: Fix n ě 1.

1. Congruent is an equivalence relation (reflexive, symmetric,
transitive).

2. If a1 ” b1 pmod nq and a2 ” b2 pmod nq, then

(a) a1 ` a2 ” b1 ` b2 pmod nq, and
(b) a1a2 ” b1b2 pmod nq.
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