Divisors

Let m,n € Z with m # 0. We say that m divides n if n is a
multiple of m, i.e.

n =mk forsome keZ, written m|n

If m does not divide n, then we write m { n.
Examples:

3|6 since 6 =3=x2;

15|60 since 60 = 15 = 4;
15425  since there is no m € Z such that 25 = 15 % m.
In general, for any n € Z,
nln, —nln, 1|n, and — 1|n.

We often restrict to talking about numbers n € Z~ ¢, and list the
divisors as the positive integers that divide n.

Example: the divisors of 12 are 1, 2, 3, 4, 6, and 12.

Common divisors

For two numbers a,b € Z~, a common divisor d is a divisor
common to both numbers, i.e.
d|a and d|b.

For example,

3 is a divisor of 30, but not 40;

4 is a divisor of 40, but not 30;

1,2,5, and 10 are all common divisors of 30 and 40.
The greatest common divisor of @ and b, denoted ged(a, b) is
largest number that divides both a and b.
Example: ged(30,40) = 10.

Always, gcd(a, b) = ged(b, a).
If bla, then ged(a,b) = b.
If gcd(a,b) = 1, we say that a and b are relatively prime.

Example:
The divisors of 25 are 1, 5, and 25;
the divisors of 12 are 1, 2, 3, 4, 6, and 12;
so 25 and 12 are relatively prime (even though neither is prime).



Computing the greatest common divisor

Method 1: Compute all the divisors of a and b, and compare.
VERY inefficient!

Method 2:
Compute the prime factorizations, and take their “intersection”.

Example:
19500 = 22 %3 %53 %13  and 440 = 23 %5« 11,

so  ged(19500,400) = 22«5 =[20].
In other words, gcd(a,b) will be the product over primes p to the
highest power n such that p"|a and p™|b.

You try: compute the prime factorizations of 12,30, 35, and 84,
and use them to compute

ged(12,30), ged(12,35), ged(12,84), ged(30,35), ged(30,84),

Not computationally efficient either! (Prime factorization is
computationally difficult/not possible without a list of primes.)



Method 3: The Euclidean algorithm.

First, we'll need the division algorithm, which says for any a,b € Z,
there are unique integers ¢ and r satisfying

a=bqg+r and 0<r<]|b.

Think: “a divided by b is g with remainder r.”
Ex: ifa=17,b=5,then g =3 and r =2 since 17 =53 + 2.
Ex: if a = —17,b =5, then ¢ = —4 and r = 3 since —17 =5 = (—4) + 2.
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Proof: (sketch) If a and b are the same sign, subtract b from a
until the result is between 0 and |b| — 1. The result is r and the
number of subtractions is ¢. If they're different signs, add b to a
until the result is between 0 and |b| — 1. The result is 7 and the
number of additions is —q.



We have

ifa=17,b=>5,thenqg=3and r =2 since 17 =53 + 2.

If ao = 5,b9 =2, then go =2 and r9 = 1since 5 =22 + 1.
And if a3 = 2,b3 = 1, then g3 =2 and r3 = 0 since 2 =2 %1 + 0.
Notice: ged(17,5) = 1.

Play this game again with new a and b:
1. Start with a1 = a and b = b.

2. Compute the quotient ¢; and remainder 7; in dividing a; by b;.
3. Repeat the division algorithm using a; = b;_1 and b; = r;_1.
4. lterate until you get r, = 0.

Then compare ged(a, b) with ;.

You try: Do this process with a = 30, b = 12, and then with
a =84, b=30.

Spreadsheet functions

For a and integer and b a positive integer,
=FLOOR(a, b)
gives the largest multiple of b less or equal to a.

Namely, if a = bg + r, then FLOOR(a, b) = bq.

Example:
=FLOOR(17,5) returns 15,
=FLOOR(—17,5) returns —20,
=FLOOR(17,—5) returns an error.

So to compute g and r such that a = bg + r,
=FLOOR(a,b)/b  returns g,
=a—FLOOR(a,b) returns .



Why does 1,1 = ged(a, b)?

In general, our process looks like

r_1 70
" = B o xq + 7
To
b, = 1% Q2 4+ 1y
1 = r9 * Q3 + 73
Tn—4 = Tp-3%(Qn—2 + Th_2
Tneg = Tpno2%qn_1 + 7Tn_1 < gcd(a,b)?
Tm—2 = Tn—1 * Q4n + 0 T

To make everything look the same, let r_1 = a and rg = b. So
every line comes in the form

Ti—2 = Ti—1%q; +Tj.

Why does 1,1 = ged(a, b)?

Let r_1 = a and ry = b, so that the algorithm looks like

r-1 = 70 * q1 + n
ro = 1% Q2 + T2
o= T2 *q3 + 73
Tp—4 = Tp-3%(Qpn—2 + Tp-2
Tp—3 = Tp—2%Qqp—1 + Tp-1 < ng((I, b)?
'n—2 = T'n—1 * gn + 0 <~ Tn

Last line: r,_9 = rn_1qn.
So
Tn—3 = "n—2Qn—1 + Tn—1 = (Tn—lqn)Qn—l +rp—1 = Tn—l(QnQn—l + 1)
Then
Tpn—4 = 'n—3Qn—2 + I'n—2 = 7“n—l(QnQn—l + 1)Qn—2 + T'n—14qn
= rn—l(QnQn—lQn—2 + gn—2 t 1)



Why does 1,1 = ged(a, b)?

Example: We saw

84 =302+ 24
30=24%14+6
24 =64+ 0. Tn—1 =6

So

30=24%146=(6+4)x1+6=64%1+1)=6x%5
84=30%2+24=(65) %2+ (6%4) = 6(5+2+4) = 6 = 24.

So 6 is a common divisor of 84 and 30.



From our spreadsheet, we can calculate that for a = 100, b = 36:

100 = 36 = 2 + 28

36 =28%1+8
286=8%x3+4
8=4%2+0. Tn—1 = 4

So

28=8%3+4=(4%2)*3+4=4(2%3+1)=4x7
36=28%1+8=(4*7)x1+ (4%2)=4(T*x1+2)=4%9
100=36%2+28=(4%9)%24+ (4%7)=4(9%«2+7) =4x25.

So 4 is a common divisor of 100 and 36.

You try: use the following computations, working backwards, to

show that 2 is a common divisor of 100 and 26:
100 = 26 % 3 + 22 26=22x1+4

22=4%5+2 4=4%4+0



Why does 1,1 = ged(a, b)?

Letting r_1 = a and r¢9 = b, and computing

r-1 = ro * q1 +
ro = 71 * g2 + 7
re = 72 * g3 + T3
Tp—4 = Tp-3%(qpn—2 + 7Tp-2
Th—3 = Tpn—2%(Qqpn-1 + Tp-1 < ng(CL, b)?
'n—2 = 'n—1 * Qdn + 0 <~ Tn

we can reverse this process to show that r,_; is, at the very least,
a common divisor to a = r_1 and b = ry.

Wait! How do we know we ever get 077

The division algorithm ensures that each remainder is strictly
smaller than the last, and always non-negative:

b=7”0>7“1>7“2>"'>o.

So since the r;'s are all integers, this process ends at some point.



Why does 7,1 = ged(a, b)?
We have that 7,1 is a common divisor to a an b. Now why is it
the greatest common divisor?
Suppose d is a common divisor of a and b, i.e. d|a and d|b. This
means
a=da and b=dp for some «,f € Z.
Back to our division calculation, and substitute these equations in:

a = b*qr +

b = 1 * g2 + )

re = T2 * q3 + T3
Tn—3 = Tp—2%Qqpn—-1 + Tp-1
'm—2 = 'n—1 * gn + 0

Why does 7,1 = ged(a, b)?
We have that r,,_1 is a common divisor to a an b. Now why is it
the greatest common divisor?
Suppose d is a common divisor of a and b, i.e. d|a and d|b. This
means
a=da and b=dp for some «,f € Z.
Back to our division calculation, and substitute these equations in:

do = dg = q + so 7 =d(a— Bq1) = dmy
dg = dmy * g + so 1o = d(f — mi1q2) = dmso
dmi = dmso * q3 + 3 SO
dmp_3 = dmy_2* gn—1 + Tph—1 SO |Tp_1 ="'+ = dmy, 1
T'n—2 = 'n—1 * 4n + 0

So d is a divisor of r,_1. In particular, since r,,_1 > 0, we have
dlrn—1 and d<rp_q.

In other words, r,,_1 is a common divisor to a and b, and any other

common divisor is less than or equal to 7,_1. So r,—1 = ged(a,b).




The Euclidean algorithm for computing the greatest common
divisor of two positive numbers a and b is the process or
successively dividing until just before you get a 0 divisor (like we
just did). Namely, we have the following theorem.

Theorem (Euclidean algorithm)
To compute the greatest common divisor of two positive integers a
and b, let r_1 = a and ro = b, and compute successive quotients
and remainders

Ti—2 = Ti-1G; + T;

fori =1,2,3,..., until some remainder r,, is 0. The last nonzero
remainder r,,_1 is then the greatest common divisor of a and b.

This takes at most b steps (actually less), and is much more
computationally efficient than the other methods.



