Last time:

Galois integers:

$$
\mathbb{Z}[i]=\{a+b i \mid a, b \in \mathbb{Z}\} \subseteq \mathbb{C}
$$

You can add, subtract, and multiply Galois integers, but can't always divide (just like with integers).
For $\alpha, \beta \in \mathbb{Z}[i]$, we say α divides β if there is some $\gamma \in \mathbb{Z}[i]$ such that $\alpha \gamma=\beta$.
Ex: Since $2=2 \cdot 1=-2(-1)=(1+i)(1-i)$, the divisors of 2 include $\pm 1, \pm 2,1 \pm i$.
A unit $u \in \mathbb{Z}[i]$ is a number that has a multiplicative inverse $u^{\prime} \in \mathbb{Z}[i]$ (which satisfies $u u^{\prime}=1$).
Ex: $\pm 1, \pm i$ are all units in $\mathbb{Z}[i]$.
We say $\beta \in \mathbb{Z}[i]$ is prime if the only divisors of β are of the form u or $u \beta$, where u is a unit.
Ex: Since $1+i$ divides 2 , and it is not of the form $2 u$ or u for any unit $u, 2$ is not prime.

Norm

Define

$$
N: \mathbb{Z}[i] \rightarrow \mathbb{Z}_{\geqslant 0} \quad \text { by } \quad a+b i \mapsto a^{2}+b^{2} .
$$

Proposition. For $\alpha, \beta \in \mathbb{Z}[i]$, we have

$$
N(\alpha \beta)=N(\alpha) N(\beta) .
$$

Back to units: If α is a unit, then there is some β for which $\alpha \beta=1$. So

$$
1=N(1)=N(\alpha \beta)=N(\alpha) N(\beta)
$$

So $N(\alpha)=N(\beta)=1$. What are integer solutions to $a^{2}+b^{2}=1$?

Theorem

The units in $\mathbb{Z}[i]$ are $\{ \pm 1, \pm i\}$.

Define

$$
N: \mathbb{Z}[i] \rightarrow \mathbb{Z} \geqslant 0 \quad \text { by } \quad a+b i \mapsto a^{2}+b^{2} .
$$

For $\alpha, \beta \in \mathbb{Z}[i]$, we have $N(\alpha \beta)=N(\alpha) N(\beta)$.
Back to primes: Is 2 prime in $\mathbb{Z}[i]$?
Suppose we have

$$
(a+b i)(c+d i)=2 .
$$

Taking N of both sides, we get

$$
\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)=4
$$

Possibilities:
$a^{2}+b^{2}=1$: In this case, $a+b i$ is a unit.
$a^{2}+b^{2}=2$: Potentially nontrivial factors?
$a^{2}+b^{2}=4$: In this case, $c+d i$ is a unit.
Are there non-trivial solutions to $a^{2}+b^{2}=2$? Yes! For example, $1+i$. Does $1+i$ divide 2? Compute:

$$
\frac{2}{1+i}=\frac{2(1-i)}{2}=1-i .
$$

So since $1+i$ isn't a unit, nor is it a unit multiple of 2 , we have 2 is not prime in $\mathbb{Z}[i]$!!

Theorem
Let p be an odd prime. Then there are integers a, b satisfying

$$
a^{2}+b^{2}=p
$$

if and only if $p \equiv_{4} 1$.
Proof. Show $a^{2}+b^{2}=p$ implies $p \equiv_{4} 1$ by direct computation.
For the reverse, see Ch. 24.
Ex. There are no integer solutions to $a^{2}+b^{2}=3$. So, using the same idea as last time, suppose we have

$$
(a+b i)(c+d i)=3
$$

Taking N of both sides, we get

$$
\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)=9
$$

Possibilities:
$a^{2}+b^{2}=1$: In this case, $a+b i$ is a unit.
$a^{2}+b^{2}=3$: No solutions.
$a^{2}+b^{2}=9:$ In this case, $c+d i$ is a unit.
So 3 is a prime in $\mathbb{Z}[i]$.

We say $\beta \in \mathbb{Z}[i]$ is prime if the only divisors of β are of the form u or $u \beta$, where u is a unit (one of $\{ \pm 1, \pm i\}$).
Looking for primes so far:

1. If $n \in \mathbb{Z}$ is composite in \mathbb{Z}, then it is composite in $\mathbb{Z}[i]$.
2. If $p \in \mathbb{Z}$ is prime in \mathbb{Z}, then either
(a) $p=2$, which is not prime in $\mathbb{Z}[i]$;
(we checked)
(b) $p \equiv_{4}-1$, in which case p is prime in $\mathbb{Z}[i]$; (prove using norms)
(c) $p \equiv{ }_{4} 1$, in which case there are $a, b \in \mathbb{Z}$ with $a^{2}+b^{2}=p$, so that $a+i b \neq u, p u$ for any unit u and

$$
(a+i b)(a-i b)=a^{2}+b^{2}=p,
$$

i.e. p is not prime in $\mathbb{Z}[i]$.

Proposition

An integer n is prime in $\mathbb{Z}[i]$ if and only if n is a prime in \mathbb{Z} satisfying $n \equiv{ }_{4} 1$.
Are there any more?

Theorem (Gaussian Prime Theorem)

The Gaussian primes can be described as follows:
(i) (ramified) $1+i$ is a Gaussian prime.
(ii) (inert) Let p be a prime in \mathbb{Z} with $p \equiv-1(\bmod 4)$. Then p is a Gaussian prime.
(iii) (split) Let p be a prime in \mathbb{Z} with $p \equiv 1(\bmod 4)$. Then $p=a^{2}+b^{2}$ for $a, b \in \mathbb{Z}_{>0}$, and $a+b i$ is a Gaussian prime.
Moreover, every Gaussian prime is equal to a unit times a Gaussian prime of the form (i), (ii), or (iii).

We can also use $N(\alpha)$ to find divisors of α.
Lemma (Gaussian Divisibility Lemma)
Let $\alpha \in \mathbb{Z}[i]$.
(a) If 2 divides $N(\alpha)$ in \mathbb{Z}, then $1+i$ divides α in $\mathbb{Z}[i]$.
(b) Let p be (an inert) prime, and suppose that p divides $N(\alpha)$ in \mathbb{Z}. Then p divides α in $\mathbb{Z}[i]$.
(c) Let $\pi=u+v i$ be a split, and let $\bar{\pi}=u-v i$. If $N(\pi)$ divides $N(\alpha)$ in \mathbb{Z}, then at least one of π or $\bar{\pi}$ divides α in $\mathbb{Z}[i]$.

To be clear:
a divides b in \mathbb{Z} if there is a $k \in \mathbb{Z}$ such that $a k=b$. α divides β in $\mathbb{Z}[i]$ if there is a $\gamma \in \mathbb{Z}[i]$ such that $\alpha \gamma=\beta$.

