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Last time:

Let m,n € Z with m # 0. We say that m divides n if n is a
multiple of m, i.e.

n =mk forsome keZ, written m|n

If m does not divide n, then we write m { n. When we list the
divisors of n € Z~(, we give the positive integers that divide n.

Example: the divisors of 28 are 1, 2, 4, 7, 14, and 28.
The greatest common divisor of a,b € Z~¢, denoted gcd(a,b) is
largest number that divides both a and b.
We calculate ged(a, b) either by comparing the prime factorizations
(for small a, b) or by using the Euclidean algorithm.
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Euclidean algorithm

The division algorithm says for any a,b € Z with b # 0, there are
unique integers ¢ and r satisfying

a=bq+r and 0<r<|b.

Think: “a divided by b is ¢ with remainder r.”
Repeatedly apply the division algorithm to find the GCD:

a = b= qp +
b = r1 % Qo + 7
rn = T2 ¥ 3 + 73
Th—4 = Th-3%Qqpn-2 + Tp—2
Th—3 = Th—2%Qqp—1 + Tp—1 < ng(CL, b)

m—2 = Tn—1 *(n + 0 <~ Tn
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integers = and y satisfying ged(a,b) = ax + by.
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On the homework, you show:
For any positive integers a and b, there exist
integers = and y satisfying ged(a,b) = ax + by.
We say gcd(a, b) is an integral combination of a and b.
Example:
ged(35,100) =7 and  (3)35 + (—1)100 = 5
ged(7,5) =1 and (3)7+(—4)5=1



On the homework, you show:
For any positive integers a and b, there exist
integers = and y satisfying ged(a,b) = ax + by.
Strategy: Take the Euclidean algorithm and solve for r,_1, starting
from the end. ..

a = bxq +
b = T1 % Q9 +
o= T2 * q3 + 73
Th—5 = Th—4%Qqpn-3 + 7Tp—3
Th—4 = Tp-3*Qqn-2 + Tp-2
Th—3 = Th—2%Qqpn-1 + Th-1 < gcd(a, b)

Tn—2 = Tn-1%*(n + 0
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We “know": For any positive integers a and b, there exist integers
x and y satisfying ged(a, b) = ax + by. (prove on homework).

Claim: The smallest positive integer combination of a and b is
ged(a, b).

Proof. We know that gcd(a, b) is some integer combination of a
and b. Now we show that gcd(a, b) is the smallest .
Let m,n € Z, and consider ma + nb.
(Similar technique as last time! Show that gcd(a, b) is a divisor of ma + nb. .. )
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We “know": For any positive integers a and b, there exist integers
x and y satisfying ged(a, b) = ax + by. (prove on homework).

Claim: The smallest positive integer combination of a and b is
ged(a, b).

Proof. We know that gcd(a, b) is some integer combination of a
and b. Now we show that gcd(a, b) is the smallest .
Let m,n € Z, and consider ma + nb.
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We “know": For any positive integers a and b, there exist integers
x and y satisfying ged(a, b) = ax + by. (prove on homework).

Claim: The smallest positive integer combination of a and b is
ged(a, b).

Proof. We know that gcd(a, b) is some integer combination of a
and b. Now we show that gcd(a, b) is the smallest .
Let m,n € Z, and consider ma + nb.
(Similar technique as last time! Show that gcd(a, b) is a divisor of ma + nb. .. )
Let d = ged(a, b), so that

a = kd and b = /d for some k,/ € Z.
So

ma + nb = m(kd) + n(4d)



We “know": For any positive integers a and b, there exist integers
x and y satisfying ged(a, b) = ax + by. (prove on homework).

Claim: The smallest positive integer combination of a and b is
ged(a, b).

Proof. We know that gcd(a, b) is some integer combination of a
and b. Now we show that gcd(a, b) is the smallest .
Let m,n € Z, and consider ma + nb.
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We “know": For any positive integers a and b, there exist integers
x and y satisfying ged(a, b) = ax + by. (prove on homework).

Claim: The smallest positive integer combination of a and b is
ged(a, b).

Proof. We know that gcd(a, b) is some integer combination of a
and b. Now we show that gcd(a, b) is the smallest .

Let m,n € Z, and consider ma + nb.
(Similar technique as last time! Show that gcd(a, b) is a divisor of ma + nb. .. )
Let d = ged(a, b), so that
a = kd and b = /d for some k,/ € Z.
So

ma + nb = m(kd) + n(ld) = (mk + nf) d.
;_V‘/_/
EZ

Thus ma + nb is a multiple of d = ged(a, b).



We “know": For any positive integers a and b, there exist integers
x and y satisfying ged(a, b) = ax + by. (prove on homework).

Claim: The smallest positive integer combination of a and b is
ged(a, b).

Proof. We know that gcd(a, b) is some integer combination of a
and b. Now we show that gcd(a, b) is the smallest .

Let m,n € Z, and consider ma + nb.
(Similar technique as last time! Show that gcd(a, b) is a divisor of ma + nb. .. )
Let d = ged(a, b), so that
a = kd and b = /d for some k,/ € Z.
So

ma + nb = m(kd) + n(ld) = (mk + nf) d.
;_V‘/_/
EZ

Thus ma + nb is a multiple of d = ged(a, b). Therefore ged(a, b) is
the smallest positive integer combination of @ and b. o
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Example: Let a =9, b = 12. We have gcd(9,12) = 3. One integer
combination of 9 and 12 giving 3 is

(-1)9+ (1)12 = 3.
_ Are there more?

a= 9 b=12 |

-5 -4 -3 -2 -1 0 1 2 3 4 5

| -5]-105 %6 -87 -78 -69 -60 -51 -42 -33 -24 -15

15 24 33 42 51 60 69 78 87 9 105



Example: Let a =9, b = 12. We have gcd(9,12) = 3. One integer
combination of 9 and 12 giving 3 is

(=1)9+ (1)12 = 3.
Are there more?
9 b=12 )

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 9 10 11

-10| -210 -201 -192 -183 -174 -165 -156 -147 -138 -129 -120 -111 -102 -93 -84 -75 -39 -30 -21
-9| -198 -189 -180 -171 -162 -153 -144 -135 -126 -117 -108 -99 -90 -81 -72 -63 27 -18 -9
-8| -186 -177 -168 -159 -150 -141 -132 -123 -114 -105 -9 -87 -78 -69 -60 -51 -15 -SEI
-7\ -174 -165 -156 -147 -138 -129 -120 -111 -102 93 -84 -75 -66 -57 -48 -39 -3 6 15
-6| -162 -153 -144 -135 -126 -117 -108 -99 -90 -81 -72 -63 -54 -45 -36 -27 9 18 27
-5| -150 -141 -132 -123 -114 -105 96 -87 -78 -69 -60 -51 -42 -33 -24 -15 21 30 39
-4| -138 -129 -120 -111 -102 -93 -84 -75 -66 -57 -48 -39 -30 -21 -12 -3 33 42 51
-3| -126 -117 -108 99 -90 -81 -72 -63 -54 -45 -36 -27 -18 -9 0 9 45 54 63
-2| -114 -105 96 -87 -78 -69 -60 -51 -42 -33 -24 -15 -GEI 12 21 57 66 75
-1 -48 -39 -30 -21 -12 -3 6 15 24 33 69 78 87
0| -36 -27 -18 -9 0 9 18 27 36 45 81 90 99
1 24 -15 -SEl 12 21 30 39 48 57 93 102 111
2| -12 -3 6 15 24 33 42 51 60 69 105 114 123
3 0 9 18 27 36 45 54 63 72 81 117 126 135
4 12 21 30 39 48 57 66 75 84 93 129 138 147
5 24 33 42 51 60 69 78 87 96 105 141 150 159
6| 36 45 54 63 72 81 90 99 108 117 153 162 171
7 48 57 66 75 84 93 102 111 120 129 165 174 183
8| 60 69 78 87 9 105 114 123 132 141 177 186 195
| 9 72 81 90 99 108 117 126 135 144 153 189 198 207
10| 84 93 102 111 120 129 138 147 156 165 201 210 219



Example: Let a =9, b = 12. We have gcd(9, 12) = 3. One integer
combination of 9 and 12 giving 3 is

(-1)9+ (1)12 = 3.
Are there more?
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Are there more?
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Example: Let a =9, b = 12. We have gcd(9, 12) = 3. One integer
combination of 9 and 12 giving 3 is

(-1)9+ (1)12 = 3.
Are there more?
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Example: Let a =9, b = 12. We have gcd(9,12) = 3. One integer
combination of 9 and 12 giving 3 is
(=1)9+ (1)12 = 3.
Are there more?
-5 -4 -3 -2 -1 0 1 2 3 4 5

-5 -105 -96 -87 -78 -69 -60 -51 -42 -33 -24 -15

Infinitely many? (Looks like a line of them, with slope —3/4)



Example: Let a =9, b = 12. We have gcd(9,12) = 3. One integer
combination of 9 and 12 giving 3 is
(=1)9+ (1)12 = 3.
Are there more?
-5 -4 -3 -2 -1 0 1 2 3 4 5

-5 -105 -96 -87 -78 -69 -60 -51 -42 -33 -24 -15

24 33 42 51 60 69 78 8 96 105

Infinitely many? (Looks like a line of them, with slope —3/4 = —9/12)
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Lemma. Fora,b,xz,y€Z,
ax + by = a(z + bt) + b(y — at), for any te Q.

[Note: this is true for any t...real, complex, indeterminate, whatever.
But the only hope that we have that = + bt and y — at could be integers
is if ¢ is at least rational.]
Now, given some x,y € Z satisfying
ax + by = ged(a, b),

how do we generate more integer solutions ' and v’ to
ax’ + by’ = ged(a,b)? Namely,
when are x +bt and y—at both integers (for the same ¢)7?
This happens exactly whenever

bt and at are both integers (for the same t). (%)

1. teQ

2. If t = n/m in lowest terms, then () if and only if m|a and m|b.

So ‘t = k/ged(a,b) ‘ for any k € Z works!




Theorem
Let a and b be nonzero integers, and let g = ged(a, b).
(1) Ifax + by = z for x,y € Z, then g|z. (homework)

(2) The equation axy + by; = g always has at least one integer
solution, which can be found via the Euclidean algorithm.

(3) The integers solutions to g = ax + by are given by

x=x1+@ and yzyl—@7 keZ.
g






