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Last time:

Galois integers:

Zlil ={a+bi|abeZ}<C.
You can add, subtract, and multiply Galois integers, but can’t
always divide (just like with integers).
For a, B € Z[i], we say « divides 3 if there is some ~ € Z[i] such
that ay = 5.
Ex: Since 2 =2-1=—-2(—1) = (1 +14)(1 — 7), the divisors of 2
include +1,+2,1 + 3.
A unit u € Z[i] is a number that has a multiplicative inverse
u’ € Z[i] (which satisfies uu’ = 1).
Ex: +1, £ are all units in Z[7].
We say (3 € Z[i] is prime if the only divisors of /3 are of the form u
or uf3, where u is a unit.

Ex: Since 1 + ¢ divides 2, and it is not of the form 2u or u for any
unit u, 2 is not prime.
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Proposition. For «, 8 € Z[i], we have
N(ap) = N(a)N(B).
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af =1. So
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So N(a) = N(B) = 1. What are integer solutions to a? + b? = 17?

Theorem
The units in Z[i] are {1, +i}.
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N :Z[i] > Zso by a+bi—a®+b>
For a, 5 € Z[i], we have N(af) = N(a)N(B).
Back to primes: Is 2 prime in Z[i]?
Suppose we have
(a+bi)(c+di) = 2.
Taking N of both sides, we get
(a® + b)) (c* + d*) = 4.
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a® +b? = 1: In this case, a + bi is a unit.
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Define
N :Z[i] > Zso by a+bi—a®+b>
For a, 5 € Z[i], we have N(af) = N(a)N(B).
Back to primes: Is 2 prime in Z[i]?
Suppose we have
(a +bi)(c+ di) = 2.
Taking N of both sides, we get
(a® + b)) (c* + d*) = 4.
Possibilities:
a® +b? = 1: In this case, a + bi is a unit.
a® + b% = 2: Potentially nontrivial factors?
a? + b2 = 4: In this case, ¢ + di is a unit.
Are there non-trivial solutions to a” 4+ b?> = 27 Yes! For example,
1+ 4. Does 1 + ¢ divide 2?7 Compute:
2 _20-9) _, .,
1+74 2
So since 1 + i isn't a unit, nor is it a unit multiple of 2, we have 2
is not prime in Z[]!!
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2. If pe Zis prime in Z, then either
(a) p =2, which is not prime in Z[i]; (we checked)
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We say (3 € Z[i] is prime if the only divisors of /3 are of the form u
or uf3, where u is a unit (one of {£1, +i}).

Looking for primes so far:
1. If n € Z is composite in Z, then it is composite in Z[i].
2. If pe Zis prime in Z, then either
(a) p =2, which is not prime in Z[i]; (we checked)
(b) p=4 —1, in which case p is prime in Z[i]; (prove using norms)
(c) p=4 1, in which case there are a,b € Z with a® + b* = p, so
that a + ib # u, pu for any unit uw and

(a+ib)(a —ib) = a® + b = p,

i.e. p is not prime in Z[i].

Proposition

An integer n is prime in Z[i] if and only if n is a prime in Z
satisfying n =4 1.

Are there any more?



Theorem (Gaussian Prime Theorem)
The Gaussian primes can be described as follows:
(i) (ramified) 1 + i is a Gaussian prime.
(ii) (inert) Let p be a prime in Z with p = —1 (mod 4). Then p
is a Gaussian prime.
(i) (split) Let p be a prime in Z with p =1 (mod 4). Then
p=a®+b% fora,be Z~g, and a + bi is a Gaussian prime.

Moreover, every Gaussian prime is equal to a unit times a Gaussian
prime of the form (i), (ii), or (iii).



We can also use N(«) to find divisors of .

Lemma (Gaussian Divisibility Lemma)

Let a € Z][i].

(a) If2 divides N(«) in Z, then 1 + i divides o in Z[i].

(b) Let p be (an inert) prime, and suppose that p divides N(«) in
Z. Then p divides o in Z][i].

(c) Let m =u+ vi be a split, and let T = u — vi. If N(7) divides
N(«) in Z, then at least one of w or T divides o in Z[i].



We can also use N(«) to find divisors of .

Lemma (Gaussian Divisibility Lemma)

Let a € Z][i].

(a) If2 divides N(«) in Z, then 1 + i divides o in Z[i].

(b) Let p be (an inert) prime, and suppose that p divides N(«) in
Z. Then p divides o in Z][i].

(c) Let m =u+ vi be a split, and let T = u — vi. If N(7) divides
N(«) in Z, then at least one of w or T divides o in Z[i].

To be clear:
a divides b in Z if there is a k € Z such that ak = b.
a divides [ in Z[1] if there is a v € Z[i] such that ary = §.






