
Last time:

Let m,n P Z with m ‰ 0. We say that m divides n if n is a
multiple of m, i.e.

n “ mk for some k P Z, written m|n
If m does not divide n, then we write m - n. When we list the
divisors of n P Z°0, we give the positive integers that divide n.

Example: the divisors of 28 are 1, 2, 4, 7, 14, and 28.
The greatest common divisor of a, b P Z°0, denoted gcdpa, bq is
largest number that divides both a and b.
We calculate gcdpa, bq either by comparing the prime factorizations
(for small a, b) or by using the Euclidean algorithm.

Euclidean algorithm

The division algorithm says for any a, b P Z with b ‰ 0, there are
unique integers q and r satisfying

a “ bq ` r and 0 § r † |b|.

Think: “a divided by b is q with remainder r.”
Repeatedly apply the division algorithm to find the GCD:

a “ b ˚ q1 ` r1

b “ r1 ˚ q2 ` r2

r1 “ r2 ˚ q3 ` r3
...

rn´4 “ rn´3 ˚ qn´2 ` rn´2

rn´3 “ rn´2 ˚ qn´1 ` rn´1 – gcdpa, bq
rn´2 “ rn´1 ˚ qn ` 0 – rn



On the homework, you show:

For any positive integers a and b, there exist
integers x and y satisfying gcdpa, bq “ ax ` by.

Strategy: Take the Euclidean algorithm and solve for rn´1, starting
from the end. . .

a “ b ˚ q1 ` r1

b “ r1 ˚ q2 ` r2

r1 “ r2 ˚ q3 ` r3
...

rn´5 “ rn´4 ˚ qn´3 ` rn´3

rn´4 “ rn´3 ˚ qn´2 ` rn´2

rn´3 “ rn´2 ˚ qn´1 ` rn´1 – gcdpa, bq

rn´2 “ rn´1 ˚ qn ` 0

We “know”: For any positive integers a and b, there exist integers
x and y satisfying gcdpa, bq “ ax ` by. (prove on homework).

Claim: The smallest positive integer combination of a and b is
gcdpa, bq.
Proof. We know that gcdpa, bq is some integer combination of a
and b. Now we show that gcdpa, bq is the smallest .

Let m,n P Z, and consider ma ` nb.
(Similar technique as last time! Show that gcdpa, bq is a divisor of ma ` nb. . . )

Let d “ gcdpa, bq, so that
a “ kd and b “ `d for some k, ` P Z.

So
ma ` nb “ mpkdq ` np`dq “ pmk ` n`q

loooomoooon

PZ X

d.

Thus ma ` nb is a multiple of d “ gcdpa, bq. Therefore gcdpa, bq is
the smallest positive integer combination of a and b. ˝



Example: Let a “ 9, b “ 12. We have gcdp9, 12q “ 3. One integer
combination of 9 and 12 giving 3 is

p´1q9 ` p1q12 “ 3.
Are there more?

Infinitely many? (Looks like a line of them)
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Example: Let a “ 9, b “ 12. We have gcdp9, 12q “ 3. One integer
combination of 9 and 12 giving 3 is

p´1q9 ` p1q12 “ 3.
Are there more?

Infinitely many? (Looks like a line of them, with slope ´3{4 “ ´9{12)



Lemma. For a, b, x, y P Z,

ax ` by “ apx ` btq ` bpy ´ atq, for any t P Q.

[Note: this is true for any t. . . real, complex, indeterminate, whatever.

But the only hope that we have that x ` bt and y ´ at could be integers

is if t is at least rational.]

Now, given some x, y P Z satisfying
ax ` by “ gcdpa, bq,

how do we generate more integer solutions x

1 and y

1 to
ax

1 ` by

1 “ gcdpa, bq? Namely,
when are x ` bt and y ´ at both integers (for the same t)?
This happens exactly whenever

bt and at are both integers (for the same t). (˚)

1. t P Q
2. If t “ n{m in lowest terms, then (˚) if and only if m|a and m|b.
So t “ k{ gcdpa, bq for any k P Z works!

Theorem

Let a and b be nonzero integers, and let g “ gcdpa, bq.
(1) If ax ` by “ z for x, y P Z, then g|z. (homework)

(2) The equation ax1 ` by1 “ g always has at least one integer

solution, which can be found via the Euclidean algorithm.

(3) The integers solutions to g “ ax ` by are given by

x “ x1 ` kb

g

and y “ y1 ´ ka

g

, k P Z.


