Galois integers:

$$\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\} \subseteq \mathbb{C}.$$

Galois integers:

$$\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\} \subseteq \mathbb{C}.$$

You can add, subtract, and multiply Galois integers, but can't always divide (just like with integers).

Galois integers:

$$\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\} \subseteq \mathbb{C}.$$

You can add, subtract, and multiply Galois integers, but can't always divide (just like with integers).

For $\alpha, \beta \in \mathbb{Z}[i]$, we say α divides β if there is some $\gamma \in \mathbb{Z}[i]$ such that $\alpha \gamma = \beta$.

Galois integers:

$$\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\} \subseteq \mathbb{C}.$$

You can add, subtract, and multiply Galois integers, but can't always divide (just like with integers).

For $\alpha, \beta \in \mathbb{Z}[i]$, we say α divides β if there is some $\gamma \in \mathbb{Z}[i]$ such that $\alpha \gamma = \beta$.

Ex: Since $2 = 2 \cdot 1 = -2(-1) = (1+i)(1-i)$, the divisors of 2 include $\pm 1, \pm 2, 1 \pm i$.

Galois integers:

$$\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\} \subseteq \mathbb{C}.$$

You can add, subtract, and multiply Galois integers, but can't always divide (just like with integers).

For $\alpha, \beta \in \mathbb{Z}[i]$, we say α divides β if there is some $\gamma \in \mathbb{Z}[i]$ such that $\alpha \gamma = \beta$.

Ex: Since $2 = 2 \cdot 1 = -2(-1) = (1+i)(1-i)$, the divisors of 2 include $\pm 1, \pm 2, 1 \pm i$.

A unit $u \in \mathbb{Z}[i]$ is a number that has a multiplicative inverse $u' \in \mathbb{Z}[i]$ (which satisfies uu' = 1).

Galois integers:

$$\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\} \subseteq \mathbb{C}.$$

You can add, subtract, and multiply Galois integers, but can't always divide (just like with integers).

For $\alpha, \beta \in \mathbb{Z}[i]$, we say α divides β if there is some $\gamma \in \mathbb{Z}[i]$ such that $\alpha \gamma = \beta$.

Ex: Since $2 = 2 \cdot 1 = -2(-1) = (1+i)(1-i)$, the divisors of 2 include $\pm 1, \pm 2, 1 \pm i$.

A unit $u \in \mathbb{Z}[i]$ is a number that has a multiplicative inverse $u' \in \mathbb{Z}[i]$ (which satisfies uu' = 1). Ex: ± 1 , $\pm i$ are all units in $\mathbb{Z}[i]$.

Galois integers:

$$\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\} \subseteq \mathbb{C}.$$

You can add, subtract, and multiply Galois integers, but can't always divide (just like with integers).

For $\alpha, \beta \in \mathbb{Z}[i]$, we say α divides β if there is some $\gamma \in \mathbb{Z}[i]$ such that $\alpha \gamma = \beta$.

Ex: Since $2 = 2 \cdot 1 = -2(-1) = (1+i)(1-i)$, the divisors of 2 include $\pm 1, \pm 2, 1 \pm i$.

A unit $u \in \mathbb{Z}[i]$ is a number that has a multiplicative inverse $u' \in \mathbb{Z}[i]$ (which satisfies uu' = 1). Ex: ± 1 , $\pm i$ are all units in $\mathbb{Z}[i]$.

We say $\beta \in \mathbb{Z}[i]$ is prime if the only divisors of β are of the form u or $u\beta$, where u is a unit.

Galois integers:

$$\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\} \subseteq \mathbb{C}.$$

You can add, subtract, and multiply Galois integers, but can't always divide (just like with integers).

For $\alpha, \beta \in \mathbb{Z}[i]$, we say α divides β if there is some $\gamma \in \mathbb{Z}[i]$ such that $\alpha \gamma = \beta$.

Ex: Since $2 = 2 \cdot 1 = -2(-1) = (1+i)(1-i)$, the divisors of 2 include $\pm 1, \pm 2, 1 \pm i$.

A unit $u \in \mathbb{Z}[i]$ is a number that has a multiplicative inverse $u' \in \mathbb{Z}[i]$ (which satisfies uu' = 1). Ex: ± 1 , $\pm i$ are all units in $\mathbb{Z}[i]$.

We say $\beta \in \mathbb{Z}[i]$ is prime if the only divisors of β are of the form u or $u\beta$, where u is a unit.

Ex: Since 1 + i divides 2, and it is not of the form 2u or u for any unit u, 2 is not prime.

Define

$$N: \mathbb{Z}[i] \to \mathbb{Z}_{\geq 0}$$
 by $a + bi \mapsto a^2 + b^2$.

Define

$$\begin{split} N:\mathbb{Z}[i] \to \mathbb{Z}_{\geqslant 0} \quad \text{by} \quad a+bi \mapsto a^2+b^2. \end{split}$$
 Proposition. For $\alpha, \beta \in \mathbb{Z}[i]$, we have $N(\alpha\beta) = N(\alpha)N(\beta). \end{split}$

Define

$$N: \mathbb{Z}[i] \to \mathbb{Z}_{\geqslant 0} \quad \text{by} \quad a+bi \mapsto a^2+b^2.$$

Proposition. For $\alpha, \beta \in \mathbb{Z}[i]$, we have

$$N(\alpha\beta) = N(\alpha)N(\beta).$$

Back to units: If α is a unit, then there is some β for which $\alpha\beta=1.$

Define

$$N: \mathbb{Z}[i] \to \mathbb{Z}_{\geqslant 0} \quad \text{by} \quad a+bi \mapsto a^2+b^2.$$

Proposition. For $\alpha, \beta \in \mathbb{Z}[i]$, we have

$$N(\alpha\beta) = N(\alpha)N(\beta).$$

Back to units: If α is a unit, then there is some β for which $\alpha\beta=1. \mbox{ So} 1=N(1)$

Define

$$N: \mathbb{Z}[i] \to \mathbb{Z}_{\geqslant 0} \quad \text{by} \quad a+bi \mapsto a^2+b^2.$$

Proposition. For $\alpha, \beta \in \mathbb{Z}[i]$, we have

$$N(\alpha\beta) = N(\alpha)N(\beta).$$

Back to units: If α is a unit, then there is some β for which $\alpha\beta=1.$ So

$$1 = N(1) = N(\alpha\beta)$$

Define

$$N: \mathbb{Z}[i] \to \mathbb{Z}_{\geqslant 0} \quad \text{by} \quad a+bi \mapsto a^2+b^2.$$

Proposition. For $\alpha, \beta \in \mathbb{Z}[i]$, we have

$$N(\alpha\beta) = N(\alpha)N(\beta).$$

Back to units: If α is a unit, then there is some β for which $\alpha\beta=1.$ So

$$1 = N(1) = N(\alpha\beta) = N(\alpha)N(\beta).$$

Define

$$N: \mathbb{Z}[i] \to \mathbb{Z}_{\geqslant 0} \quad \text{by} \quad a+bi \mapsto a^2+b^2.$$

Proposition. For $\alpha, \beta \in \mathbb{Z}[i]$, we have

$$N(\alpha\beta) = N(\alpha)N(\beta).$$

Back to units: If α is a unit, then there is some β for which $\alpha\beta=1.$ So

$$1 = N(1) = N(\alpha\beta) = N(\alpha)N(\beta).$$
 So $N(\alpha) = N(\beta) = 1.$

Define

$$N: \mathbb{Z}[i] \to \mathbb{Z}_{\geqslant 0} \quad \text{by} \quad a+bi \mapsto a^2+b^2.$$

Proposition. For $\alpha, \beta \in \mathbb{Z}[i]$, we have

$$N(\alpha\beta) = N(\alpha)N(\beta).$$

Back to units: If α is a unit, then there is some β for which $\alpha\beta=1.$ So

$$1 = N(1) = N(\alpha\beta) = N(\alpha)N(\beta).$$

So $N(\alpha) = N(\beta) = 1$. What are integer solutions to $a^2 + b^2 = 1$?

Define

$$N: \mathbb{Z}[i] \to \mathbb{Z}_{\geqslant 0} \quad \text{by} \quad a+bi \mapsto a^2+b^2.$$

Proposition. For $\alpha, \beta \in \mathbb{Z}[i]$, we have

$$N(\alpha\beta) = N(\alpha)N(\beta).$$

Back to units: If α is a unit, then there is some β for which $\alpha\beta=1$. So

$$1 = N(1) = N(\alpha\beta) = N(\alpha)N(\beta).$$

So $N(\alpha) = N(\beta) = 1$. What are integer solutions to $a^2 + b^2 = 1$?

Theorem The units in $\mathbb{Z}[i]$ are $\{\pm 1, \pm i\}$.

$$N: \mathbb{Z}[i] \to \mathbb{Z}_{\geq 0}$$
 by $a + bi \mapsto a^2 + b^2$.

For $\alpha, \beta \in \mathbb{Z}[i]$, we have $N(\alpha\beta) = N(\alpha)N(\beta)$. Back to primes: Is 2 prime in $\mathbb{Z}[i]$?

$$N : \mathbb{Z}[i] \to \mathbb{Z}_{\geq 0}$$
 by $a + bi \mapsto a^2 + b^2$.
For $\alpha, \beta \in \mathbb{Z}[i]$, we have $N(\alpha\beta) = N(\alpha)N(\beta)$.
Back to primes: Is 2 prime in $\mathbb{Z}[i]$?
Suppose we have

$$(a+bi)(c+di) = 2.$$

$$N : \mathbb{Z}[i] \to \mathbb{Z}_{\geq 0}$$
 by $a + bi \mapsto a^2 + b^2$.
For $\alpha, \beta \in \mathbb{Z}[i]$, we have $N(\alpha\beta) = N(\alpha)N(\beta)$.
Back to primes: Is 2 prime in $\mathbb{Z}[i]$?
Suppose we have

$$(a+bi)(c+di) = 2.$$

Taking \boldsymbol{N} of both sides, we get

$$(a^2 + b^2)(c^2 + d^2) = 4.$$

$$N : \mathbb{Z}[i] \to \mathbb{Z}_{\geq 0}$$
 by $a + bi \mapsto a^2 + b^2$.
For $\alpha, \beta \in \mathbb{Z}[i]$, we have $N(\alpha\beta) = N(\alpha)N(\beta)$.
Back to primes: Is 2 prime in $\mathbb{Z}[i]$?
Suppose we have

$$(a+bi)(c+di) = 2.$$

Taking \boldsymbol{N} of both sides, we get

$$(a^2 + b^2)(c^2 + d^2) = 4.$$

$$a2 + b2 = 1$$

$$a2 + b2 = 2$$

$$a2 + b2 = 4$$

$$N: \mathbb{Z}[i] \to \mathbb{Z}_{\geqslant 0} \quad \text{by} \quad a + bi \mapsto a^2 + b^2.$$

For $\alpha, \beta \in \mathbb{Z}[i]$, we have $N(\alpha\beta) = N(\alpha)N(\beta)$.
Back to primes: Is 2 prime in $\mathbb{Z}[i]$?
Suppose we have

$$(a+bi)(c+di) = 2.$$

Taking \boldsymbol{N} of both sides, we get

$$(a^2 + b^2)(c^2 + d^2) = 4.$$

$$a^2+b^2=1$$
: In this case, $a+bi$ is a unit, $a^2+b^2=2$ $a^2+b^2=4$

$$N: \mathbb{Z}[i] \to \mathbb{Z}_{\geq 0} \quad \text{by} \quad a + bi \mapsto a^2 + b^2.$$

For $\alpha, \beta \in \mathbb{Z}[i]$, we have $N(\alpha\beta) = N(\alpha)N(\beta)$.
Back to primes: Is 2 prime in $\mathbb{Z}[i]$?

Suppose we have

$$(a+bi)(c+di) = 2.$$

Taking \boldsymbol{N} of both sides, we get

$$(a^2 + b^2)(c^2 + d^2) = 4.$$

$$a^2 + b^2 = 1$$
: In this case, $a + bi$ is a unit.
 $a^2 + b^2 = 2$
 $a^2 + b^2 = 4$: In this case, $c + di$ is a unit.

For

$$N: \mathbb{Z}[i] \to \mathbb{Z}_{\geqslant 0} \quad \text{by} \quad a + bi \mapsto a^2 + b^2.$$

For $\alpha, \beta \in \mathbb{Z}[i]$, we have $N(\alpha\beta) = N(\alpha)N(\beta)$.
Back to primes: Is 2 prime in $\mathbb{Z}[i]$?

Suppose we have

$$(a+bi)(c+di) = 2.$$

Taking N of both sides, we get

$$(a^2 + b^2)(c^2 + d^2) = 4.$$

$$a^2 + b^2 = 1$$
: In this case, $a + bi$ is a unit.
 $a^2 + b^2 = 2$: Potentially nontrivial factors?
 $a^2 + b^2 = 4$: In this case, $c + di$ is a unit.

$$N: \mathbb{Z}[i] \to \mathbb{Z}_{\geq 0} \quad \text{by} \quad a + bi \mapsto a^2 + b^2.$$

For $\alpha, \beta \in \mathbb{Z}[i]$, we have $N(\alpha\beta) = N(\alpha)N(\beta)$.
Back to primes: Is 2 prime in $\mathbb{Z}[i]$?

Suppose we have

$$(a+bi)(c+di) = 2.$$

Taking N of both sides, we get

$$(a^2 + b^2)(c^2 + d^2) = 4.$$

Possibilities:

 $a^2 + b^2 = 1$: In this case, a + bi is a unit. $a^2 + b^2 = 2$: Potentially nontrivial factors? $a^2 + b^2 = 4$: In this case, c + di is a unit.

Are there non-trivial solutions to $a^2 + b^2 = 2$?

$$N: \mathbb{Z}[i] \to \mathbb{Z}_{\geqslant 0} \quad \text{by} \quad a + bi \mapsto a^2 + b^2.$$
 For $\alpha, \beta \in \mathbb{Z}[i]$, we have $N(\alpha\beta) = N(\alpha)N(\beta)$.

Back to primes: Is 2 prime in $\mathbb{Z}[i]$? Suppose we have

$$(a+bi)(c+di) = 2.$$

Taking N of both sides, we get

$$(a^2 + b^2)(c^2 + d^2) = 4.$$

Possibilities:

$$a^2 + b^2 = 1$$
: In this case, $a + bi$ is a unit.
 $a^2 + b^2 = 2$: Potentially nontrivial factors?
 $a^2 + b^2 = 4$: In this case, $c + di$ is a unit.

Are there non-trivial solutions to $a^2 + b^2 = 2$? Yes! For example, 1 + i.

$$N:\mathbb{Z}[i]\to\mathbb{Z}_{\geqslant 0}\quad\text{by}\quad a+bi\mapsto a^2+b^2.$$
 For $\alpha,\beta\in\mathbb{Z}[i],$ we have $N(\alpha\beta)=N(\alpha)N(\beta).$

Back to primes: Is 2 prime in $\mathbb{Z}[i]$? Suppose we have

$$(a+bi)(c+di) = 2.$$

Taking N of both sides, we get

$$(a^2 + b^2)(c^2 + d^2) = 4.$$

Possibilities:

$$a^2 + b^2 = 1$$
: In this case, $a + bi$ is a unit.
 $a^2 + b^2 = 2$: Potentially nontrivial factors?
 $a^2 + b^2 = 4$: In this case, $c + di$ is a unit.

Are there non-trivial solutions to $a^2 + b^2 = 2$? Yes! For example, 1 + i. Does 1 + i divide 2?

$$N:\mathbb{Z}[i]\to\mathbb{Z}_{\geqslant 0}\quad\text{by}\quad a+bi\mapsto a^2+b^2.$$
 For $\alpha,\beta\in\mathbb{Z}[i],$ we have $N(\alpha\beta)=N(\alpha)N(\beta).$

Back to primes: Is 2 prime in $\mathbb{Z}[i]$? Suppose we have

$$(a+bi)(c+di) = 2.$$

Taking N of both sides, we get

$$(a^2 + b^2)(c^2 + d^2) = 4.$$

Possibilities:

$$a^2 + b^2 = 1$$
: In this case, $a + bi$ is a unit.
 $a^2 + b^2 = 2$: Potentially nontrivial factors?
 $a^2 + b^2 = 4$: In this case, $c + di$ is a unit.

Are there non-trivial solutions to $a^2 + b^2 = 2$? Yes! For example, 1 + i. Does 1 + i divide 2? Compute:

$$\frac{2}{1+i}$$

$$N:\mathbb{Z}[i]\to\mathbb{Z}_{\geqslant 0}\quad\text{by}\quad a+bi\mapsto a^2+b^2.$$
 For $\alpha,\beta\in\mathbb{Z}[i],$ we have $N(\alpha\beta)=N(\alpha)N(\beta).$

Back to primes: Is 2 prime in $\mathbb{Z}[i]$? Suppose we have

$$(a+bi)(c+di) = 2.$$

Taking N of both sides, we get

$$(a^2 + b^2)(c^2 + d^2) = 4.$$

Possibilities:

$$a^2 + b^2 = 1$$
: In this case, $a + bi$ is a unit.
 $a^2 + b^2 = 2$: Potentially nontrivial factors?
 $a^2 + b^2 = 4$: In this case, $c + di$ is a unit.

Are there non-trivial solutions to $a^2 + b^2 = 2$? Yes! For example, 1 + i. Does 1 + i divide 2? Compute:

$$\frac{2}{1+i} = \frac{2(1-i)}{2}$$

$$N: \mathbb{Z}[i] \to \mathbb{Z}_{\geq 0} \quad \text{by} \quad a + bi \mapsto a^2 + b^2.$$

For $\alpha, \beta \in \mathbb{Z}[i]$, we have $N(\alpha\beta) = N(\alpha)N(\beta)$.

Back to primes: Is 2 prime in $\mathbb{Z}[i]$? Suppose we have

(a+bi)(c+di) = 2.

Taking N of both sides, we get

$$(a^2 + b^2)(c^2 + d^2) = 4.$$

Possibilities:

 $a^2 + b^2 = 1$: In this case, a + bi is a unit. $a^2 + b^2 = 2$: Potentially nontrivial factors? $a^2 + b^2 = 4$: In this case, c + di is a unit.

Are there non-trivial solutions to $a^2 + b^2 = 2$? Yes! For example, 1 + i. Does 1 + i divide 2? Compute:

$$\frac{2}{1+i} = \frac{2(1-i)}{2} = 1-i.$$

$$N: \mathbb{Z}[i] \to \mathbb{Z}_{\geq 0} \quad \text{by} \quad a + bi \mapsto a^2 + b^2.$$
 For $\alpha, \beta \in \mathbb{Z}[i]$, we have $N(\alpha\beta) = N(\alpha)N(\beta)$.

Back to primes: Is 2 prime in $\mathbb{Z}[i]$? Suppose we have

$$(a+bi)(c+di) = 2.$$

Taking N of both sides, we get

$$(a^2 + b^2)(c^2 + d^2) = 4.$$

Possibilities:

$$a^2 + b^2 = 1$$
: In this case, $a + bi$ is a unit.
 $a^2 + b^2 = 2$: Potentially nontrivial factors?
 $a^2 + b^2 = 4$: In this case, $c + di$ is a unit.

Are there non-trivial solutions to $a^2 + b^2 = 2$? Yes! For example, 1 + i. Does 1 + i divide 2? Compute:

$$\frac{2}{1+i} = \frac{2(1-i)}{2} = 1-i.$$

So since 1 + i isn't a unit, nor is it a unit multiple of 2, we have 2 is not prime in $\mathbb{Z}[i]!!$

Let p be an odd prime. Then there are integers a, b satisfying

$$a^2 + b^2 = p$$

if and only if $p \equiv_4 1$.

Let p be an odd prime. Then there are integers a, b satisfying

$$a^2 + b^2 = p$$

if and only if $p \equiv_4 1$.

Proof. Show $a^2 + b^2 = p$ implies $p \equiv_4 1$ by direct computation. For the reverse, see Ch. 24. \Box

Let p be an odd prime. Then there are integers a, b satisfying

$$a^2 + b^2 = p$$

if and only if $p \equiv_4 1$.

Proof. Show $a^2 + b^2 = p$ implies $p \equiv_4 1$ by direct computation. For the reverse, see Ch. 24. \Box

Ex. There are no integer solutions to $a^2 + b^2 = 3$. So, using the same idea as last time, suppose we have

$$(a+bi)(c+di) = 3.$$

Let p be an odd prime. Then there are integers a, b satisfying

$$a^2 + b^2 = p$$

if and only if $p \equiv_4 1$.

Proof. Show $a^2 + b^2 = p$ implies $p \equiv_4 1$ by direct computation. For the reverse, see Ch. 24. \Box

Ex. There are no integer solutions to $a^2 + b^2 = 3$. So, using the same idea as last time, suppose we have

$$(a+bi)(c+di) = 3.$$

Taking N of both sides, we get

$$(a^2 + b^2)(c^2 + d^2) = 9.$$

Let p be an odd prime. Then there are integers a, b satisfying

$$a^2 + b^2 = p$$

if and only if $p \equiv_4 1$.

Proof. Show $a^2 + b^2 = p$ implies $p \equiv_4 1$ by direct computation. For the reverse, see Ch. 24. \Box

Ex. There are no integer solutions to $a^2 + b^2 = 3$. So, using the same idea as last time, suppose we have

$$(a+bi)(c+di) = 3.$$

Taking N of both sides, we get

$$(a^2 + b^2)(c^2 + d^2) = 9.$$

$$a2 + b2 = 1$$

$$a2 + b2 = 3$$

$$a2 + b2 = 9$$

Let p be an odd prime. Then there are integers a, b satisfying

$$a^2 + b^2 = p$$

if and only if $p \equiv_4 1$.

Proof. Show $a^2 + b^2 = p$ implies $p \equiv_4 1$ by direct computation. For the reverse, see Ch. 24. \Box

Ex. There are no integer solutions to $a^2 + b^2 = 3$. So, using the same idea as last time, suppose we have

$$(a+bi)(c+di) = 3.$$

Taking N of both sides, we get

$$(a^2 + b^2)(c^2 + d^2) = 9.$$

$$a^2 + b^2 = 1$$
: In this case, $a + bi$ is a unit.
 $a^2 + b^2 = 3$
 $a^2 + b^2 = 9$

Let p be an odd prime. Then there are integers a, b satisfying

$$a^2 + b^2 = p$$

if and only if $p \equiv_4 1$.

Proof. Show $a^2 + b^2 = p$ implies $p \equiv_4 1$ by direct computation. For the reverse, see Ch. 24. \Box

Ex. There are no integer solutions to $a^2 + b^2 = 3$. So, using the same idea as last time, suppose we have

$$(a+bi)(c+di) = 3.$$

Taking N of both sides, we get

$$(a^2 + b^2)(c^2 + d^2) = 9.$$

$$a^2 + b^2 = 1$$
: In this case, $a + bi$ is a unit.
 $a^2 + b^2 = 3$
 $a^2 + b^2 = 9$: In this case, $c + di$ is a unit.

Let p be an odd prime. Then there are integers a, b satisfying

$$a^2 + b^2 = p$$

if and only if $p \equiv_4 1$.

Proof. Show $a^2 + b^2 = p$ implies $p \equiv_4 1$ by direct computation. For the reverse, see Ch. 24. \Box

Ex. There are no integer solutions to $a^2 + b^2 = 3$. So, using the same idea as last time, suppose we have

$$(a+bi)(c+di) = 3.$$

Taking N of both sides, we get

$$(a^2 + b^2)(c^2 + d^2) = 9.$$

$$a^2 + b^2 = 1$$
: In this case, $a + bi$ is a unit.
 $a^2 + b^2 = 3$: No solutions.
 $a^2 + b^2 = 9$: In this case, $c + di$ is a unit.

Let p be an odd prime. Then there are integers a, b satisfying

$$a^2 + b^2 = p$$

if and only if $p \equiv_4 1$.

Proof. Show $a^2 + b^2 = p$ implies $p \equiv_4 1$ by direct computation. For the reverse, see Ch. 24. \Box

Ex. There are no integer solutions to $a^2 + b^2 = 3$. So, using the same idea as last time, suppose we have

$$(a+bi)(c+di) = 3.$$

Taking N of both sides, we get

$$(a^2 + b^2)(c^2 + d^2) = 9.$$

$$a^2 + b^2 = 1$$
: In this case, $a + bi$ is a unit.
 $a^2 + b^2 = 3$: No solutions.
 $a^2 + b^2 = 9$: In this case, $c + di$ is a unit.
So 3 is a prime in $\mathbb{Z}[i]$.

Looking for primes so far:

1. If $n \in \mathbb{Z}$ is composite in \mathbb{Z} , then it is composite in $\mathbb{Z}[i]$.

Looking for primes so far:

- 1. If $n \in \mathbb{Z}$ is composite in \mathbb{Z} , then it is composite in $\mathbb{Z}[i]$.
- 2. If $p \in \mathbb{Z}$ is prime in \mathbb{Z} , then either

(a) p = 2, which is not prime in $\mathbb{Z}[i]$; (we checked)

Looking for primes so far:

- 1. If $n \in \mathbb{Z}$ is composite in \mathbb{Z} , then it is composite in $\mathbb{Z}[i]$.
- 2. If $p \in \mathbb{Z}$ is prime in \mathbb{Z} , then either

(a) p = 2, which is not prime in $\mathbb{Z}[i]$; (we checked)

(b) $p \equiv_4 -1$, in which case p is prime in $\mathbb{Z}[i]$; (prove using norms)

Looking for primes so far:

1. If $n \in \mathbb{Z}$ is composite in \mathbb{Z} , then it is composite in $\mathbb{Z}[i]$.

2. If
$$p \in \mathbb{Z}$$
 is prime in \mathbb{Z} , then either

(a) p = 2, which is not prime in $\mathbb{Z}[i]$; (we checked) (b) $p \equiv_4 -1$, in which case p is prime in $\mathbb{Z}[i]$; (prove using norms) (c) $p \equiv_4 1$, in which case there are $a, b \in \mathbb{Z}$ with $a^2 + b^2 = p$

Looking for primes so far:

1. If $n \in \mathbb{Z}$ is composite in \mathbb{Z} , then it is composite in $\mathbb{Z}[i]$.

2. If
$$p \in \mathbb{Z}$$
 is prime in \mathbb{Z} , then either

Looking for primes so far:

1. If $n \in \mathbb{Z}$ is composite in \mathbb{Z} , then it is composite in $\mathbb{Z}[i]$.

2. If
$$p \in \mathbb{Z}$$
 is prime in \mathbb{Z} , then either

$$(a+ib)(a-ib) = a^2 + b^2$$

Looking for primes so far:

1. If $n \in \mathbb{Z}$ is composite in \mathbb{Z} , then it is composite in $\mathbb{Z}[i]$.

2. If
$$p \in \mathbb{Z}$$
 is prime in \mathbb{Z} , then either

(a) p = 2, which is not prime in Z[i]; (we checked)
(b) p ≡₄ -1, in which case p is prime in Z[i]; (prove using norms)
(c) p ≡₄ 1, in which case there are a, b ∈ Z with a² + b² = p, so that a + ib ≠ u, pu for any unit u and

$$(a+ib)(a-ib) = a^2 + b^2 = p$$

Looking for primes so far:

1. If $n \in \mathbb{Z}$ is composite in \mathbb{Z} , then it is composite in $\mathbb{Z}[i]$.

2. If
$$p \in \mathbb{Z}$$
 is prime in \mathbb{Z} , then either

(a) p = 2, which is not prime in Z[i]; (we checked)
(b) p ≡₄ -1, in which case p is prime in Z[i]; (prove using norms)
(c) p ≡₄ 1, in which case there are a, b ∈ Z with a² + b² = p, so that a + ib ≠ u, pu for any unit u and

$$(a+ib)(a-ib) = a^2 + b^2 = p,$$

i.e. p is not prime in $\mathbb{Z}[i]$.

Looking for primes so far:

1. If $n \in \mathbb{Z}$ is composite in \mathbb{Z} , then it is composite in $\mathbb{Z}[i]$.

2. If
$$p \in \mathbb{Z}$$
 is prime in \mathbb{Z} , then either

(a) p = 2, which is not prime in Z[i]; (we checked)
(b) p ≡₄ -1, in which case p is prime in Z[i]; (prove using norms)
(c) p ≡₄ 1, in which case there are a, b ∈ Z with a² + b² = p, so that a + ib ≠ u, pu for any unit u and (a + ib)(a - ib) = a² + b² = p,

i.e. p is not prime in $\mathbb{Z}[i]$.

Proposition

An integer n is prime in $\mathbb{Z}[i]$ if and only if n is a prime in \mathbb{Z} satisfying $n \equiv_4 1$.

Looking for primes so far:

1. If $n \in \mathbb{Z}$ is composite in \mathbb{Z} , then it is composite in $\mathbb{Z}[i]$.

2. If
$$p \in \mathbb{Z}$$
 is prime in \mathbb{Z} , then either

(a) p = 2, which is not prime in Z[i]; (we checked)
(b) p ≡₄ -1, in which case p is prime in Z[i]; (prove using norms)
(c) p ≡₄ 1, in which case there are a, b ∈ Z with a² + b² = p, so that a + ib ≠ u, pu for any unit u and (a + ib)(a - ib) = a² + b² = p,

i.e. p is not prime in $\mathbb{Z}[i]$.

Proposition

An integer n is prime in $\mathbb{Z}[i]$ if and only if n is a prime in \mathbb{Z} satisfying $n \equiv_4 1$.

Are there any more?

Theorem (Gaussian Prime Theorem)

The Gaussian primes can be described as follows:

- (i) (ramified) 1 + i is a Gaussian prime.
- (ii) (inert) Let p be a prime in \mathbb{Z} with $p \equiv -1 \pmod{4}$. Then p is a Gaussian prime.
- (iii) (split) Let p be a prime in \mathbb{Z} with $p \equiv 1 \pmod{4}$. Then $p = a^2 + b^2$ for $a, b \in \mathbb{Z}_{>0}$, and a + bi is a Gaussian prime.

Moreover, every Gaussian prime is equal to a unit times a Gaussian prime of the form (i), (ii), or (iii).

We can also use $N(\alpha)$ to find divisors of α .

Lemma (Gaussian Divisibility Lemma)

Let $\alpha \in \mathbb{Z}[i]$.

- (a) If 2 divides $N(\alpha)$ in \mathbb{Z} , then 1 + i divides α in $\mathbb{Z}[i]$.
- (b) Let p be (an inert) prime, and suppose that p divides N(α) in Z. Then p divides α in Z[i].
- (c) Let $\pi = u + vi$ be a split, and let $\overline{\pi} = u vi$. If $N(\pi)$ divides $N(\alpha)$ in \mathbb{Z} , then at least one of π or $\overline{\pi}$ divides α in $\mathbb{Z}[i]$.

We can also use $N(\alpha)$ to find divisors of α .

Lemma (Gaussian Divisibility Lemma)

Let $\alpha \in \mathbb{Z}[i]$.

- (a) If 2 divides $N(\alpha)$ in \mathbb{Z} , then 1 + i divides α in $\mathbb{Z}[i]$.
- (b) Let p be (an inert) prime, and suppose that p divides N(α) in Z. Then p divides α in Z[i].
- (c) Let $\pi = u + vi$ be a split, and let $\overline{\pi} = u vi$. If $N(\pi)$ divides $N(\alpha)$ in \mathbb{Z} , then at least one of π or $\overline{\pi}$ divides α in $\mathbb{Z}[i]$.

To be clear:

a divides b in \mathbb{Z} if there is a $k \in \mathbb{Z}$ such that ak = b. α divides β in $\mathbb{Z}[i]$ if there is a $\gamma \in \mathbb{Z}[i]$ such that $\alpha \gamma = \beta$.