Lecture 4: Divisibility and
 Greatest Common Divisor

Divisors

Let $m, n \in \mathbb{Z}$ with $m \neq 0$. We say that m divides n if n is a multiple of m, i.e.

$$
n=m k \quad \text { for some } \quad k \in \mathbb{Z}, \quad \text { written } m \mid n
$$

If m does not divide n, then we write $m \nmid n$.

Divisors

Let $m, n \in \mathbb{Z}$ with $m \neq 0$. We say that m divides n if n is a multiple of m, i.e.

$$
n=m k \quad \text { for some } \quad k \in \mathbb{Z}, \quad \text { written } m \mid n
$$

If m does not divide n, then we write $m \nmid n$.
Examples:

$$
3 \mid 6 \quad \text { since } \quad 6=3 * 2
$$

Divisors

Let $m, n \in \mathbb{Z}$ with $m \neq 0$. We say that m divides n if n is a multiple of m, i.e.

$$
n=m k \quad \text { for some } \quad k \in \mathbb{Z}, \quad \text { written } m \mid n
$$

If m does not divide n, then we write $m \nmid n$.
Examples:

$$
\begin{array}{rll}
3 \mid 6 & \text { since } & 6=3 * 2 \\
15 \mid 60 & \text { since } & 60=15 * 4
\end{array}
$$

Divisors

Let $m, n \in \mathbb{Z}$ with $m \neq 0$. We say that m divides n if n is a multiple of m, i.e.

$$
n=m k \quad \text { for some } \quad k \in \mathbb{Z}, \quad \text { written } m \mid n
$$

If m does not divide n, then we write $m \nmid n$.
Examples:

$$
\begin{array}{rll}
3 \mid 6 & \text { since } & 6=3 * 2 \\
15 \mid 60 & \text { since } & 60=15 * 4
\end{array}
$$

$15 \nmid 25$ since there is no $m \in \mathbb{Z}$ such that $25=15 * m$.

Divisors

Let $m, n \in \mathbb{Z}$ with $m \neq 0$. We say that m divides n if n is a multiple of m, i.e.

$$
n=m k \quad \text { for some } \quad k \in \mathbb{Z}, \quad \text { written } m \mid n
$$

If m does not divide n, then we write $m \nmid n$.
Examples:

$$
\begin{array}{rll}
3 \mid 6 & \text { since } & 6=3 * 2 \\
15 \mid 60 & \text { since } & 60=15 * 4
\end{array}
$$

$15 \nmid 25$ since there is no $m \in \mathbb{Z}$ such that $25=15 * m$. In general, for any $n \in \mathbb{Z}$,

$$
n|n, \quad-n| n, \quad 1 \mid n, \quad \text { and }-1 \mid n
$$

Divisors

Let $m, n \in \mathbb{Z}$ with $m \neq 0$. We say that m divides n if n is a multiple of m, i.e.

$$
n=m k \quad \text { for some } \quad k \in \mathbb{Z}, \quad \text { written } m \mid n
$$

If m does not divide n, then we write $m \nmid n$.
Examples:

$$
\begin{array}{rll}
3 \mid 6 & \text { since } & 6=3 * 2 \\
15 \mid 60 & \text { since } & 60=15 * 4
\end{array}
$$

$15 \nmid 25$ since there is no $m \in \mathbb{Z}$ such that $25=15 * m$. In general, for any $n \in \mathbb{Z}$,

$$
n|n, \quad-n| n, \quad 1 \mid n, \quad \text { and }-1 \mid n
$$

We often restrict to talking about numbers $n \in \mathbb{Z}_{>0}$, and list the divisors as the positive integers that divide n.

Divisors

Let $m, n \in \mathbb{Z}$ with $m \neq 0$. We say that m divides n if n is a multiple of m, i.e.

$$
n=m k \quad \text { for some } \quad k \in \mathbb{Z}, \quad \text { written } m \mid n
$$

If m does not divide n, then we write $m \nmid n$.
Examples:

$$
\begin{array}{rll}
3 \mid 6 & \text { since } & 6=3 * 2 \\
15 \mid 60 & \text { since } & 60=15 * 4
\end{array}
$$

$15 \nmid 25$ since there is no $m \in \mathbb{Z}$ such that $25=15 * m$. In general, for any $n \in \mathbb{Z}$,

$$
n|n, \quad-n| n, \quad 1 \mid n, \quad \text { and }-1 \mid n
$$

We often restrict to talking about numbers $n \in \mathbb{Z}_{>0}$, and list the divisors as the positive integers that divide n.

Example: the divisors of 12 are $1,2,3,4,6$, and 12.

Common divisors

For two numbers $a, b \in \mathbb{Z}_{>0}$, a common divisor d is a divisor common to both numbers, i.e.

$$
d \mid a \quad \text { and } \quad d \mid b
$$

Common divisors

For two numbers $a, b \in \mathbb{Z}_{>0}$, a common divisor d is a divisor common to both numbers, i.e.

$$
d \mid a \quad \text { and } \quad d \mid b
$$

For example,
3 is a divisor of 30 , but not 40 ; 4 is a divisor of 40 , but not 30 ;
$1,2,5$, and 10 are all common divisors of 30 and 40 .

Common divisors

For two numbers $a, b \in \mathbb{Z}_{>0}$, a common divisor d is a divisor common to both numbers, i.e.

$$
d \mid a \quad \text { and } \quad d \mid b
$$

For example,
3 is a divisor of 30 , but not 40 ;
4 is a divisor of 40 , but not 30 ;
$1,2,5$, and 10 are all common divisors of 30 and 40 .
The greatest common divisor of a and b, denoted $\operatorname{gcd}(a, b)$ is largest number that divides both a and b.

Common divisors

For two numbers $a, b \in \mathbb{Z}_{>0}$, a common divisor d is a divisor common to both numbers, i.e.

$$
d \mid a \quad \text { and } \quad d \mid b
$$

For example,
3 is a divisor of 30 , but not 40 ;
4 is a divisor of 40 , but not 30 ;
$1,2,5$, and 10 are all common divisors of 30 and 40 .
The greatest common divisor of a and b, denoted $\operatorname{gcd}(a, b)$ is largest number that divides both a and b.

Example: $\operatorname{gcd}(30,40)=10$.

Common divisors

For two numbers $a, b \in \mathbb{Z}_{>0}$, a common divisor d is a divisor common to both numbers, i.e.

$$
d \mid a \quad \text { and } \quad d \mid b
$$

For example,
3 is a divisor of 30 , but not 40 ;
4 is a divisor of 40 , but not 30 ;
$1,2,5$, and 10 are all common divisors of 30 and 40 .
The greatest common divisor of a and b, denoted $\operatorname{gcd}(a, b)$ is largest number that divides both a and b.

$$
\text { Example: } \operatorname{gcd}(30,40)=10
$$

Always, $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a)$.

Common divisors

For two numbers $a, b \in \mathbb{Z}_{>0}$, a common divisor d is a divisor common to both numbers, i.e.

$$
d \mid a \quad \text { and } \quad d \mid b
$$

For example,
3 is a divisor of 30 , but not 40 ;
4 is a divisor of 40 , but not 30 ;
$1,2,5$, and 10 are all common divisors of 30 and 40 .
The greatest common divisor of a and b, denoted $\operatorname{gcd}(a, b)$ is largest number that divides both a and b.

$$
\text { Example: } \operatorname{gcd}(30,40)=10
$$

Always, $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a)$. If $b \mid a$, then $\operatorname{gcd}(a, b)=b$.

Common divisors

For two numbers $a, b \in \mathbb{Z}_{>0}$, a common divisor d is a divisor common to both numbers, i.e.

$$
d \mid a \quad \text { and } \quad d \mid b
$$

For example,
3 is a divisor of 30 , but not 40 ;
4 is a divisor of 40 , but not 30 ;
$1,2,5$, and 10 are all common divisors of 30 and 40 .
The greatest common divisor of a and b, denoted $\operatorname{gcd}(a, b)$ is largest number that divides both a and b.

$$
\text { Example: } \operatorname{gcd}(30,40)=10
$$

Always, $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a)$.
If $b \mid a$, then $\operatorname{gcd}(a, b)=b$.
If $\operatorname{gcd}(a, b)=1$, we say that a and b are relatively prime.

Common divisors

For two numbers $a, b \in \mathbb{Z}_{>0}$, a common divisor d is a divisor common to both numbers, i.e.

$$
d \mid a \quad \text { and } \quad d \mid b
$$

For example,

$$
3 \text { is a divisor of } 30 \text {, but not } 40 \text {; }
$$

4 is a divisor of 40 , but not 30 ;
$1,2,5$, and 10 are all common divisors of 30 and 40 .
The greatest common divisor of a and b, denoted $\operatorname{gcd}(a, b)$ is largest number that divides both a and b.

$$
\text { Example: } \operatorname{gcd}(30,40)=10
$$

Always, $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a)$.
If $b \mid a$, then $\operatorname{gcd}(a, b)=b$.
If $\operatorname{gcd}(a, b)=1$, we say that a and b are relatively prime.
Example:
The divisors of 25 are 1,5 , and 25 ; the divisors of 12 are $1,2,3,4,6$, and 12 ;
so 25 and 12 are relatively prime (even though neither is prime).

Computing the greatest common divisor

Method 1: Compute all the divisors of a and b, and compare.

Computing the greatest common divisor

Method 1: Compute all the divisors of a and b, and compare.
VERY inefficient!

Computing the greatest common divisor

Method 1: Compute all the divisors of a and b, and compare.
VERY inefficient!
Method 2:
Compute the prime factorizations, and take their "intersection".

Computing the greatest common divisor

Method 1: Compute all the divisors of a and b, and compare.
VERY inefficient!
Method 2:
Compute the prime factorizations, and take their "intersection". Example:

$$
\begin{aligned}
19500 & =2^{2} * 3 * 5^{3} * 13 \text { and } 440=2^{3} * 5 * 11 \\
& \text { so } \operatorname{gcd}(19500,400)=2^{2} * 5=20 .
\end{aligned}
$$

In other words, $\operatorname{gcd}(a, b)$ will be the product over primes p to the highest power n such that $p^{n} \mid a$ and $p^{n} \mid b$.

Computing the greatest common divisor

Method 1: Compute all the divisors of a and b, and compare.
VERY inefficient!
Method 2:
Compute the prime factorizations, and take their "intersection". Example:

$$
\begin{gathered}
19500=2^{2} * 3 * 5^{3} * 13 \text { and } 440=2^{3} * 5 * 11 \\
\text { so } \operatorname{gcd}(19500,400)=2^{2} * 5=20 .
\end{gathered}
$$

In other words, $\operatorname{gcd}(a, b)$ will be the product over primes p to the highest power n such that $p^{n} \mid a$ and $p^{n} \mid b$.

You try: compute the prime factorizations of $12,30,35$, and 84 , and use them to compute
$\operatorname{gcd}(12,30), \quad \operatorname{gcd}(12,35), \quad \operatorname{gcd}(12,84), \quad \operatorname{gcd}(30,35), \quad \operatorname{gcd}(30,84)$,

Computing the greatest common divisor

Method 1: Compute all the divisors of a and b, and compare.
VERY inefficient!
Method 2:
Compute the prime factorizations, and take their "intersection". Example:

$$
\begin{aligned}
& 19500=2^{2} * 3 * 5^{3} * 13 \text { and } 440=2^{3} * 5 * 11 \\
& \text { so } \operatorname{gcd}(19500,400)=2^{2} * 5=20 .
\end{aligned}
$$

In other words, $\operatorname{gcd}(a, b)$ will be the product over primes p to the highest power n such that $p^{n} \mid a$ and $p^{n} \mid b$.

You try: compute the prime factorizations of $12,30,35$, and 84 , and use them to compute
$\operatorname{gcd}(12,30), \quad \operatorname{gcd}(12,35), \quad \operatorname{gcd}(12,84), \quad \operatorname{gcd}(30,35), \quad \operatorname{gcd}(30,84)$,
Not computationally efficient either! (Prime factorization is computationally difficult/not possible without a list of primes.)

Method 3: The Euclidean algorithm.

Method 3: The Euclidean algorithm.

First, we'll need the division algorithm, which says for any $a, b \in \mathbb{Z}$ with $b \neq 0$, there are unique integers q and r satisfying

$$
a=b q+r \quad \text { and } \quad 0 \leqslant r<|b| .
$$

Think: " a divided by b is q with remainder r."

Method 3: The Euclidean algorithm.

First, we'll need the division algorithm, which says for any $a, b \in \mathbb{Z}$ with $b \neq 0$, there are unique integers q and r satisfying

$$
a=b q+r \quad \text { and } \quad 0 \leqslant r<|b| .
$$

Think: " a divided by b is q with remainder r."
Ex: if $a=17, b=5$

Method 3: The Euclidean algorithm.

First, we'll need the division algorithm, which says for any $a, b \in \mathbb{Z}$ with $b \neq 0$, there are unique integers q and r satisfying

$$
a=b q+r \quad \text { and } \quad 0 \leqslant r<|b|
$$

Think: " a divided by b is q with remainder r."
Ex: if $a=17, b=5$, then $q=3$ and $r=2$ since $17=5 * 3+2$.

Method 3: The Euclidean algorithm.

First, we'll need the division algorithm, which says for any $a, b \in \mathbb{Z}$ with $b \neq 0$, there are unique integers q and r satisfying

$$
a=b q+r \quad \text { and } \quad 0 \leqslant r<|b|
$$

Think: " a divided by b is q with remainder r."
Ex: if $a=17, b=5$, then $q=3$ and $r=2$ since $17=5 * 3+2$.
Ex: if $a=-17, b=5$

Method 3: The Euclidean algorithm.

First, we'll need the division algorithm, which says for any $a, b \in \mathbb{Z}$ with $b \neq 0$, there are unique integers q and r satisfying

$$
a=b q+r \quad \text { and } \quad 0 \leqslant r<|b|
$$

Think: " a divided by b is q with remainder r."
Ex: if $a=17, b=5$, then $q=3$ and $r=2$ since $17=5 * 3+2$.
Ex: if $a=-17, b=5$, then $q=-4$ and $r=3$ since $-17=5 *(-4)+2$.

Method 3: The Euclidean algorithm.

First, we'll need the division algorithm, which says for any $a, b \in \mathbb{Z}$ with $b \neq 0$, there are unique integers q and r satisfying

$$
a=b q+r \quad \text { and } \quad 0 \leqslant r<|b|
$$

Think: " a divided by b is q with remainder r."
Ex: if $a=17, b=5$, then $q=3$ and $r=2$ since $17=5 * 3+2$.
Ex: if $a=-17, b=5$, then $q=-4$ and $r=3$ since $-17=5 *(-4)+2$.

Method 3: The Euclidean algorithm.

First, we'll need the division algorithm, which says for any $a, b \in \mathbb{Z}$ with $b \neq 0$, there are unique integers q and r satisfying

$$
a=b q+r \quad \text { and } \quad 0 \leqslant r<|b| .
$$

Think: " a divided by b is q with remainder r."
Ex: if $a=17, b=5$, then $q=3$ and $r=2$ since $17=5 * 3+2$.
Ex: if $a=-17, b=5$, then $q=-4$ and $r=3$ since $-17=5 *(-4)+2$.

Proof: (sketch) If a and b are the same sign, subtract b from a until the result is between 0 and $|b|-1$. The result is r and the number of subtractions is q. If they're different signs, add b to a until the result is between 0 and $|b|-1$. The result is r and the number of additions is $-q$.

We have
if $a=17, b=5$, then $q=3$ and $r=2$ since $17=5 * 3+2$.

We have
if $a=17, b=5$, then $q=3$ and $r=2$ since $17=5 * 3+2$.

We have
if $a=17, b=5$, then $q=3$ and $r=2$ since $17=5 * 3+2$.
If $a_{2}=5, b_{2}=2$, then $q_{2}=2$ and $r_{2}=1$ since $5=2 * 2+1$.

We have
if $a=17, b=5$, then $q=3$ and $r=2$ since $17=5 * 3+2$.
If $a_{2}=5, b_{2}=2$, then $q_{2}=2$ and $r_{2}=1$ since $5=2 * 2+1$.

We have
if $a=17, b=5$, then $q=3$ and $r=2$ since $17=5 * 3+2$.
If $a_{2}=5, b_{2}=2$, then $q_{2}=2$ and $r_{2}=1$ since $5=2 * 2+1$.
And if $a_{3}=2, b_{3}=1$, then $q_{3}=2$ and $r_{3}=0$ since $2=2 * 1+0$.

We have
if $a=17, b=5$, then $q=3$ and $r=2$ since $17=5 * 3+2$.
If $a_{2}=5, b_{2}=2$, then $q_{2}=2$ and $r_{2}=1$ since $5=2 * 2+1$.
And if $a_{3}=2, b_{3}=1$, then $q_{3}=2$ and $r_{3}=0$ since $2=2 * 1+0$. Notice: $\operatorname{gcd}(17,5)=1$.

We have
if $a=17, b=5$, then $q=3$ and $r=2$ since $17=5 * 3+2$.
If $a_{2}=5, b_{2}=2$, then $q_{2}=2$ and $r_{2}=1$ since $5=2 * 2+1$.
And if $a_{3}=2, b_{3}=1$, then $q_{3}=2$ and $r_{3}=0$ since $2=2 * 1+0$. Notice: $\operatorname{gcd}(17,5)=1$.
Play this game again with new a and b :

1. Start with $a_{1}=a$ and $b_{1}=b$.
2. Compute the quotient q_{i} and remainder r_{i} in dividing a_{i} by b_{i}.
3. Repeat the division algorithm using $a_{i}=b_{i-1}$ and $b_{i}=r_{i-1}$.
4. Iterate until you get $r_{n}=0$.

Then compare $\operatorname{gcd}(a, b)$ with r_{n-1}.

You try: Do this process with $a=30, b=12$, and then with $a=84, b=30$.

We have
if $a=17, b=5$, then $q=3$ and $r=2$ since $17=5 * 3+2$.
If $a_{2}=5, b_{2}=2$, then $q_{2}=2$ and $r_{2}=1$ since $5=2 * 2+1$.
And if $a_{3}=2, b_{3}=1$, then $q_{3}=2$ and $r_{3}=0$ since $2=2 * 1+0$. Notice: $\operatorname{gcd}(17,5)=1$.
Play this game again with new a and b :

1. Start with $a_{1}=a$ and $b_{1}=b$.
2. Compute the quotient q_{i} and remainder r_{i} in dividing a_{i} by b_{i}.
3. Repeat the division algorithm using $a_{i}=b_{i-1}$ and $b_{i}=r_{i-1}$.
4. Iterate until you get $r_{n}=0$.

Then compare $\operatorname{gcd}(a, b)$ with r_{n-1}.

You try: Do this process with $a=30, b=12$, and then with $a=84, b=30$.
Claim: If n is the first time that $r_{n}=0$, then $r_{n-1}=\operatorname{gcd}(a, b)$.

We have
if $a=17, b=5$, then $q=3$ and $r=2$ since $17=5 * 3+2$.
If $a_{2}=5, b_{2}=2$, then $q_{2}=2$ and $r_{2}=1$ since $5=2 * 2+1$.
And if $a_{3}=2, b_{3}=1$, then $q_{3}=2$ and $r_{3}=0$ since $2=2 * 1+0$. Notice: $\operatorname{gcd}(17,5)=1$.
Play this game again with new a and b :

1. Start with $a_{1}=a$ and $b_{1}=b$.
2. Compute the quotient q_{i} and remainder r_{i} in dividing a_{i} by b_{i}.
3. Repeat the division algorithm using $a_{i}=b_{i-1}$ and $b_{i}=r_{i-1}$.
4. Iterate until you get $r_{n}=0$.

Then compare $\operatorname{gcd}(a, b)$ with r_{n-1}.

You try: Do this process with $a=30, b=12$, and then with $a=84, b=30$.
Claim: If n is the first time that $r_{n}=0$, then $r_{n-1}=\operatorname{gcd}(a, b)$. Note that if $r=0$ in the first step, then $b \mid n$, so $\operatorname{gcd}(a, b)=b$.

Spreadsheet functions

For a and integer and b a positive integer,

$$
=\operatorname{FLOOR}(a, b)
$$

gives the largest multiple of b less or equal to a.
Namely, if $a=b q+r$, then $\operatorname{FLOOR}(a, b)=b q$.

Spreadsheet functions

For a and integer and b a positive integer,

$$
=\operatorname{FLOOR}(a, b)
$$

gives the largest multiple of b less or equal to a.
Namely, if $a=b q+r$, then $\operatorname{FLOOR}(a, b)=b q$.
Example:

$$
\begin{aligned}
& =\operatorname{FLOOR}(17,5) \text { returns } 15, \\
& =\operatorname{FLOOR}(-17,5) \text { returns }-20, \\
& =\operatorname{FLOOR}(17,-5) \text { returns an error. }
\end{aligned}
$$

Spreadsheet functions

For a and integer and b a positive integer,

$$
=\operatorname{FLOOR}(a, b)
$$

gives the largest multiple of b less or equal to a.
Namely, if $a=b q+r$, then $\operatorname{FLOOR}(a, b)=b q$.
Example:
$=\operatorname{FLOOR}(17,5)$ returns 15,
$=\operatorname{FLOOR}(-17,5)$ returns -20,
$=\operatorname{FLOOR}(17,-5)$ returns an error.

So to compute q and r such that $a=b q+r$,

$$
\begin{aligned}
& =\operatorname{FLOOR}(a, b) / b \quad \text { returns } \quad q, \\
& =a-\operatorname{FLOOR}(a, b) \quad \text { returns } \quad r .
\end{aligned}
$$

Why does $r_{n-1}=\operatorname{gcd}(a, b)$?

Why does $r_{n-1}=\operatorname{gcd}(a, b)$?

In general, our process looks like

$$
\begin{array}{rlclll}
a & = & b * q_{1} & + & r_{1} \\
b & = & r_{1} * q_{2} & + & r_{2} \\
r_{1} & = & r_{2} * q_{3} & + & r_{3} \\
& \vdots & & & \\
r_{n-4} & = & r_{n-3} * q_{n-2} & + & r_{n-2} & \\
r_{n-3} & = & r_{n-2} * q_{n-1} & + & r_{n-1} & \leftarrow \operatorname{gcd}(a, b) ? \\
r_{n-2} & = & r_{n-1} * q_{n} & + & 0 & \leftarrow r_{n}
\end{array}
$$

Why does $r_{n-1}=\operatorname{gcd}(a, b)$?

In general, our process looks like

$$
\begin{array}{rllll}
a & = & b * q_{1} & + & r_{1} \\
b & = & r_{1} * q_{2} & + & r_{2} \\
r_{1} & = & r_{2} * q_{3} & + & r_{3} \\
& \vdots & & & \\
r_{n-4} & = & r_{n-3} * q_{n-2} & + & r_{n-2} \\
r_{n-3} & = & r_{n-2} * q_{n-1} & + & r_{n-1} \\
r_{n-2} & = & r_{n-1} * q_{n} & + & 0
\end{array} \leftarrow r_{n} .
$$

To make everything look the same, let $r_{-1}=a$ and $r_{0}=b$.

Why does $r_{n-1}=\operatorname{gcd}(a, b)$?

In general, our process looks like

$$
\begin{array}{rlll}
r_{-1} & & r_{0} \\
& \\
r_{0} * q_{1} & +r_{1} \\
\not W_{2} & = & r_{1} * q_{2} & +r_{2} \\
r_{1} & = & r_{2} * q_{3} & +r_{3} \\
& \vdots \\
r_{n-4} & = & r_{n-3} * q_{n-2} & +r_{n-2} \\
r_{n-3} & = & r_{n-2} * q_{n-1} & +r_{n-1} \\
r_{n-2} & =r_{n-1} * q_{n} & +0 & \leftarrow r_{n}
\end{array}
$$

To make everything look the same, let $r_{-1}=a$ and $r_{0}=b$. So every line comes in the form

$$
r_{i-2}=r_{i-1} * q_{i}+r_{i}
$$

Why does $r_{n-1}=\operatorname{gcd}(a, b)$?

Let $r_{-1}=a$ and $r_{0}=b$, so that the algorithm looks like

$$
\begin{array}{rllll}
r_{-1} & = & r_{0} * q_{1} & + & r_{1} \\
r_{0} & = & r_{1} * q_{2} & + & r_{2} \\
r_{1} & = & r_{2} * q_{3} & +r_{3} \\
& \vdots & & & \\
r_{n-4} & = & r_{n-3} * q_{n-2} & +r_{n-2} & \\
r_{n-3} & = & r_{n-2} * q_{n-1} & + & r_{n-1} \\
r_{n-2} & = & r_{n-1} * q_{n} & + & 0
\end{array} \leftarrow r_{n} .
$$

Why does $r_{n-1}=\operatorname{gcd}(a, b)$?

Let $r_{-1}=a$ and $r_{0}=b$, so that the algorithm looks like

$$
\begin{array}{rllll}
r_{-1} & = & r_{0} * q_{1} & + & r_{1} \\
r_{0} & = & r_{1} * q_{2} & + & r_{2} \\
r_{1} & = & r_{2} * q_{3} & +r_{3} \\
& \vdots & & & \\
r_{n-4} & = & r_{n-3} * q_{n-2} & +r_{n-2} & \\
r_{n-3} & = & r_{n-2} * q_{n-1} & + & r_{n-1} \\
r_{n-2} & = & r_{n-1} * q_{n} & + & 0
\end{array} \leftarrow r_{n} .
$$

Last line: $r_{n-2}=r_{n-1} q_{n}$.

Why does $r_{n-1}=\operatorname{gcd}(a, b)$?

Let $r_{-1}=a$ and $r_{0}=b$, so that the algorithm looks like

$$
\begin{array}{rllll}
r_{-1} & = & r_{0} * q_{1} & + & r_{1} \\
r_{0} & = & r_{1} * q_{2} & + & r_{2} \\
r_{1} & = & r_{2} * q_{3} & +r_{3} \\
& \vdots & & & \\
r_{n-4} & = & r_{n-3} * q_{n-2} & +r_{n-2} & \\
r_{n-3} & = & r_{n-2} * q_{n-1} & + & r_{n-1} \\
r_{n-2} & = & r_{n-1} * q_{n} & + & 0
\end{array} \leftarrow r_{n} .
$$

Last line: $r_{n-2}=r_{n-1} q_{n}$.
So

$$
r_{n-3}=r_{n-2} q_{n-1}+r_{n-1}
$$

Why does $r_{n-1}=\operatorname{gcd}(a, b)$?

Let $r_{-1}=a$ and $r_{0}=b$, so that the algorithm looks like

$$
\begin{array}{rllll}
r_{-1} & = & r_{0} * q_{1} & + & r_{1} \\
r_{0} & = & r_{1} * q_{2} & + & r_{2} \\
r_{1} & = & r_{2} * q_{3} & +r_{3} \\
& \vdots & & & \\
r_{n-4} & = & r_{n-3} * q_{n-2} & +r_{n-2} & \\
r_{n-3} & = & r_{n-2} * q_{n-1} & + & r_{n-1} \\
r_{n-2} & = & r_{n-1} * q_{n} & + & 0
\end{array} \leftarrow r_{n} .
$$

Last line: $r_{n-2}=r_{n-1} q_{n}$.
So

$$
r_{n-3}=r_{n-2} q_{n-1}+r_{n-1}=\left(r_{n-1} q_{n}\right) q_{n-1}+r_{n-1}
$$

Why does $r_{n-1}=\operatorname{gcd}(a, b)$?

Let $r_{-1}=a$ and $r_{0}=b$, so that the algorithm looks like

$$
\begin{array}{rllll}
r_{-1} & = & r_{0} * q_{1} & + & r_{1} \\
r_{0} & = & r_{1} * q_{2} & + & r_{2} \\
r_{1} & = & r_{2} * q_{3} & +r_{3} \\
& \vdots & & & \\
r_{n-4} & = & r_{n-3} * q_{n-2} & + & r_{n-2} \\
r_{n-3} & = & r_{n-2} * q_{n-1} & + & r_{n-1} \\
r_{n-2} & = & r_{n-1} * q_{n} & + & 0
\end{array} \leftarrow r_{n} .
$$

Last line: $r_{n-2}=r_{n-1} q_{n}$.
So
$r_{n-3}=r_{n-2} q_{n-1}+r_{n-1}=\left(r_{n-1} q_{n}\right) q_{n-1}+r_{n-1}=r_{n-1}\left(q_{n} q_{n-1}+1\right)$.

Why does $r_{n-1}=\operatorname{gcd}(a, b)$?

Let $r_{-1}=a$ and $r_{0}=b$, so that the algorithm looks like

$$
\begin{array}{rllll}
r_{-1} & = & r_{0} * q_{1} & + & r_{1} \\
r_{0} & = & r_{1} * q_{2} & + & r_{2} \\
r_{1} & = & r_{2} * q_{3} & +r_{3} \\
& \vdots & & & \\
r_{n-4} & = & r_{n-3} * q_{n-2} & + & r_{n-2} \\
r_{n-3} & = & r_{n-2} * q_{n-1} & + & r_{n-1} \\
r_{n-2} & = & r_{n-1} * q_{n} & + & 0
\end{array} \leftarrow r_{n} .
$$

Last line: $r_{n-2}=r_{n-1} q_{n}$.
So
$r_{n-3}=r_{n-2} q_{n-1}+r_{n-1}=\left(r_{n-1} q_{n}\right) q_{n-1}+r_{n-1}=r_{n-1}\left(q_{n} q_{n-1}+1\right)$.
Then

$$
r_{n-4}=r_{n-3} q_{n-2}+r_{n-2}
$$

Why does $r_{n-1}=\operatorname{gcd}(a, b)$?

Let $r_{-1}=a$ and $r_{0}=b$, so that the algorithm looks like

$$
\begin{array}{rllll}
r_{-1} & = & r_{0} * q_{1} & + & r_{1} \\
r_{0} & = & r_{1} * q_{2} & + & r_{2} \\
r_{1} & = & r_{2} * q_{3} & +r_{3} \\
& \vdots & & & \\
r_{n-4} & = & r_{n-3} * q_{n-2} & +r_{n-2} & \\
r_{n-3} & = & r_{n-2} * q_{n-1} & + & r_{n-1} \\
r_{n-2} & = & r_{n-1} * q_{n} & + & 0
\end{array} \leftarrow r_{n} .
$$

Last line: $r_{n-2}=r_{n-1} q_{n}$.
So
$r_{n-3}=r_{n-2} q_{n-1}+r_{n-1}=\left(r_{n-1} q_{n}\right) q_{n-1}+r_{n-1}=r_{n-1}\left(q_{n} q_{n-1}+1\right)$.
Then

$$
r_{n-4}=r_{n-3} q_{n-2}+r_{n-2}=r_{n-1}\left(q_{n} q_{n-1}+1\right) q_{n-2}+r_{n-1} q_{n}
$$

Why does $r_{n-1}=\operatorname{gcd}(a, b)$?

Let $r_{-1}=a$ and $r_{0}=b$, so that the algorithm looks like

$$
\begin{array}{rllll}
r_{-1} & = & r_{0} * q_{1} & + & r_{1} \\
r_{0} & = & r_{1} * q_{2} & + & r_{2} \\
r_{1} & = & r_{2} * q_{3} & +r_{3} \\
& \vdots & & & \\
r_{n-4} & = & r_{n-3} * q_{n-2} & +r_{n-2} & \\
r_{n-3} & = & r_{n-2} * q_{n-1} & + & r_{n-1} \\
r_{n-2} & = & r_{n-1} * q_{n} & + & 0
\end{array} \leftarrow r_{n} .
$$

Last line: $r_{n-2}=r_{n-1} q_{n}$.
So
$r_{n-3}=r_{n-2} q_{n-1}+r_{n-1}=\left(r_{n-1} q_{n}\right) q_{n-1}+r_{n-1}=r_{n-1}\left(q_{n} q_{n-1}+1\right)$.
Then

$$
\begin{gathered}
r_{n-4}=r_{n-3} q_{n-2}+r_{n-2}=r_{n-1}\left(q_{n} q_{n-1}+1\right) q_{n-2}+r_{n-1} q_{n} \\
=r_{n-1}\left(q_{n} q_{n-1} q_{n-2}+q_{n-2}+1\right)
\end{gathered}
$$

Why does $r_{n-1}=\operatorname{gcd}(a, b)$?

Let $r_{-1}=a$ and $r_{0}=b$, so that the algorithm looks like

$$
\begin{array}{rllll}
r_{-1} & = & r_{0} * q_{1} & + & r_{1} \\
r_{0} & = & r_{1} * q_{2} & + & r_{2} \\
r_{1} & = & r_{2} * q_{3} & +r_{3} \\
& \vdots & & & \\
r_{n-4} & = & r_{n-3} * q_{n-2} & +r_{n-2} & \\
r_{n-3} & = & r_{n-2} * q_{n-1} & + & r_{n-1} \\
r_{n-2} & = & r_{n-1} * q_{n} & + & 0
\end{array} \leftarrow r_{n} .
$$

Last line: $r_{n-2}=r_{n-1} q_{n}$.
So
$r_{n-3}=r_{n-2} q_{n-1}+r_{n-1}=\left(r_{n-1} q_{n}\right) q_{n-1}+r_{n-1}=r_{n-1}\left(q_{n} q_{n-1}+1\right)$.
Then

$$
\begin{array}{r}
r_{n-4}=r_{n-3} q_{n-2}+r_{n-2}=r_{n-1}\left(q_{n} q_{n-1}+1\right) q_{n-2}+r_{n-1} q_{n} \\
=r_{n-1}\left(q_{n} q_{n-1} q_{n-2}+q_{n-2}+1\right) . \quad \text { And so on. } .
\end{array}
$$

Why does $r_{n-1}=\operatorname{gcd}(a, b)$?

Example: We saw

$$
\begin{aligned}
& 84=30 * 2+24 \\
& 30=24 * 1+6 \\
& 24=6 * 4+0 .
\end{aligned}
$$

Why does $r_{n-1}=\operatorname{gcd}(a, b)$?

Example: We saw

$$
\begin{aligned}
& 84=30 * 2+24 \\
& 30=24 * 1+6 \\
& 24=6 * 4+0 .
\end{aligned}
$$

$$
r_{n-1}=6
$$

Why does $r_{n-1}=\operatorname{gcd}(a, b)$?

Example: We saw

$$
\begin{aligned}
& 84=30 * 2+24 \\
& 30=24 * 1+6 \\
& 24=6 * 4+0 .
\end{aligned}
$$

So

$$
30=24 * 1+6
$$

Why does $r_{n-1}=\operatorname{gcd}(a, b)$?

Example: We saw

$$
\begin{aligned}
& 84=30 * 2+24 \\
& 30=24 * 1+6 \\
& 24=6 * 4+0 .
\end{aligned}
$$

$$
r_{n-1}=6
$$

So

$$
30=24 * 1+6=(6 * 4) * 1+6
$$

Why does $r_{n-1}=\operatorname{gcd}(a, b)$?

Example: We saw

$$
\begin{aligned}
& 84=30 * 2+24 \\
& 30=24 * 1+6 \\
& 24=6 * 4+0 . \quad r_{n-1}=6
\end{aligned}
$$

So

$$
30=24 * 1+6=(6 * 4) * 1+6=6(4 * 1+1)=6 * 5
$$

Why does $r_{n-1}=\operatorname{gcd}(a, b)$?

Example: We saw

$$
\begin{aligned}
& 84=30 * 2+24 \\
& 30=24 * 1+6 \\
& 24=6 * 4+0 . \quad r_{n-1}=6
\end{aligned}
$$

So

$$
\begin{aligned}
& 30=24 * 1+6=(6 * 4) * 1+6=6(4 * 1+1)=6 * 5 \\
& 84=30 * 2+24
\end{aligned}
$$

Why does $r_{n-1}=\operatorname{gcd}(a, b)$?

Example: We saw

$$
\begin{aligned}
& 84=30 * 2+24 \\
& 30=24 * 1+6 \\
& 24=6 * 4+0 . \quad r_{n-1}=6
\end{aligned}
$$

So

$$
\begin{aligned}
& 30=24 * 1+6=(6 * 4) * 1+6=6(4 * 1+1)=6 * 5 \\
& 84=30 * 2+24=(6 * 5) * 2+(6 * 4)
\end{aligned}
$$

Why does $r_{n-1}=\operatorname{gcd}(a, b)$?

Example: We saw

$$
\begin{aligned}
& 84=30 * 2+24 \\
& 30=24 * 1+6 \\
& 24=6 * 4+0 . \quad r_{n-1}=6
\end{aligned}
$$

So

$$
\begin{aligned}
& 30=24 * 1+6=(6 * 4) * 1+6=6(4 * 1+1)=6 * 5 \\
& 84=30 * 2+24=(6 * 5) * 2+(6 * 4)=6(5 * 2+4)=6 * 24
\end{aligned}
$$

Why does $r_{n-1}=\operatorname{gcd}(a, b)$?

Example: We saw

$$
\begin{aligned}
& 84=30 * 2+24 \\
& 30=24 * 1+6 \\
& 24=6 * 4+0 . \quad r_{n-1}=6
\end{aligned}
$$

So

$$
\begin{aligned}
& 30=24 * 1+6=(6 * 4) * 1+6=6(4 * 1+1)=6 * 5 \\
& 84=30 * 2+24=(6 * 5) * 2+(6 * 4)=6(5 * 2+4)=6 * 24
\end{aligned}
$$

So 6 is a common divisor of 84 and 30 .

From our spreadsheet, we can calculate that for $a=100, b=36$:

$$
\begin{aligned}
100 & =36 * 2+28 \\
36 & =28 * 1+8 \\
28 & =8 * 3+4 \\
8 & =4 * 2+0
\end{aligned}
$$

From our spreadsheet, we can calculate that for $a=100, b=36$:

$$
\begin{aligned}
100 & =36 * 2+28 \\
36 & =28 * 1+8 \\
28 & =8 * 3+4 \\
8 & =4 * 2+0 .
\end{aligned}
$$

From our spreadsheet, we can calculate that for $a=100, b=36$:

$$
\begin{aligned}
100 & =36 * 2+28 \\
36 & =28 * 1+8 \\
28 & =8 * 3+4 \\
8 & =4 * 2+0 . \quad r_{n-1}=4
\end{aligned}
$$

So

$$
28=8 * 3+4
$$

From our spreadsheet, we can calculate that for $a=100, b=36$:

$$
\begin{aligned}
100 & =36 * 2+28 \\
36 & =28 * 1+8 \\
28 & =8 * 3+4 \\
8 & =4 * 2+0 .
\end{aligned}
$$

$$
r_{n-1}=4
$$

So

$$
28=8 * 3+4=(4 * 2) * 3+4
$$

From our spreadsheet, we can calculate that for $a=100, b=36$:

$$
\begin{aligned}
100 & =36 * 2+28 \\
36 & =28 * 1+8 \\
28 & =8 * 3+4 \\
8 & =4 * 2+0 . \quad r_{n-1}=4
\end{aligned}
$$

So

$$
28=8 * 3+4=(4 * 2) * 3+4=4(2 * 3+1)=4 * 7
$$

From our spreadsheet, we can calculate that for $a=100, b=36$:

$$
\begin{aligned}
100 & =36 * 2+28 \\
36 & =28 * 1+8 \\
28 & =8 * 3+4 \\
8 & =4 * 2+0 . \quad r_{n-1}=4
\end{aligned}
$$

So

$$
\begin{aligned}
& 28=8 * 3+4=(4 * 2) * 3+4=4(2 * 3+1)=4 * 7 \\
& 36=28 * 1+8
\end{aligned}
$$

From our spreadsheet, we can calculate that for $a=100, b=36$:

$$
\begin{aligned}
100 & =36 * 2+28 \\
36 & =28 * 1+8 \\
28 & =8 * 3+4 \\
8 & =4 * 2+0 . \quad r_{n-1}=4
\end{aligned}
$$

So

$$
\begin{aligned}
& 28=8 * 3+4=(4 * 2) * 3+4=4(2 * 3+1)=4 * 7 \\
& 36=28 * 1+8=(4 * 7) * 1+(4 * 2)
\end{aligned}
$$

From our spreadsheet, we can calculate that for $a=100, b=36$:

$$
\begin{aligned}
100 & =36 * 2+28 \\
36 & =28 * 1+8 \\
28 & =8 * 3+4 \\
8 & =4 * 2+0 . \quad r_{n-1}=4
\end{aligned}
$$

So

$$
\begin{aligned}
& 28=8 * 3+4=(4 * 2) * 3+4=4(2 * 3+1)=4 * 7 \\
& 36=28 * 1+8=(4 * 7) * 1+(4 * 2)=4(7 * 1+2)=4 * 9
\end{aligned}
$$

From our spreadsheet, we can calculate that for $a=100, b=36$:

$$
\begin{aligned}
100 & =36 * 2+28 \\
36 & =28 * 1+8 \\
28 & =8 * 3+4 \\
8 & =4 * 2+0 . \quad r_{n-1}=4
\end{aligned}
$$

So

$$
\begin{aligned}
28 & =8 * 3+4=(4 * 2) * 3+4=4(2 * 3+1)=4 * 7 \\
36 & =28 * 1+8=(4 * 7) * 1+(4 * 2)=4(7 * 1+2)=4 * 9 \\
100 & =36 * 2+28
\end{aligned}
$$

From our spreadsheet, we can calculate that for $a=100, b=36$:

$$
\begin{aligned}
100 & =36 * 2+28 \\
36 & =28 * 1+8 \\
28 & =8 * 3+4 \\
8 & =4 * 2+0 . \quad r_{n-1}=4
\end{aligned}
$$

So

$$
\begin{aligned}
28 & =8 * 3+4=(4 * 2) * 3+4=4(2 * 3+1)=4 * 7 \\
36 & =28 * 1+8=(4 * 7) * 1+(4 * 2)=4(7 * 1+2)=4 * 9 \\
100 & =36 * 2+28=(4 * 9) * 2+(4 * 7)
\end{aligned}
$$

From our spreadsheet, we can calculate that for $a=100, b=36$:

$$
\begin{aligned}
100 & =36 * 2+28 \\
36 & =28 * 1+8 \\
28 & =8 * 3+4 \\
8 & =4 * 2+0 . \quad r_{n-1}=4
\end{aligned}
$$

So

$$
\begin{aligned}
28 & =8 * 3+4=(4 * 2) * 3+4=4(2 * 3+1)=4 * 7 \\
36 & =28 * 1+8=(4 * 7) * 1+(4 * 2)=4(7 * 1+2)=4 * 9 \\
100 & =36 * 2+28=(4 * 9) * 2+(4 * 7)=4(9 * 2+7)=4 * 25
\end{aligned}
$$

From our spreadsheet, we can calculate that for $a=100, b=36$:

$$
\begin{aligned}
100 & =36 * 2+28 \\
36 & =28 * 1+8 \\
28 & =8 * 3+4 \\
8 & =4 * 2+0 . \quad r_{n-1}=4
\end{aligned}
$$

So

$$
\begin{aligned}
28 & =8 * 3+4=(4 * 2) * 3+4=4(2 * 3+1)=4 * 7 \\
36 & =28 * 1+8=(4 * 7) * 1+(4 * 2)=4(7 * 1+2)=4 * 9 \\
100 & =36 * 2+28=(4 * 9) * 2+(4 * 7)=4(9 * 2+7)=4 * 25
\end{aligned}
$$

So 4 is a common divisor of 100 and 36 .

From our spreadsheet, we can calculate that for $a=100, b=36$:

$$
\begin{aligned}
100 & =36 * 2+28 \\
36 & =28 * 1+8 \\
28 & =8 * 3+4 \\
8 & =4 * 2+0 . \quad r_{n-1}=4
\end{aligned}
$$

So

$$
\begin{aligned}
28 & =8 * 3+4=(4 * 2) * 3+4=4(2 * 3+1)=4 * 7 \\
36 & =28 * 1+8=(4 * 7) * 1+(4 * 2)=4(7 * 1+2)=4 * 9 \\
100 & =36 * 2+28=(4 * 9) * 2+(4 * 7)=4(9 * 2+7)=4 * 25
\end{aligned}
$$

So 4 is a common divisor of 100 and 36 .
You try: use the following computations, working backwards, to show that 2 is a common divisor of 100 and 26 :

$$
\begin{array}{rlrl}
100 & =26 * 3+22 & 26 & =22 * 1+4 \\
22 & =4 * 5+2 & 4 & =2 * 2+0
\end{array}
$$

Why does $r_{n-1}=\operatorname{gcd}(a, b)$?

Letting $r_{-1}=a$ and $r_{0}=b$, and computing

$$
\begin{array}{rllll}
r_{-1} & = & r_{0} * q_{1} & + & r_{1} \\
r_{0} & = & r_{1} * q_{2} & + & r_{2} \\
r_{1} & = & r_{2} * q_{3} & + & r_{3} \\
& \vdots & & & \\
r_{n-4} & = & r_{n-3} * q_{n-2} & + & r_{n-2} \\
r_{n-3} & = & r_{n-2} * q_{n-1} & + & r_{n-1} \\
r_{n-2} & = & r_{n-1} * q_{n} & + & 0
\end{array} \leftarrow r_{n} .
$$

we can reverse this process to show that r_{n-1} is, at the very least, a common divisor to $a=r_{-1}$ and $b=r_{0}$.

Why does $r_{n-1}=\operatorname{gcd}(a, b)$?

Letting $r_{-1}=a$ and $r_{0}=b$, and computing

$$
\begin{array}{rllll}
r_{-1} & = & r_{0} * q_{1} & + & r_{1} \\
r_{0} & = & r_{1} * q_{2} & + & r_{2} \\
r_{1} & = & r_{2} * q_{3} & + & r_{3} \\
& \vdots & & & \\
r_{n-4} & = & r_{n-3} * q_{n-2} & + & r_{n-2} \\
r_{n-3} & = & r_{n-2} * q_{n-1} & + & r_{n-1} \\
r_{n-2} & = & r_{n-1} * q_{n} & + & 0
\end{array} \leftarrow r_{n} .
$$

we can reverse this process to show that r_{n-1} is, at the very least, a common divisor to $a=r_{-1}$ and $b=r_{0}$.
Wait! How do we know we ever get 0??

Why does $r_{n-1}=\operatorname{gcd}(a, b)$?

Letting $r_{-1}=a$ and $r_{0}=b$, and computing

$$
\begin{array}{rllll}
r_{-1} & = & r_{0} * q_{1} & + & r_{1} \\
r_{0} & = & r_{1} * q_{2} & + & r_{2} \\
r_{1} & = & r_{2} * q_{3} & + & r_{3} \\
& \vdots & & & \\
r_{n-4} & = & r_{n-3} * q_{n-2} & + & r_{n-2} \\
r_{n-3} & = & r_{n-2} * q_{n-1} & + & r_{n-1} \\
r_{n-2} & = & r_{n-1} * q_{n} & + & 0
\end{array} \leftarrow r_{n} .
$$

we can reverse this process to show that r_{n-1} is, at the very least, a common divisor to $a=r_{-1}$ and $b=r_{0}$.
Wait! How do we know we ever get 0??
The division algorithm ensures that each remainder is strictly smaller than the last, and always non-negative:

$$
b=r_{0}>r_{1}>r_{2}>\cdots \geqslant 0
$$

Why does $r_{n-1}=\operatorname{gcd}(a, b)$?

Letting $r_{-1}=a$ and $r_{0}=b$, and computing

$$
\begin{array}{rllll}
r_{-1} & = & r_{0} * q_{1} & + & r_{1} \\
r_{0} & = & r_{1} * q_{2} & + & r_{2} \\
r_{1} & = & r_{2} * q_{3} & +r_{3} \\
& \vdots & & & \\
r_{n-4} & = & r_{n-3} * q_{n-2} & + & r_{n-2} \\
r_{n-3} & = & r_{n-2} * q_{n-1} & + & r_{n-1} \\
r_{n-2} & = & r_{n-1} * q_{n} & + & 0
\end{array} \leftarrow r_{n} .
$$

we can reverse this process to show that r_{n-1} is, at the very least, a common divisor to $a=r_{-1}$ and $b=r_{0}$.
Wait! How do we know we ever get 0??
The division algorithm ensures that each remainder is strictly smaller than the last, and always non-negative:

$$
b=r_{0}>r_{1}>r_{2}>\cdots \geqslant 0
$$

So since the r_{i} 's are all integers, this process ends at some point.

Why does $r_{n-1}=\operatorname{gcd}(a, b)$?

We have that r_{n-1} is a common divisor to a an b. Now why is it the greatest common divisor?

Why does $r_{n-1}=\operatorname{gcd}(a, b)$?

We have that r_{n-1} is a common divisor to a an b. Now why is it the greatest common divisor?
Suppose d is a common divisor of a and b, i.e. $d \mid a$ and $d \mid b$.

Why does $r_{n-1}=\operatorname{gcd}(a, b)$?

We have that r_{n-1} is a common divisor to a an b. Now why is it the greatest common divisor?
Suppose d is a common divisor of a and b, i.e. $d \mid a$ and $d \mid b$. This means

$$
a=d \alpha \quad \text { and } b=d \beta \quad \text { for some } \alpha, \beta \in \mathbb{Z}
$$

Why does $r_{n-1}=\operatorname{gcd}(a, b)$?

We have that r_{n-1} is a common divisor to a an b. Now why is it the greatest common divisor?
Suppose d is a common divisor of a and b, i.e. $d \mid a$ and $d \mid b$. This means

$$
a=d \alpha \quad \text { and } b=d \beta \quad \text { for some } \alpha, \beta \in \mathbb{Z}
$$

Back to our division calculation, and substitute these equations in:

a	$=$	$b * q_{1}$	+
b	$=$	r_{1}	
$r_{1} * q_{2}$	$=$	+	r_{2}
	\vdots		$r_{2} * q_{3}$
	+	r_{3}	
r_{n-3}	$=$	$r_{n-2} * q_{n-1}$	+
r_{n-2}	$=$	$r_{n-1} * q_{n}$	+

Why does $r_{n-1}=\operatorname{gcd}(a, b)$?

We have that r_{n-1} is a common divisor to a an b. Now why is it the greatest common divisor?
Suppose d is a common divisor of a and b, i.e. $d \mid a$ and $d \mid b$. This means

$$
a=d \alpha \quad \text { and } b=d \beta \quad \text { for some } \alpha, \beta \in \mathbb{Z}
$$

Back to our division calculation, and substitute these equations in:

$$
\begin{array}{rlll}
d \alpha & = & d \beta * q_{1} & + \\
r_{1} \\
b & = & r_{1} * q_{2} & + \\
r_{2} & = & r_{2} * q_{3} & + \\
& r_{3} \\
& \vdots & & \\
r_{n-3} & =r_{n-2} * q_{n-1} & + & r_{n-1} \\
r_{n-2} & = & r_{n-1} * q_{n} & +
\end{array} 00
$$

Why does $r_{n-1}=\operatorname{gcd}(a, b)$?

We have that r_{n-1} is a common divisor to a an b. Now why is it the greatest common divisor?
Suppose d is a common divisor of a and b, i.e. $d \mid a$ and $d \mid b$. This means

$$
a=d \alpha \quad \text { and } b=d \beta \quad \text { for some } \alpha, \beta \in \mathbb{Z}
$$

Back to our division calculation, and substitute these equations in:

$$
\begin{array}{rllll}
d \alpha & = & d \beta * q_{1} & + & r_{1} \\
b & = & r_{1} * q_{2} & +r_{2} \\
r_{1} & = & r_{2} * q_{3} & +r_{1}=d\left(\alpha-\beta q_{1}\right) \\
& \vdots & & & \\
r_{n-3} & = & r_{n-2} * q_{n-1} & +r_{n-1} \\
r_{n-2} & = & r_{n-1} * q_{n} & +0
\end{array}
$$

Why does $r_{n-1}=\operatorname{gcd}(a, b)$?

We have that r_{n-1} is a common divisor to a an b. Now why is it the greatest common divisor?
Suppose d is a common divisor of a and b, i.e. $d \mid a$ and $d \mid b$. This means

$$
a=d \alpha \quad \text { and } b=d \beta \quad \text { for some } \alpha, \beta \in \mathbb{Z}
$$

Back to our division calculation, and substitute these equations in:

$$
\begin{array}{rllll}
d \alpha & = & d \beta * q_{1} & + & r_{1} \\
b & = & r_{1} * q_{2} & + & r_{2} \\
r_{1} & = & r_{2} * q_{3} & +r_{1}=d\left(\alpha-\beta q_{1}\right)=d m_{1} \\
& \vdots & & \\
r_{n-3} & = & r_{n-2} * q_{n-1} & +r_{n-1} \\
r_{n-2} & = & r_{n-1} * q_{n} & +0
\end{array}
$$

Why does $r_{n-1}=\operatorname{gcd}(a, b)$?

We have that r_{n-1} is a common divisor to a an b. Now why is it the greatest common divisor?
Suppose d is a common divisor of a and b, i.e. $d \mid a$ and $d \mid b$. This means

$$
a=d \alpha \quad \text { and } b=d \beta \quad \text { for some } \alpha, \beta \in \mathbb{Z}
$$

Back to our division calculation, and substitute these equations in:

$$
\begin{array}{rllll}
d \alpha & = & d \beta * q_{1} & + & r_{1} \quad \text { so } r_{1}=d\left(\alpha-\beta q_{1}\right)=d m_{1} \\
d \beta & = & d m_{1} * q_{2} & + & r_{2} \\
r_{1} & = & r_{2} * q_{3} & +r_{3} \\
& \vdots & & \\
r_{n-3} & =r_{n-2} * q_{n-1} & +r_{n-1} \\
r_{n-2} & = & r_{n-1} * q_{n} & +0
\end{array}
$$

Why does $r_{n-1}=\operatorname{gcd}(a, b)$?

We have that r_{n-1} is a common divisor to a an b. Now why is it the greatest common divisor?
Suppose d is a common divisor of a and b, i.e. $d \mid a$ and $d \mid b$. This means

$$
a=d \alpha \quad \text { and } b=d \beta \quad \text { for some } \alpha, \beta \in \mathbb{Z}
$$

Back to our division calculation, and substitute these equations in:

$$
\left.\begin{array}{rllll}
d \alpha & = & d \beta * q_{1} & + & r_{1}
\end{array} \text { so } r_{1}=d\left(\alpha-\beta q_{1}\right)=d m_{1}\right) \text { so } r_{2}=d\left(\beta-m_{1} q_{2}\right)
$$

Why does $r_{n-1}=\operatorname{gcd}(a, b)$?

We have that r_{n-1} is a common divisor to a an b. Now why is it the greatest common divisor?
Suppose d is a common divisor of a and b, i.e. $d \mid a$ and $d \mid b$. This means

$$
a=d \alpha \quad \text { and } b=d \beta \quad \text { for some } \alpha, \beta \in \mathbb{Z}
$$

Back to our division calculation, and substitute these equations in:

$$
\begin{array}{rllll}
d \alpha & = & d \beta * q_{1} & + & r_{1}
\end{array} \quad \text { so } r_{1}=d\left(\alpha-\beta q_{1}\right)=d m_{1}
$$

Why does $r_{n-1}=\operatorname{gcd}(a, b)$?

We have that r_{n-1} is a common divisor to a an b. Now why is it the greatest common divisor?
Suppose d is a common divisor of a and b, i.e. $d \mid a$ and $d \mid b$. This means

$$
a=d \alpha \quad \text { and } b=d \beta \quad \text { for some } \alpha, \beta \in \mathbb{Z}
$$

Back to our division calculation, and substitute these equations in:

$$
\begin{array}{rlll}
d \alpha & =d \beta * q_{1} & + & r_{1} \\
\text { so } r_{1}=d\left(\alpha-\beta q_{1}\right)=d m_{1} \\
d \beta & =d m_{1} * q_{2} & +r_{2} & \text { so } r_{2}=d\left(\beta-m_{1} q_{2}\right)=d m_{2} \\
d m_{1} & =d m_{2} * q_{3}+r_{3} \\
& \vdots \\
r_{n-3} & =r_{n-2} * q_{n-1} & +r_{n-1} \\
r_{n-2} & =r_{n-1} * q_{n}+0
\end{array}
$$

Why does $r_{n-1}=\operatorname{gcd}(a, b)$?

We have that r_{n-1} is a common divisor to a an b. Now why is it the greatest common divisor?
Suppose d is a common divisor of a and b, i.e. $d \mid a$ and $d \mid b$. This means

$$
a=d \alpha \quad \text { and } b=d \beta \quad \text { for some } \alpha, \beta \in \mathbb{Z}
$$

Back to our division calculation, and substitute these equations in:

$$
\begin{array}{rlll}
d \alpha & =d \beta * q_{1} & +r_{1} & \text { so } r_{1}=d\left(\alpha-\beta q_{1}\right)=d m_{1} \\
d \beta & =d m_{1} * q_{2} & +r_{2} & \text { so } r_{2}=d\left(\beta-m_{1} q_{2}\right)=d m_{2} \\
d m_{1} & =d m_{2} * q_{3}+r_{3} \quad \text { so } r_{3}=\cdots=d m_{3} \\
& \vdots \\
r_{n-3} & =r_{n-2} * q_{n-1}+r_{n-1} \\
r_{n-2} & =r_{n-1} * q_{n}+0
\end{array}
$$

Why does $r_{n-1}=\operatorname{gcd}(a, b)$?

We have that r_{n-1} is a common divisor to a an b. Now why is it the greatest common divisor?
Suppose d is a common divisor of a and b, i.e. $d \mid a$ and $d \mid b$. This means

$$
a=d \alpha \quad \text { and } b=d \beta \quad \text { for some } \alpha, \beta \in \mathbb{Z}
$$

Back to our division calculation, and substitute these equations in:

$$
\begin{array}{cccccl}
d \alpha & = & d \beta * q_{1} & + & r_{1} & \text { so } r_{1}=d\left(\alpha-\beta q_{1}\right)=d m_{1} \\
d \beta & = & d m_{1} * q_{2} & + & r_{2} & \text { so } r_{2}=d\left(\beta-m_{1} q_{2}\right)=d m_{2} \\
d m_{1} & = & d m_{2} * q_{3} & +\quad r_{3} & \text { so } r_{3}=\cdots=d m_{3} \\
& \vdots & & & \\
d m_{n-3} & = & d m_{n-2} * q_{n-1} & +r_{n-1} & \text { so } r_{n-1}=\cdots=d m_{n-1} \\
r_{n-2} & = & r_{n-1} * q_{n} & + & 0 &
\end{array}
$$

Why does $r_{n-1}=\operatorname{gcd}(a, b)$?

We have that r_{n-1} is a common divisor to a an b. Now why is it the greatest common divisor?
Suppose d is a common divisor of a and b, i.e. $d \mid a$ and $d \mid b$. This means

$$
a=d \alpha \quad \text { and } b=d \beta \quad \text { for some } \alpha, \beta \in \mathbb{Z}
$$

Back to our division calculation, and substitute these equations in:

$$
\begin{array}{rlllll}
d \alpha & = & d \beta * q_{1} & + & r_{1} & \text { so } r_{1}=d\left(\alpha-\beta q_{1}\right)=d m_{1} \\
d \beta & = & d m_{1} * q_{2} & + & r_{2} & \text { so } r_{2}=d\left(\beta-m_{1} q_{2}\right)=d m_{2} \\
d m_{1} & = & d m_{2} * q_{3} & + & r_{3} & \text { so } r_{3}=\cdots=d m_{3} \\
& \vdots & & \\
d m_{n-3} & = & d m_{n-2} * q_{n-1} & + & r_{n-1} & \text { so } r_{n-1}=\cdots=d m_{n-1} \\
r_{n-2} & = & r_{n-1} * q_{n} & + & 0 &
\end{array}
$$

Why does $r_{n-1}=\operatorname{gcd}(a, b)$?

We have that r_{n-1} is a common divisor to a an b. Now why is it the greatest common divisor?
Suppose d is a common divisor of a and b, i.e. $d \mid a$ and $d \mid b$. This means

$$
a=d \alpha \quad \text { and } b=d \beta \quad \text { for some } \alpha, \beta \in \mathbb{Z}
$$

Back to our division calculation, and substitute these equations in:

$$
\begin{array}{cccccl}
d \alpha & = & d \beta * q_{1} & + & r_{1} & \text { so } r_{1}=d\left(\alpha-\beta q_{1}\right)=d m_{1} \\
d \beta & = & d m_{1} * q_{2} & + & r_{2} & \text { so } r_{2}=d\left(\beta-m_{1} q_{2}\right)=d m_{2} \\
d m_{1} & = & d m_{2} * q_{3} & + & r_{3} & \text { so } r_{3}=\cdots=d m_{3} \\
& \vdots & & & \\
d m_{n-3} & = & d m_{n-2} * q_{n-1} & +r_{n-1} & \text { so } r_{n-1}=\cdots=d m_{n-1} \\
r_{n-2} & = & r_{n-1} * q_{n} & +\quad 0 &
\end{array}
$$

So d is a divisor of r_{n-1}.

Why does $r_{n-1}=\operatorname{gcd}(a, b)$?

We have that r_{n-1} is a common divisor to a an b. Now why is it the greatest common divisor?
Suppose d is a common divisor of a and b, i.e. $d \mid a$ and $d \mid b$. This means

$$
a=d \alpha \quad \text { and } b=d \beta \quad \text { for some } \alpha, \beta \in \mathbb{Z}
$$

Back to our division calculation, and substitute these equations in:

$$
\begin{array}{cccccl}
d \alpha & = & d \beta * q_{1} & + & r_{1} & \text { so } r_{1}=d\left(\alpha-\beta q_{1}\right)=d m_{1} \\
d \beta & = & d m_{1} * q_{2} & + & r_{2} & \text { so } r_{2}=d\left(\beta-m_{1} q_{2}\right)=d m_{2} \\
d m_{1} & = & d m_{2} * q_{3} & + & r_{3} & \text { so } r_{3}=\cdots=d m_{3} \\
& \vdots & & & \\
d m_{n-3} & = & d m_{n-2} * q_{n-1} & +r_{n-1} & \text { so } r_{n-1}=\cdots=d m_{n-1} \\
r_{n-2} & = & r_{n-1} * q_{n} & +\quad 0 &
\end{array}
$$

So d is a divisor of r_{n-1}. In particular, since $r_{n-1}>0$, we have

$$
d \mid r_{n-1} \quad \text { and } \quad d \leqslant r_{n-1}
$$

Why does $r_{n-1}=\operatorname{gcd}(a, b)$?

We have that r_{n-1} is a common divisor to a an b. Now why is it the greatest common divisor?
Suppose d is a common divisor of a and b, i.e. $d \mid a$ and $d \mid b$. This means

$$
a=d \alpha \quad \text { and } b=d \beta \quad \text { for some } \alpha, \beta \in \mathbb{Z}
$$

Back to our division calculation, and substitute these equations in:

$$
\begin{array}{cccccc}
d \alpha & = & d \beta * q_{1} & + & r_{1} & \text { so } r_{1}=d\left(\alpha-\beta q_{1}\right)=d m_{1} \\
d \beta & = & d m_{1} * q_{2} & + & r_{2} & \text { so } r_{2}=d\left(\beta-m_{1} q_{2}\right)=d m_{2} \\
d m_{1} & = & d m_{2} * q_{3} & + & r_{3} & \text { so } r_{3}=\cdots=d m_{3} \\
& \vdots & & & \\
d m_{n-3} & = & d m_{n-2} * q_{n-1} & +r_{n-1} & \text { so } r_{n-1}=\cdots=d m_{n-1} \\
r_{n-2} & = & r_{n-1} * q_{n} & +\quad 0 &
\end{array}
$$

So d is a divisor of r_{n-1}. In particular, since $r_{n-1}>0$, we have

$$
d \mid r_{n-1} \quad \text { and } \quad d \leqslant r_{n-1} .
$$

In other words, r_{n-1} is a common divisor to a and b, and any other common divisor is less than or equal to r_{n-1}.

Why does $r_{n-1}=\operatorname{gcd}(a, b)$?

We have that r_{n-1} is a common divisor to a an b. Now why is it the greatest common divisor?
Suppose d is a common divisor of a and b, i.e. $d \mid a$ and $d \mid b$. This means

$$
a=d \alpha \quad \text { and } b=d \beta \quad \text { for some } \alpha, \beta \in \mathbb{Z}
$$

Back to our division calculation, and substitute these equations in:

$$
\begin{array}{rlllll}
d \alpha & = & d \beta * q_{1} & + & r_{1} & \text { so } r_{1}=d\left(\alpha-\beta q_{1}\right)=d m_{1} \\
d \beta & = & d m_{1} * q_{2} & + & r_{2} & \text { so } r_{2}=d\left(\beta-m_{1} q_{2}\right)=d m_{2} \\
d m_{1} & = & d m_{2} * q_{3} & + & r_{3} & \text { so } r_{3}=\cdots=d m_{3} \\
& \vdots & & & \\
d m_{n-3} & = & d m_{n-2} * q_{n-1} & +r_{n-1} & \text { so } r_{n-1}=\cdots=d m_{n-1} \\
r_{n-2} & = & r_{n-1} * q_{n} & + & 0 &
\end{array}
$$

So d is a divisor of r_{n-1}. In particular, since $r_{n-1}>0$, we have

$$
d \mid r_{n-1} \quad \text { and } \quad d \leqslant r_{n-1}
$$

In other words, r_{n-1} is a common divisor to a and b, and any other common divisor is less than or equal to r_{n-1}. So $r_{n-1}=\operatorname{gcd}(a, b)$.

The Euclidean algorithm for computing the greatest common divisor of two positive numbers a and b is the process or successively dividing until just before you get a 0 divisor (like we just did).

The Euclidean algorithm for computing the greatest common divisor of two positive numbers a and b is the process or successively dividing until just before you get a 0 divisor (like we just did). Namely, we have the following theorem.
Theorem (Euclidean algorithm)
To compute the greatest common divisor of two positive integers a and b, let $r_{-1}=a$ and $r_{0}=b$, and compute successive quotients and remainders

$$
r_{i-2}=r_{i-1} q_{i}+r_{i}
$$

for $i=1,2,3, \ldots$, until some remainder r_{n} is 0 . The last nonzero remainder r_{n-1} is then the greatest common divisor of a and b.

This takes at most b steps (actually less), and is much more computationally efficient than the other methods.

