
Divisors

Let m,n P Z with m ‰ 0. We say that m divides n if n is a
multiple of m, i.e.

n “ mk for some k P Z, written m|n
If m does not divide n, then we write m - n.
Examples:

3|6 since 6 “ 3 ˚ 2;

15|60 since 60 “ 15 ˚ 4;

15 - 25 since there is no m P Z such that 25 “ 15 ˚ m.

In general, for any n P Z,
n|n, ´n|n, 1|n, and ´ 1|n.

We often restrict to talking about numbers n P Z°0, and list the
divisors as the positive integers that divide n.

Example: the divisors of 12 are 1, 2, 3, 4, 6, and 12.

Common divisors

For two numbers a, b P Z°0, a common divisor d is a divisor
common to both numbers, i.e.

d|a and d|b.
For example,

3 is a divisor of 30, but not 40;
4 is a divisor of 40, but not 30;

1, 2, 5, and 10 are all common divisors of 30 and 40.
The greatest common divisor of a and b, denoted gcdpa, bq is
largest number that divides both a and b.

Example: gcdp30, 40q “ 10.
Always, gcdpa, bq “ gcdpb, aq.
If b|a, then gcdpa, bq “ b.
If gcdpa, bq “ 1, we say that a and b are relatively prime.

Example:
The divisors of 25 are 1, 5, and 25;

the divisors of 12 are 1, 2, 3, 4, 6, and 12;
so 25 and 12 are relatively prime (even though neither is prime).



Computing the greatest common divisor

Method 1: Compute all the divisors of a and b, and compare.
VERY ine�cient!

Method 2:
Compute the prime factorizations, and take their “intersection”.
Example:

19500 “ 22 ˚ 3 ˚ 53 ˚ 13 and 440 “ 23 ˚ 5 ˚ 11,
so gcdp19500, 400q “ 22 ˚ 5 “ 20 .

In other words, gcdpa, bq will be the product over primes p to the
highest power n such that pn|a and pn|b.

You try: compute the prime factorizations of 12, 30, 35, and 84,
and use them to compute

gcdp12, 30q, gcdp12, 35q, gcdp12, 84q, gcdp30, 35q, gcdp30, 84q, gcdp35, 84q.

Not computationally e�cient either! (Prime factorization is
computationally di�cult/not possible without a list of primes.)



Method 3: The Euclidean algorithm.

First, we’ll need the division algorithm, which says for any a, b P Z,
there are unique integers q and r satisfying

a “ bq ` r and 0 § r † |b|.

Think: “a divided by b is q with remainder r.”
Ex: if a “ 17, b “ 5, then q “ 3 and r “ 2 since 17 “ 5 ˚ 3 ` 2.

Ex: if a “ ´17, b “ 5, then q “ ´4 and r “ 3 since ´17 “ 5 ˚ p´4q ` 2.
´20 ´15 ´10 ´5 0 5 10 15 20

´17 17

Proof: (sketch) If a and b are the same sign, subtract b from a
until the result is between 0 and |b| ´ 1. The result is r and the
number of subtractions is q. If they’re di↵erent signs, add b to a
until the result is between 0 and |b| ´ 1. The result is r and the
number of additions is ´q.



We have
if a “ 17, b “ 5, then q “ 3 and r “ 2 since 17 “ 5 ˚ 3 ` 2.
If a2 “ 5, b2 “ 2, then q2 “ 2 and r2 “ 1 since 5 “ 2 ˚ 2 ` 1.

And if a3 “ 2, b3 “ 1, then q3 “ 2 and r3 “ 0 since 2 “ 2 ˚ 1 ` 0.
Notice: gcdp17, 5q “ 1.

Play this game again with new a and b:

1. Start with a1 “ a and b1 “ b.

2. Compute the quotient qi and remainder ri in dividing ai by bi.

3. Repeat the division algorithm using ai “ bi´1 and bi “ ri´1.

4. Iterate until you get rn “ 0.
Then compare gcdpa, bq with rn´1.

You try: Do this process with a “ 30, b “ 12, and then with
a “ 84, b “ 30.

Claim: If n is the first time that rn “ 0, then rn´1 “ gcdpa, bq.
Note that if r “ 0 in the first step, then b|n, so gcdpa, bq “ b.

Spreadsheet functions

For a and integer and b a positive integer,
=FLOORpa, bq

gives the largest multiple of b less or equal to a.

Namely, if a “ bq ` r, then FLOORpa, bq “ bq.

Example:

=FLOORp17, 5q returns 15,

=FLOORp´17, 5q returns ´20,

=FLOORp17,´5q returns an error.

So to compute q and r such that a “ bq ` r,

=FLOORpa, bq{b returns q,

=a´FLOORpa, bq returns r.



Why does rn´1 “ gcdpa, bq?
In general, our process looks like

a
r´1 “ b

r0 ˚ q1 ` r1

b
r0 “ r1 ˚ q2 ` r2

r1 “ r2 ˚ q3 ` r3
...

rn´4 “ rn´3 ˚ qn´2 ` rn´2

rn´3 “ rn´2 ˚ qn´1 ` rn´1 – gcdpa, bq?
rn´2 “ rn´1 ˚ qn ` 0 – rn

To make everything look the same, let r´1 “ a and r0 “ b. So
every line comes in the form

ri´2 “ ri´1 ˚ qi ` ri.

Why does rn´1 “ gcdpa, bq?
Let r´1 “ a and r0 “ b, so that the algorithm looks like

r´1 “ r0 ˚ q1 ` r1
r0 “ r1 ˚ q2 ` r2
r1 “ r2 ˚ q3 ` r3

...
rn´4 “ rn´3 ˚ qn´2 ` rn´2

rn´3 “ rn´2 ˚ qn´1 ` rn´1 – gcdpa, bq?
rn´2 “ rn´1 ˚ qn ` 0 – rn

Last line: rn´2 “ rn´1qn.
So

rn´3 “ rn´2qn´1 ` rn´1 “ prn´1qnqqn´1 ` rn´1 “ rn´1pqnqn´1 ` 1q.
Then

rn´4 “ rn´3qn´2 ` rn´2 “ rn´1pqnqn´1 ` 1qqn´2 ` rn´1qn
“ rn´1pqnqn´1qn´2 ` qn´2 ` 1q.

And so on. . .



Why does rn´1 “ gcdpa, bq?

Example: We saw

84 “ 30 ˚ 2 ` 24

30 “ 24 ˚ 1 ` 6

24 “ 6 ˚ 4 ` 0. rn´1 “ 6

So

30 “ 24 ˚ 1 ` 6 “ p6 ˚ 4q ˚ 1 ` 6 “ 6p4 ˚ 1 ` 1q “ 6 ˚ 5

84 “ 30 ˚ 2 ` 24 “ p6 ˚ 5q ˚ 2 ` p6 ˚ 4q “ 6p5 ˚ 2 ` 4q “ 6 ˚ 24.

So 6 is a common divisor of 84 and 30.



From our spreadsheet, we can calculate that for a “ 100, b “ 36:

100 “ 36 ˚ 2 ` 28

36 “ 28 ˚ 1 ` 8

28 “ 8 ˚ 3 ` 4

8 “ 4 ˚ 2 ` 0. rn´1 “ 4

So

28 “ 8 ˚ 3 ` 4 “ p4 ˚ 2q ˚ 3 ` 4 “ 4p2 ˚ 3 ` 1q “ 4 ˚ 7

36 “ 28 ˚ 1 ` 8 “ p4 ˚ 7q ˚ 1 ` p4 ˚ 2q “ 4p7 ˚ 1 ` 2q “ 4 ˚ 9

100 “ 36 ˚ 2 ` 28 “ p4 ˚ 9q ˚ 2 ` p4 ˚ 7q “ 4p9 ˚ 2 ` 7q “ 4 ˚ 25.

So 4 is a common divisor of 100 and 36.

You try: use the following computations, working backwards, to
show that 2 is a common divisor of 100 and 26:

100 “ 26 ˚ 3 ` 22 26 “ 22 ˚ 1 ` 4
22 “ 4 ˚ 5 ` 2 4 “ 4 ˚ 4 ` 0



Why does rn´1 “ gcdpa, bq?
Letting r´1 “ a and r0 “ b, and computing

r´1 “ r0 ˚ q1 ` r1
r0 “ r1 ˚ q2 ` r2
r1 “ r2 ˚ q3 ` r3

...
rn´4 “ rn´3 ˚ qn´2 ` rn´2

rn´3 “ rn´2 ˚ qn´1 ` rn´1 – gcdpa, bq?
rn´2 “ rn´1 ˚ qn ` 0 – rn

we can reverse this process to show that rn´1 is, at the very least,
a common divisor to a “ r´1 and b “ r0.
Wait! How do we know we ever get 0??
The division algorithm ensures that each remainder is strictly
smaller than the last, and always non-negative:

b “ r0 ° r1 ° r2 ° ¨ ¨ ¨ • 0.

So since the ri’s are all integers, this process ends at some point.



Why does rn´1 “ gcdpa, bq?
We have that rn´1 is a common divisor to a an b. Now why is it
the greatest common divisor?
Suppose d is a common divisor of a and b, i.e. d|a and d|b. This
means

a “ d↵ and b “ d� for some ↵,� P Z.
Back to our division calculation, and substitute these equations in:

a “ b ˚ q1 ` r1

so r1 “ dp↵ ´ �q1q “ dm1

b “ r1 ˚ q2 ` r2

so r2 “ dp� ´ m1q2q “ dm2

r1 “ r2 ˚ q3 ` r3

so r3 “ ¨ ¨ ¨ “ dm3

...
rn´3 “ rn´2 ˚ qn´1 ` rn´1

so rn´1 “ ¨ ¨ ¨ “ dmn´1

rn´2 “ rn´1 ˚ qn ` 0

So d is a divisor of rn´1. In particular, since rn´1 ° 0, we have
d|rn´1 and d § rn´1.

In other words, rn´1 is a common divisor to a and b, and any other
common divisor is less than or equal to rn´1. So rn´1 “ gcdpa, bq.

Why does rn´1 “ gcdpa, bq?
We have that rn´1 is a common divisor to a an b. Now why is it
the greatest common divisor?
Suppose d is a common divisor of a and b, i.e. d|a and d|b. This
means

a “ d↵ and b “ d� for some ↵,� P Z.
Back to our division calculation, and substitute these equations in:

d↵ “ d� ˚ q1 ` r1 so r1 “ dp↵ ´ �q1q “ dm1

d� “ dm1 ˚ q2 ` r2 so r2 “ dp� ´ m1q2q “ dm2

dm1 “ dm2 ˚ q3 ` r3 so r3 “ ¨ ¨ ¨ “ dm3
...

dmn´3 “ dmn´2 ˚ qn´1 ` rn´1 so rn´1 “ ¨ ¨ ¨ “ dmn´1

rn´2 “ rn´1 ˚ qn ` 0

So d is a divisor of rn´1. In particular, since rn´1 ° 0, we have
d|rn´1 and d § rn´1.

In other words, rn´1 is a common divisor to a and b, and any other
common divisor is less than or equal to rn´1. So rn´1 “ gcdpa, bq.



The Euclidean algorithm for computing the greatest common
divisor of two positive numbers a and b is the process or
successively dividing until just before you get a 0 divisor (like we
just did). Namely, we have the following theorem.

Theorem (Euclidean algorithm)

To compute the greatest common divisor of two positive integers a
and b, let r´1 “ a and r0 “ b, and compute successive quotients

and remainders

ri´2 “ ri´1qi ` ri

for i “ 1, 2, 3, . . . , until some remainder rn is 0. The last nonzero

remainder rn´1 is then the greatest common divisor of a and b.

This takes at most b steps (actually less), and is much more
computationally e�cient than the other methods.


