
Lecture 4: Divisibility and
Greatest Common Divisor



Divisors

Let m,n P Z with m ‰ 0. We say that m divides n if n is a
multiple of m, i.e.

n “ mk for some k P Z, written m|n

If m does not divide n, then we write m - n.

Examples:
3|6 since 6 “ 3 ˚ 2;

15|60 since 60 “ 15 ˚ 4;

15 - 25 since there is no m P Z such that 25 “ 15 ˚m.

In general, for any n P Z,

n|n, ´n|n, 1|n, and ´ 1|n.

We often restrict to talking about numbers n P Zą0, and list the
divisors as the positive integers that divide n.

Example: the divisors of 12 are 1, 2, 3, 4, 6, and 12.



Divisors

Let m,n P Z with m ‰ 0. We say that m divides n if n is a
multiple of m, i.e.

n “ mk for some k P Z, written m|n

If m does not divide n, then we write m - n.
Examples:

3|6 since 6 “ 3 ˚ 2;

15|60 since 60 “ 15 ˚ 4;

15 - 25 since there is no m P Z such that 25 “ 15 ˚m.

In general, for any n P Z,

n|n, ´n|n, 1|n, and ´ 1|n.

We often restrict to talking about numbers n P Zą0, and list the
divisors as the positive integers that divide n.

Example: the divisors of 12 are 1, 2, 3, 4, 6, and 12.



Divisors

Let m,n P Z with m ‰ 0. We say that m divides n if n is a
multiple of m, i.e.

n “ mk for some k P Z, written m|n

If m does not divide n, then we write m - n.
Examples:

3|6 since 6 “ 3 ˚ 2;

15|60 since 60 “ 15 ˚ 4;

15 - 25 since there is no m P Z such that 25 “ 15 ˚m.

In general, for any n P Z,

n|n, ´n|n, 1|n, and ´ 1|n.

We often restrict to talking about numbers n P Zą0, and list the
divisors as the positive integers that divide n.

Example: the divisors of 12 are 1, 2, 3, 4, 6, and 12.



Divisors

Let m,n P Z with m ‰ 0. We say that m divides n if n is a
multiple of m, i.e.

n “ mk for some k P Z, written m|n

If m does not divide n, then we write m - n.
Examples:

3|6 since 6 “ 3 ˚ 2;

15|60 since 60 “ 15 ˚ 4;

15 - 25 since there is no m P Z such that 25 “ 15 ˚m.

In general, for any n P Z,

n|n, ´n|n, 1|n, and ´ 1|n.

We often restrict to talking about numbers n P Zą0, and list the
divisors as the positive integers that divide n.

Example: the divisors of 12 are 1, 2, 3, 4, 6, and 12.



Divisors

Let m,n P Z with m ‰ 0. We say that m divides n if n is a
multiple of m, i.e.

n “ mk for some k P Z, written m|n

If m does not divide n, then we write m - n.
Examples:

3|6 since 6 “ 3 ˚ 2;

15|60 since 60 “ 15 ˚ 4;

15 - 25 since there is no m P Z such that 25 “ 15 ˚m.

In general, for any n P Z,

n|n, ´n|n, 1|n, and ´ 1|n.

We often restrict to talking about numbers n P Zą0, and list the
divisors as the positive integers that divide n.

Example: the divisors of 12 are 1, 2, 3, 4, 6, and 12.



Divisors

Let m,n P Z with m ‰ 0. We say that m divides n if n is a
multiple of m, i.e.

n “ mk for some k P Z, written m|n

If m does not divide n, then we write m - n.
Examples:

3|6 since 6 “ 3 ˚ 2;

15|60 since 60 “ 15 ˚ 4;

15 - 25 since there is no m P Z such that 25 “ 15 ˚m.

In general, for any n P Z,

n|n, ´n|n, 1|n, and ´ 1|n.

We often restrict to talking about numbers n P Zą0, and list the
divisors as the positive integers that divide n.

Example: the divisors of 12 are 1, 2, 3, 4, 6, and 12.



Divisors

Let m,n P Z with m ‰ 0. We say that m divides n if n is a
multiple of m, i.e.

n “ mk for some k P Z, written m|n

If m does not divide n, then we write m - n.
Examples:

3|6 since 6 “ 3 ˚ 2;

15|60 since 60 “ 15 ˚ 4;

15 - 25 since there is no m P Z such that 25 “ 15 ˚m.

In general, for any n P Z,

n|n, ´n|n, 1|n, and ´ 1|n.

We often restrict to talking about numbers n P Zą0, and list the
divisors as the positive integers that divide n.

Example: the divisors of 12 are 1, 2, 3, 4, 6, and 12.



Common divisors
For two numbers a, b P Zą0, a common divisor d is a divisor
common to both numbers, i.e.

d|a and d|b.

For example,
3 is a divisor of 30, but not 40;
4 is a divisor of 40, but not 30;

1, 2, 5, and 10 are all common divisors of 30 and 40.
The greatest common divisor of a and b, denoted gcdpa, bq is
largest number that divides both a and b.

Example: gcdp30, 40q “ 10.
Always, gcdpa, bq “ gcdpb, aq.
If b|a, then gcdpa, bq “ b.
If gcdpa, bq “ 1, we say that a and b are relatively prime.

Example:
The divisors of 25 are 1, 5, and 25;

the divisors of 12 are 1, 2, 3, 4, 6, and 12;
so 25 and 12 are relatively prime (even though neither is prime).
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Computing the greatest common divisor

Method 1: Compute all the divisors of a and b, and compare.

VERY inefficient!
Method 2:
Compute the prime factorizations, and take their “intersection”.
Example:

19500 “ 22 ˚ 3 ˚ 53 ˚ 13 and 440 “ 23 ˚ 5 ˚ 11,
so gcdp19500, 400q “ 22 ˚ 5 “ 20 .

In other words, gcdpa, bq will be the product over primes p to the
highest power n such that pn|a and pn|b.

You try: compute the prime factorizations of 12, 30, 35, and 84,
and use them to compute

gcdp12, 30q, gcdp12, 35q, gcdp12, 84q, gcdp30, 35q, gcdp30, 84q, gcdp35, 84q.

Not computationally efficient either! (Prime factorization is
computationally difficult/not possible without a list of primes.)
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Method 3: The Euclidean algorithm.

First, we’ll need the division algorithm, which says for any a, b P Z
with b ‰ 0, there are unique integers q and r satisfying

a “ bq ` r and 0 ď r ă |b|.

Think: “a divided by b is q with remainder r.”
Ex: if a “ 17, b “ 5, then q “ 3 and r “ 2 since 17 “ 5 ˚ 3` 2.

Ex: if a “ ´17, b “ 5, then q “ ´4 and r “ 3 since ´17 “ 5 ˚ p´4q ` 2.

´20 ´15 ´10 ´5 0 5 10 15 20

´17 17

Proof: (sketch) If a and b are the same sign, subtract b from a
until the result is between 0 and |b| ´ 1. The result is r and the
number of subtractions is q. If they’re different signs, add b to a
until the result is between 0 and |b| ´ 1. The result is r and the
number of additions is ´q.
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We have
if a “ 17, b “ 5, then q “ 3 and r “ 2 since 17 “ 5 ˚ 3` 2.

If a2 “ 5, b2 “ 2, then q2 “ 2 and r2 “ 1 since 5 “ 2 ˚ 2` 1.
And if a3 “ 2, b3 “ 1, then q3 “ 2 and r3 “ 0 since 2 “ 2 ˚ 1` 0.
Notice: gcdp17, 5q “ 1.

Play this game again with new a and b:

1. Start with a1 “ a and b1 “ b.

2. Compute the quotient qi and remainder ri in dividing ai by bi.

3. Repeat the division algorithm using ai “ bi´1 and bi “ ri´1.

4. Iterate until you get rn “ 0.
Then compare gcdpa, bq with rn´1.

You try: Do this process with a “ 30, b “ 12, and then with
a “ 84, b “ 30.
Claim: If n is the first time that rn “ 0, then rn´1 “ gcdpa, bq.
Note that if r “ 0 in the first step, then b|n, so gcdpa, bq “ b.
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Spreadsheet functions

For a and integer and b a positive integer,
=FLOORpa, bq

gives the largest multiple of b less or equal to a.

Namely, if a “ bq ` r, then FLOORpa, bq “ bq.

Example:

=FLOORp17, 5q returns 15,

=FLOORp´17, 5q returns ´20,

=FLOORp17,´5q returns an error.

So to compute q and r such that a “ bq ` r,

=FLOORpa, bq{b returns q,

=a´FLOORpa, bq returns r.
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Why does rn´1 “ gcdpa, bq?

In general, our process looks like

a “ b ˚ q1 ` r1
b “ r1 ˚ q2 ` r2
r1 “ r2 ˚ q3 ` r3

...
rn´4 “ rn´3 ˚ qn´2 ` rn´2
rn´3 “ rn´2 ˚ qn´1 ` rn´1 Ð gcdpa, bq?
rn´2 “ rn´1 ˚ qn ` 0 Ð rn

To make everything look the same, let r´1 “ a and r0 “ b. So
every line comes in the form

ri´2 “ ri´1 ˚ qi ` ri.
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Why does rn´1 “ gcdpa, bq?
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rn´2 “ rn´1 ˚ qn ` 0 Ð rn

Last line: rn´2 “ rn´1qn.
So

rn´3 “ rn´2qn´1 ` rn´1 “ prn´1qnqqn´1 ` rn´1 “ rn´1pqnqn´1 ` 1q.
Then

rn´4 “ rn´3qn´2 ` rn´2 “ rn´1pqnqn´1 ` 1qqn´2 ` rn´1qn
“ rn´1pqnqn´1qn´2 ` qn´2 ` 1q. And so on. . .
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Why does rn´1 “ gcdpa, bq?

Example: We saw

84 “ 30 ˚ 2` 24

30 “ 24 ˚ 1` 6

24 “ 6 ˚ 4` 0.

rn´1 “ 6

So

30 “ 24 ˚ 1` 6

“ p6 ˚ 4q ˚ 1` 6 “ 6p4 ˚ 1` 1q “ 6 ˚ 5

84 “ 30 ˚ 2` 24 “ p6 ˚ 5q ˚ 2` p6 ˚ 4q “ 6p5 ˚ 2` 4q “ 6 ˚ 24.

So 6 is a common divisor of 84 and 30.
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From our spreadsheet, we can calculate that for a “ 100, b “ 36:

100 “ 36 ˚ 2` 28

36 “ 28 ˚ 1` 8

28 “ 8 ˚ 3` 4

8 “ 4 ˚ 2` 0.

rn´1 “ 4

So

28 “ 8 ˚ 3` 4

“ p4 ˚ 2q ˚ 3` 4 “ 4p2 ˚ 3` 1q “ 4 ˚ 7

36 “ 28 ˚ 1` 8 “ p4 ˚ 7q ˚ 1` p4 ˚ 2q “ 4p7 ˚ 1` 2q “ 4 ˚ 9

100 “ 36 ˚ 2` 28 “ p4 ˚ 9q ˚ 2` p4 ˚ 7q “ 4p9 ˚ 2` 7q “ 4 ˚ 25.

So 4 is a common divisor of 100 and 36.

You try: use the following computations, working backwards, to
show that 2 is a common divisor of 100 and 26:

100 “ 26 ˚ 3` 22 26 “ 22 ˚ 1` 4
22 “ 4 ˚ 5` 2 4 “ 2 ˚ 2` 0
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Why does rn´1 “ gcdpa, bq?
Letting r´1 “ a and r0 “ b, and computing

r´1 “ r0 ˚ q1 ` r1
r0 “ r1 ˚ q2 ` r2
r1 “ r2 ˚ q3 ` r3

...
rn´4 “ rn´3 ˚ qn´2 ` rn´2
rn´3 “ rn´2 ˚ qn´1 ` rn´1 Ð gcdpa, bq?
rn´2 “ rn´1 ˚ qn ` 0 Ð rn

we can reverse this process to show that rn´1 is, at the very least,
a common divisor to a “ r´1 and b “ r0.

Wait! How do we know we ever get 0??
The division algorithm ensures that each remainder is strictly
smaller than the last, and always non-negative:

b “ r0 ą r1 ą r2 ą ¨ ¨ ¨ ě 0.

So since the ri’s are all integers, this process ends at some point.
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Why does rn´1 “ gcdpa, bq?
We have that rn´1 is a common divisor to a an b. Now why is it
the greatest common divisor?

Suppose d is a common divisor of a and b, i.e. d|a and d|b. This
means

a “ dα and b “ dβ for some α, β P Z.
Back to our division calculation, and substitute these equations in:

a “ b ˚ q1 ` r1

so r1 “ dpα´ βq1q “ dm1

b “ r1 ˚ q2 ` r2

so r2 “ dpβ ´m1q2q “ dm2

r1 “ r2 ˚ q3 ` r3

so r3 “ ¨ ¨ ¨ “ dm3

...
rn´3 “ rn´2 ˚ qn´1 ` rn´1

so rn´1 “ ¨ ¨ ¨ “ dmn´1

rn´2 “ rn´1 ˚ qn ` 0

So d is a divisor of rn´1. In particular, since rn´1 ą 0, we have
d|rn´1 and d ď rn´1.

In other words, rn´1 is a common divisor to a and b, and any other
common divisor is less than or equal to rn´1. So rn´1 “ gcdpa, bq.
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The Euclidean algorithm for computing the greatest common
divisor of two positive numbers a and b is the process or
successively dividing until just before you get a 0 divisor (like we
just did).

Namely, we have the following theorem.

Theorem (Euclidean algorithm)

To compute the greatest common divisor of two positive integers a
and b, let r´1 “ a and r0 “ b, and compute successive quotients
and remainders

ri´2 “ ri´1qi ` ri

for i “ 1, 2, 3, . . . , until some remainder rn is 0. The last nonzero
remainder rn´1 is then the greatest common divisor of a and b.

This takes at most b steps (actually less), and is much more
computationally efficient than the other methods.
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