From last time:

A Pythagorean triple is a triplet of positive integers $a, b, c \in \mathbb{Z}_{>0}$ satisfying $a^{2}+b^{2}=c^{2}$.

From last time:

A Pythagorean triple is a triplet of positive integers $a, b, c \in \mathbb{Z}_{>0}$ satisfying $a^{2}+b^{2}=c^{2}$.

Ex: $3^{2}+4^{2}=5^{2}, 5^{2}+12^{2}=13^{2}$, and $8^{2}+15^{2}=17^{2}$.

From last time:

A Pythagorean triple is a triplet of positive integers $a, b, c \in \mathbb{Z}_{>0}$ satisfying $a^{2}+b^{2}=c^{2}$.

Ex: $3^{2}+4^{2}=5^{2}, 5^{2}+12^{2}=13^{2}$, and $8^{2}+15^{2}=17^{2}$.
Last time, we used factorization and divisors to help us prove the following.

1. If (a, b, c) is a Pythagorean triple, then so is $(n a, n b, n c)$ for any $n \in \mathbb{Z}_{\geqslant 0}$.

From last time:

A Pythagorean triple is a triplet of positive integers $a, b, c \in \mathbb{Z}_{>0}$ satisfying $a^{2}+b^{2}=c^{2}$.

Ex: $3^{2}+4^{2}=5^{2}, 5^{2}+12^{2}=13^{2}$, and $8^{2}+15^{2}=17^{2}$.
Last time, we used factorization and divisors to help us prove the following.

1. If (a, b, c) is a Pythagorean triple, then so is $(n a, n b, n c)$ for any $n \in \mathbb{Z}_{\geqslant 0}$.
2. All primitive Pythagorean triples (those with no common divisors) are characterized by

$$
a=s t, \quad b=\frac{s^{2}-t^{2}}{2}, \quad \text { and } \quad c=\frac{s^{2}+t^{2}}{2}
$$

for odd integers $s>t \geqslant 1$ with no common factors.

From last time:

A Pythagorean triple is a triplet of positive integers $a, b, c \in \mathbb{Z}_{>0}$ satisfying $a^{2}+b^{2}=c^{2}$.

Ex: $3^{2}+4^{2}=5^{2}, 5^{2}+12^{2}=13^{2}$, and $8^{2}+15^{2}=17^{2}$.
Last time, we used factorization and divisors to help us prove the following.

1. If (a, b, c) is a Pythagorean triple, then so is $(n a, n b, n c)$ for any $n \in \mathbb{Z}_{\geqslant 0}$.
2. All primitive Pythagorean triples (those with no common divisors) are characterized by

$$
a=s t, \quad b=\frac{s^{2}-t^{2}}{2}, \quad \text { and } \quad c=\frac{s^{2}+t^{2}}{2}
$$

for odd integers $s>t \geqslant 1$ with no common factors.

Today: Another approach, using geometry.

Pythagorean triples and the unit circle

For any $c \neq 0$, we have

$$
(a, b, c) \text { is a solution to } a^{2}+b^{2}=c^{2}
$$

if and only if

$$
(a, b, c) \text { is a solution to } \frac{a^{2}}{c^{2}}+\frac{b^{2}}{c^{2}}=1 .
$$

Pythagorean triples and the unit circle

For any $c \neq 0$, we have

$$
(a, b, c) \text { is a solution to } a^{2}+b^{2}=c^{2}
$$

if and only if

$$
(a, b, c) \text { is a solution to }\left(\frac{a}{c}\right)^{2}+\left(\frac{b}{c}\right)^{2}=1 .
$$

Pythagorean triples and the unit circle

For any $c \neq 0$, we have

$$
(a, b, c) \text { is a solution to } a^{2}+b^{2}=c^{2}
$$

if and only if

$$
(a, b, c) \text { is a solution to }\left(\frac{a}{c}\right)^{2}+\left(\frac{b}{c}\right)^{2}=1 .
$$

Let $x=a / c$ and $y=b / c$.

Pythagorean triples and the unit circle

For any $c \neq 0$, we have

$$
(a, b, c) \text { is a solution to } a^{2}+b^{2}=c^{2}
$$

if and only if

$$
(a, b, c) \text { is a solution to }\left(\frac{a}{c}\right)^{2}+\left(\frac{b}{c}\right)^{2}=1 .
$$

Let $x=a / c$ and $y=b / c$. Then solutions look like

$$
x^{2}+y^{2}=1:
$$

Pythagorean triples and the unit circle

For any $c \neq 0$, we have

$$
(a, b, c) \text { is a solution to } a^{2}+b^{2}=c^{2}
$$

if and only if

$$
(a, b, c) \text { is a solution to }\left(\frac{a}{c}\right)^{2}+\left(\frac{b}{c}\right)^{2}=1
$$

Let $x=a / c$ and $y=b / c$. Then solutions look like

$$
x^{2}+y^{2}=1:
$$

Integer solutions (a, b, c) occur whenever x and y are rational.

Pythagorean triples and the unit circle

Integer solutions to $a^{2}+b^{2}=c^{2}$ occur whenever x and y are rational. (Let c be any common multiple of the denominators of x and y.)

Pythagorean triples and the unit circle

$$
x^{2}+y^{2}=1
$$

Integer solutions to $a^{2}+b^{2}=c^{2}$ occur whenever x and y are rational. (Let c be any common multiple of the denominators of x and y.)
Four obvious rational points: $(1,0),(0,1),(-1,0)$, and $(0,-1)$.

Pythagorean triples and the unit circle

Integer solutions to $a^{2}+b^{2}=c^{2}$ occur whenever x and y are rational. (Let c be any common multiple of the denominators of x and y.)
Four obvious rational points: $(1,0),(0,1),(-1,0)$, and $(0,-1)$.
Take, for example, the point $P=(-1,0)$.

Pythagorean triples and the unit circle

Integer solutions to $a^{2}+b^{2}=c^{2}$ occur whenever x and y are rational. (Let c be any common multiple of the denominators of x and y.)
Four obvious rational points: $(1,0),(0,1),(-1,0)$, and $(0,-1)$.
Take, for example, the point $P=(-1,0)$.
Now let (q, r) be any other rational point $(q, r \in \mathbb{Q})$ on the circle.

Pythagorean triples and the unit circle

$$
x^{2}+y^{2}=1
$$

Integer solutions to $a^{2}+b^{2}=c^{2}$ occur whenever x and y are rational. (Let c be any common multiple of the denominators of x and y.)
Four obvious rational points: $(1,0),(0,1),(-1,0)$, and ($0,-1$).
Take, for example, the point $P=(-1,0)$.
Now let (q, r) be any other rational point $(q, r \in \mathbb{Q})$ on the circle. Consider the line L connecting those two points.

Pythagorean triples and the unit circle

$$
x^{2}+y^{2}=1
$$

Integer solutions to $a^{2}+b^{2}=c^{2}$ occur whenever x and y are rational. (Let c be any common multiple of the denominators of x and y.)
Four obvious rational points: $(1,0),(0,1),(-1,0)$, and ($0,-1$).
Take, for example, the point $P=(-1,0)$.
Now let (q, r) be any other rational point $(q, r \in \mathbb{Q})$ on the circle.
Consider the line L connecting those two points. Rational slope!

Pythagorean triples and the unit circle

If we take a line through $P=(-1,0)$ and another rational point (q, r) on the unit circle, that line will have rational slope.

$$
x^{2}+y^{2}=1
$$

Pythagorean triples and the unit circle

If we take a line through $P=(-1,0)$ and another rational point (q, r) on the unit circle, that line will have rational slope.

$$
x^{2}+y^{2}=1
$$

Conversely, take any line with rational slope m that intersects P

Pythagorean triples and the unit circle

If we take a line through $P=(-1,0)$ and another rational point (q, r) on the unit circle, that line will have rational slope.

$$
x^{2}+y^{2}=1
$$

Conversely, take any line with rational slope m that intersects P,

$$
L: y=m(x+1), \quad m \in \mathbb{Q}
$$

(using point-slope formula).

Pythagorean triples and the unit circle

If we take a line through $P=(-1,0)$ and another rational point (q, r) on the unit circle, that line will have rational slope.

$$
x^{2}+y^{2}=1
$$

Conversely, take any line with rational slope m that intersects P,

$$
L: y=m(x+1), \quad m \in \mathbb{Q}
$$

(using point-slope formula).
Let (x, y) be the other point where the line intersects the circle.

Pythagorean triples and the unit circle

If we take a line through $P=(-1,0)$ and another rational point (q, r) on the unit circle, that line will have rational slope.

$$
x^{2}+y^{2}=1
$$

Conversely, take any line with rational slope m that intersects P,

$$
L: y=m(x+1), \quad m \in \mathbb{Q}
$$

(using point-slope formula).
Let (x, y) be the other point where the line intersects the circle. Solve.

Pythagorean triples and the unit circle

$$
x^{2}+y^{2}=1
$$

$L: y=m(x+1), \quad m \in \mathbb{Q}$

Two points of intersection:
$(-1,0)$ and $\left(\frac{1-m^{2}}{1+m^{2}}, \frac{2 m}{1+m^{2}}\right)$

Pythagorean triples and the unit circle

$$
x^{2}+y^{2}=1
$$

$L: y=m(x+1), \quad m \in \mathbb{Q}$

Two points of intersection:
$(-1,0)$ and $\left(\frac{1-m^{2}}{1+m^{2}}, \frac{2 m}{1+m^{2}}\right)$

Both rational!!

Pythagorean triples and the unit circle

$$
\begin{gathered}
x^{2}+y^{2}=1 \\
L: y=m(x+1), \quad m \in \mathbb{Q}
\end{gathered}
$$

Two points of intersection: $(-1,0)$ and $\left(\frac{1-m^{2}}{1+m^{2}}, \frac{2 m}{1+m^{2}}\right)$

Both rational!!
Theorem
Every point on the circle $x^{2}+y^{2}=1$ whose coordinates are rational numbers can be obtained from the formula

$$
(x, y)=\left(\frac{1-m^{2}}{1+m^{2}}, \frac{2 m}{1+m^{2}}\right)
$$

by substituting in rational numbers for m or taking the limit $m \rightarrow \infty$.

Theorem

Every point on the circle $x^{2}+y^{2}=1$ whose coordinates are rational numbers can be obtained from the formula

$$
(x, y)=\left(\frac{1-m^{2}}{1+m^{2}}, \frac{2 m}{1+m^{2}}\right)
$$

by substituting in rational numbers for m or taking the limit $m \rightarrow \infty$.
Relating back to last time: rational points (x, y) on the unit circle correspond to primitive Pythagorean triples (a, b, c) as follows:

Theorem

Every point on the circle $x^{2}+y^{2}=1$ whose coordinates are rational numbers can be obtained from the formula

$$
(x, y)=\left(\frac{1-m^{2}}{1+m^{2}}, \frac{2 m}{1+m^{2}}\right)
$$

by substituting in rational numbers for m or taking the limit $m \rightarrow \infty$.
Relating back to last time: rational points (x, y) on the unit circle correspond to primitive Pythagorean triples (a, b, c) as follows: Process:

- Put x and y into lowest terms.

Example:

- $(x, y)=(3 / 5,4 / 5)$

Theorem

Every point on the circle $x^{2}+y^{2}=1$ whose coordinates are rational numbers can be obtained from the formula

$$
(x, y)=\left(\frac{1-m^{2}}{1+m^{2}}, \frac{2 m}{1+m^{2}}\right)
$$

by substituting in rational numbers for m or taking the limit $m \rightarrow \infty$.
Relating back to last time: rational points (x, y) on the unit circle correspond to primitive Pythagorean triples (a, b, c) as follows:

Process:

- Put x and y into lowest terms.
- Let c be the smallest common multiple of their denominators.

Example:

- $(x, y)=(3 / 5,4 / 5)$
- $c=5$

Theorem

Every point on the circle $x^{2}+y^{2}=1$ whose coordinates are rational numbers can be obtained from the formula

$$
(x, y)=\left(\frac{1-m^{2}}{1+m^{2}}, \frac{2 m}{1+m^{2}}\right)
$$

by substituting in rational numbers for m or taking the limit $m \rightarrow \infty$.
Relating back to last time: rational points (x, y) on the unit circle correspond to primitive Pythagorean triples (a, b, c) as follows:

Process:

- Put x and y into lowest terms.
- Let c be the smallest common multiple of their denominators.
- Let $a=x c$ and $b=y c$ Example:
- $(x, y)=(3 / 5,4 / 5)$
- $c=5$
- $a=3$ and $b=4$

Theorem

Every point on the circle $x^{2}+y^{2}=1$ whose coordinates are rational numbers can be obtained from the formula

$$
(x, y)=\left(\frac{1-m^{2}}{1+m^{2}}, \frac{2 m}{1+m^{2}}\right)
$$

by substituting in rational numbers for m or taking the limit $m \rightarrow \infty$.
Relating back to last time: rational points (x, y) on the unit circle correspond to primitive Pythagorean triples (a, b, c) as follows: Process:

Example:

- Put x and y into lowest terms.
- $(x, y)=(3 / 5,4 / 5)$
- Let c be the smallest common
- $c=5$ multiple of their denominators.
- Let $a=x c$ and $b=y c$
- $a=3$ and $b=4$

Last time: $(a, b, c)=\left(s t, \frac{1}{2}\left(s^{2}-t^{2}\right), \frac{1}{2}\left(s^{2}+t^{2}\right)\right)$

Theorem

Every point on the circle $x^{2}+y^{2}=1$ whose coordinates are rational numbers can be obtained from the formula

$$
(x, y)=\left(\frac{1-m^{2}}{1+m^{2}}, \frac{2 m}{1+m^{2}}\right)
$$

by substituting in rational numbers for m or taking the limit $m \rightarrow \infty$.
Relating back to last time: rational points (x, y) on the unit circle correspond to primitive Pythagorean triples (a, b, c) as follows: Process:

Example:

- Put x and y into lowest terms.
- $(x, y)=(3 / 5,4 / 5)$
- Let c be the smallest common
- $c=5$ multiple of their denominators.
- Let $a=x c$ and $b=y c$
- $a=3$ and $b=4$

Last time: $(a, b, c)=\left(s t, \frac{1}{2}\left(s^{2}-t^{2}\right), \frac{1}{2}\left(s^{2}+t^{2}\right)\right)$
Substitute $m=u / v$.

Theorem

Every point on the circle $x^{2}+y^{2}=1$ whose coordinates are rational numbers can be obtained from the formula

$$
(x, y)=\left(\frac{1-m^{2}}{1+m^{2}}, \frac{2 m}{1+m^{2}}\right)
$$

by substituting in rational numbers for m or taking the limit $m \rightarrow \infty$.
Relating back to last time: rational points (x, y) on the unit circle correspond to primitive Pythagorean triples (a, b, c) as follows: Process:

Example:

- Put x and y into lowest terms.
- $(x, y)=(3 / 5,4 / 5)$
- Let c be the smallest common
- $c=5$ multiple of their denominators.
- Let $a=x c$ and $b=y c \quad \forall a=3$ and $b=4$ Last time: $(a, b, c)=\left(s t, \frac{1}{2}\left(s^{2}-t^{2}\right), \frac{1}{2}\left(s^{2}+t^{2}\right)\right)$ Substitute $m=u / v$. Then let $u=\frac{1}{2}(s+t), v=\frac{1}{2}(s-t)$.

