Chapter 35: Number Theory and Imaginary Numbers

Let $i=\sqrt{-1}$. Then

$$
\mathbb{C}=\{a+b i \mid a, b \in \mathbb{R}\} .
$$

addition:

$$
(a+b i)+(c+d i)=(a+c)+(b+d) i
$$

multiplication:
$(a+b i) *(c+d i)=a c+a d i+c b i+b d(i)^{2}=(a c-b d)+(a d+b c) i$
division:

$$
\begin{aligned}
\frac{a+b i}{c+d i} & =\frac{(a+b i)(c-d i)}{(c+d i)(c-d i)} \\
& =\frac{(a c+b d)+(b c-a d) i}{c^{2}+d^{2}} \\
& =\left(\frac{a c+b d}{c^{2}+d^{2}}\right)+\left(\frac{b c-a d}{c^{2}+d^{2}}\right) i
\end{aligned}
$$

Try: Compute $(2+3 i)^{3},(2+3 i)(-1+4 i), \frac{2+3 i}{-1+4 i}$, and $\frac{5-i}{1+2 i}$.

Galois integers:

$$
\mathbb{Z}[i]=\{a+b i \mid a, b \in \mathbb{Z}\} \subseteq \mathbb{C}
$$

For $a+b i, c+d i \in \mathbb{Z}[i] \ldots$
addition:

$$
(a+b i)+(c+d i)=(a+c)+(b+d) i \in \mathbb{Z}[x] \checkmark
$$

multiplication:

$$
(a+b i) *(c+d i)=(a c-b d)+(a d+b c) i \in \mathbb{Z}[x] \checkmark
$$

division:

$$
\frac{a+b i}{c+d i}=\left(\frac{a c+b d}{c^{2}+d^{2}}\right)+\left(\frac{b c-a d}{c^{2}+d^{2}}\right) i
$$

not always in $\mathbb{Z}[i]$!
For $m, n \in \mathbb{Z}[i]$, we say m divides n if there is some $k \in \mathbb{Z}[i]$ such that $m k=n$.

Factorization.

Every integer $n \geqslant 2$ has a unique factorization into primes. (Up to rearrangement of prime factors!)
Every integer $n \neq 0$ has a unique factorization into primes, up to multiplication by units:

$$
n=(-1)^{k} p_{1}^{r_{1}} \cdots p_{\ell}^{r_{\ell}}
$$

with primes $p_{1}<p_{2}<\cdots<p_{\ell}$, and k unique up to parity. (Recall: a unit is a divisor of 1 ; i.e. a number that has a multiplicative inverse.)
Ex. $\quad 10=2 \cdot 5=(-1)^{2} \cdot 2 \cdot 5=(-1)^{4} \cdot 2 \cdot 5=\cdots$.
Units in $\mathbb{Z}[i]: 1,-1, i,-i, \ldots$ More? Solve

$$
(a+b i) *(c+d i)=1+0 i
$$

namely

$$
a c-b d=1 \quad \text { and } \quad a d+b c=0 .
$$

We'll show there are no more solutions momentarily.

Units in $\mathbb{Z}[i]: \pm 1, \pm i$.
Primes in $\mathbb{Z}[i]$? For any $\alpha \in \mathbb{Z}[i]$, we have

$$
\alpha=1 \cdot \alpha=(-1)(-\alpha)=i(-i \alpha)=(-i)(i \alpha)
$$

so $\pm 1, \pm i, \pm \alpha$, and $\pm i \alpha$ all "divide" α.
We say $\beta \in \mathbb{Z}[i]$ is prime if the only divisors of β are of the form u or $u \beta$, where u is a unit.
How do we compute primes?

Draw $\mathbb{Z}[i]$ in the complex plane as a lattice of points:

Draw $\mathbb{Z}[i]$ in the complex plane as a lattice of points:

Define

$$
N: \mathbb{Z}[i] \rightarrow \mathbb{Z}_{\geqslant 0} \quad \text { by } \quad a+b i \mapsto a^{2}+b^{2},
$$

so that $r=\sqrt{N(a+b i)}$. Also

$$
\frac{a+b i}{c+d i}=\left(\frac{a c+b d}{N(c+d i)}\right)+\left(\frac{b c-a d}{N(c+d i)}\right) i .
$$

We call N a norm of $\mathbb{Z}[i]$.

Define

$$
N: \mathbb{Z}[i] \rightarrow \mathbb{Z}_{\geqslant 0} \quad \text { by } \quad a+b i \mapsto a^{2}+b^{2} .
$$

Claim: For $\alpha, \beta \in \mathbb{Z}[i]$, we have

$$
N(\alpha \beta)=N(\alpha) N(\beta)
$$

Back to units: If α is a unit, then there is some β for which $\alpha \beta=1$. So

$$
1=N(1)=N(\alpha \beta)=N(\alpha) N(\beta) .
$$

So $N(\alpha)=N(\beta)=1$. What are integer solutions to $a^{2}+b^{2}=1$?

Theorem
The units in $\mathbb{Z}[i]$ are $\{ \pm 1, \pm i\}$.

Define

$$
N: \mathbb{Z}[i] \rightarrow \mathbb{Z}_{\geqslant 0} \quad \text { by } \quad a+b i \mapsto a^{2}+b^{2} .
$$

For $\alpha, \beta \in \mathbb{Z}[i]$, we have $N(\alpha \beta)=N(\alpha) N(\beta)$.
Back to primes: Is 2 prime in $\mathbb{Z}[i]$?
Suppose we have

$$
(a+b i)(c+d i)=2 .
$$

Taking N of both sides, we get

$$
\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)=4
$$

Possibilities:
$a^{2}+b^{2}=1$: In this case, $a+b i$ is a unit.
$a^{2}+b^{2}=2$: Potentially nontrivial factors?
$a^{2}+b^{2}=4$: In this case, $c+d i$ is a unit.
Are there non-trivial solutions to $a^{2}+b^{2}=2$? Yes! For example, $1+i$. Does $1+i$ divide 2? Compute:

$$
\frac{2}{1+i}=\frac{2(1-i)}{2}=1-i .
$$

So since $1+i$ isn't a unit, nor is it a unit multiple of 2 , we have 2 is not prime in $\mathbb{Z}[i]!$!

Theorem

Let p be an odd prime. Then there are integers a, b satisfying

$$
a^{2}+b^{2}=p
$$

if and only if $p \equiv_{4} 1$.
Proof. Show $a^{2}+b^{2}=p$ implies $p \equiv{ }_{4} 1$ by direct computation.
For the reverse, see Ch. 24.
Ex. There are no integer solutions to $a^{2}+b^{2}=3$. So, using the same idea as last time, suppose we have

$$
(a+b i)(c+d i)=3
$$

Taking N of both sides, we get

$$
\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)=9
$$

Possibilities:

$$
\begin{aligned}
& a^{2}+b^{2}=1: \text { In this case, } a+b i \text { is a unit. } \\
& a^{2}+b^{2}=3: \text { No solutions. } \\
& a^{2}+b^{2}=9: \text { In this case, } c+d i \text { is a unit. }
\end{aligned}
$$

So 3 is a prime in $\mathbb{Z}[i]$.

We say $\beta \in \mathbb{Z}[i]$ is prime if the only divisors of β are of the form u or $u \beta$, where u is a unit (one of $\{ \pm 1, \pm i\}$).
Looking for primes so far:

1. If $n \in \mathbb{Z}$ is composite in \mathbb{Z}, then it is composite in $\mathbb{Z}[i]$.
2. If $p \in \mathbb{Z}$ is prime in \mathbb{Z}, then either
(a) $p=2$, which is not prime in $\mathbb{Z}[i]$; (we checked)
(b) $p \equiv{ }_{4}-1$, in which case p is prime in $\mathbb{Z}[i]$; (prove using norms)
(c) $p \equiv{ }_{4} 1$, in which case there are $a, b \in \mathbb{Z}$ with $a^{2}+b^{2}=p$, so that $a+i b \neq u, p u$ for any unit u and

$$
(a+i b)(a-i b)=a^{2}+b^{2}=p,
$$

i.e. p is not prime in $\mathbb{Z}[i]$.

Proposition

An integer n is prime in $\mathbb{Z}[i]$ if and only if n is a prime in \mathbb{Z} satisfying $n \equiv{ }_{4} 1$.
Are there any more?

Theorem (Gaussian Prime Theorem)

The Gaussian primes can be described as follows:
(i) (ramified) $1+i$ is a Gaussian prime.
(ii) (inert) Let p be a prime in \mathbb{Z} with $p \equiv-1(\bmod 4)$. Then p is a Gaussian prime.
(iii) (split) Let p be a prime in \mathbb{Z} with $p \equiv 1(\bmod 4)$. Then $p=a^{2}+b^{2}$ for $a, b \in \mathbb{Z}_{>0}$, and $a+b i$ is a Gaussian prime.
Moreover, every Gaussian prime is equal to a unit times a Gaussian prime of the form (i), (ii), or (iii).

