Using logarithms to do computations

Fix p = 37. Then 2 is a primitive root.

The discrete logarithm values are given by the following.
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Example: Use the logarithm table to compute the following

(mod 37):

(1) 25-16

(2) 2832
(4) x satisfying 20z = 3

(3)9°!
(5) 3230 =4
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Chapter 35: Number Theory and Imaginary Numbers
Let i = 4/—1. Then
C={a+bi|abeR}.
addition:
(a+bi)+ (c+di)=(a+c)+ (b+d)i
multiplication:
(a + bi) * (¢ + di) = ac + adi + cbi + bd(i)*> = (ac — bd) + (ad + be)i
division:
a+bi (a+bi)(c—di)
c+di (c+di)(c— di)
(ac + bd) + (be — ad)i
B c2 + d?

ac + bd N bec—ad .
= — — |2
c + d? c? + d?
2+ 3t 5—1
-, an T
—1+4: 1+ 2

Try: Compute (2 + 3i)3, (2 + 3i)(—1 + 4i),
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Galois integers:

Zli] ={a+bi|a,beZ} < C.
For a + bi,c + di € Z][1]. ..
addition:

(a+bi)+ (c+di) =(a+c)+ (b+d)ie Zx]v
multiplication:
(a+bi) = (c+di) = (ac — bd) + (ad + be)i € Z[z]|v

a+b2’_ ac + bd N bc — ad ;
c+di  \ 2+ d? c? + d?

not always in Z[i]!

division:

For m,n € Z[i], we say m divides n if there is some k € Z[i] such
that mk = n.
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Factorization.

Every integer n > 2 has a unique factorization into primes.
(Up to rearrangement of prime factors!)

Every integer n # 0 has a unique factorization into primes, up to
multiplication by units:

n= (1)
with primes p; < ps < --- < py, and k unique up to parity.
(Recall: a unit is a divisor of 1; i.e. a number that has a
multiplicative inverse.)

Ex. 10=2-5=(-1)2-2-5=(-1)*.2-5="-.-.
Units in Z[i]: 1, =1, i, —i,...More? Solve
(a+bi) = (c+di) =1+ 01,
namely
ac—bd=1 and ad+bc=0.

We'll show there are no more solutions momentarily.
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Units in Z[i]: +1, +i.

Primes in Z[i]? For any a € Z[i], we have
a=1-a=(-1)(—a) =i(—ia) = (=) (ia)
so +1, 44, +a, and +ia all “divide” a.

We say 3 € Z[i] is prime if the only divisors of 3 are of the form u
or uf3, where u is a unit.

How do we compute primes?
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Draw Z[] in the complex plane as a lattice of points:

2+ 30

34+ .

Define
N :Z[i] - Zso by a+bi— a®+ b
so thatr:\/m. Also
a+bi:< ac + bd >+< bc — ad >
c+di N(c+ di) N(c+ di)

We call N a norm of Z[i].

9
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Define
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Define
N :7Z[i] > Z=o by a+bi—a®+b%
Claim: For «, B € Z][i], we have
N(aB) = N(@)N(B).
Back to units: If « is a unit, then there is some 3 for which
af =1. So
1= N(1) = N(aB) = N(@)N(8).
So N(a) = N(B) = 1. What are integer solutions to a? + b? = 17?

Theorem
The units in Z[i] are {1, +i}.
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N :Z[i] > Zso by a+bi—a®+b>
For a, 5 € Z[i], we have N(af) = N(a)N(B).
Back to primes: Is 2 prime in Z[i]?
Suppose we have
(a+bi)(c+di) = 2.
Taking N of both sides, we get
(a® + b*)(* + d*) = 4.
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a® + b% = 2: Potentially nontrivial factors?
a? + b2 = 4: In this case, ¢ + di is a unit.
Are there non-trivial solutions to a® + b? = 27 Yes! For example,
1+ 4. Does 1 + ¢ divide 2?7 Compute:
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N :Z[i] - Z=o by a+bi— a®+0b%
For a, 5 € Z[i], we have N(af) = N(a)N(B).
Back to primes: Is 2 prime in Z[i]?
Suppose we have
(a+bi)(c+di) = 2.
Taking N of both sides, we get
(a® + b)) (c* + d*) = 4.
Possibilities:
a®? + b% = 1: In this case, a + bi is a unit.
a® + b% = 2: Potentially nontrivial factors?
a? + b2 = 4: In this case, ¢ + di is a unit.
Are there non-trivial solutions to a® + b? = 27 Yes! For example,

1+ 4. Does 1 + ¢ divide 2?7 Compute:
2 2(1 —14)
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Define
N :Z[i] > Zso by a+bi—a®+b>
For a, 5 € Z[i], we have N(af) = N(a)N(B).
Back to primes: Is 2 prime in Z[i]?
Suppose we have
(a+bi)(c+di) = 2.
Taking N of both sides, we get
(a® + b)) (c* + d*) = 4.
Possibilities:
a® +b? = 1: In this case, a + bi is a unit.
a® + b% = 2: Potentially nontrivial factors?
a? + b2 = 4: In this case, ¢ + di is a unit.
Are there non-trivial solutions to a® + b? = 27 Yes! For example,
1+ 4. Does 1 + ¢ divide 2?7 Compute:
2 2(1—1)
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Define
N :Z[i] > Zso by a+bi—a®+b>
For a, 5 € Z[i], we have N(af) = N(a)N(B).
Back to primes: Is 2 prime in Z[i]?
Suppose we have
(a +bi)(c+ di) = 2.
Taking N of both sides, we get
(a® + b)) (c* + d*) = 4.
Possibilities:
a® +b? = 1: In this case, a + bi is a unit.
a® + b% = 2: Potentially nontrivial factors?
a? + b2 = 4: In this case, ¢ + di is a unit.
Are there non-trivial solutions to a” 4+ b?> = 27 Yes! For example,
1+ 4. Does 1 + ¢ divide 2?7 Compute:
2 _20-9) _, .,
1+74 2
So since 1 + i isn't a unit, nor is it a unit multiple of 2, we have 2
is not prime in Z[]!!
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Let p be an odd prime. Then there are integers a, b satisfying

a?+b*=p
if and only if p=41.
Proof. Show a? + b? = p implies p =4 1 by direct computation.
For the reverse, see Ch. 24. O
Ex. There are no integer solutions to a? + b> = 3. So, using the
same idea as last time, suppose we have

(a + bi)(c+ di) = 3.
Taking N of both sides, we get
(a® + ) (2 + d*) = 9.
Possibilities:
a®? 4+ b? = 1: In this case, a + bi is a unit.
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a? + b2 = 9: In this case, ¢ + di is a unit.



Theorem
Let p be an odd prime. Then there are integers a, b satisfying

a?+b*=p
if and only if p=41.
Proof. Show a? + b? = p implies p =4 1 by direct computation.
For the reverse, see Ch. 24. O
Ex. There are no integer solutions to a? + b> = 3. So, using the
same idea as last time, suppose we have

(a + bi)(c+ di) = 3.
Taking N of both sides, we get
(a® + ) (2 + d*) = 9.
Possibilities:
a®? 4+ b? = 1: In this case, a + bi is a unit.
a® + b = 3: No solutions.
a®? + b = 9: In this case, ¢ + di is a unit.

So 3 is a prime in Z[i].
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We say (3 € Z[i] is prime if the only divisors of /3 are of the form u
or uf3, where u is a unit (one of {£1, +i}).

Looking for primes so far:
1. If n € Z is composite in Z, then it is composite in Z[i].
2. If pe Zis prime in Z, then either
(a) p =2, which is not prime in Z[i]; (we checked)
(b) p=4 —1, in which case p is prime in Z[i]; (prove using norms)
(c) p=4 1, in which case there are a,b € Z with a® + b* = p, so
that a + ib # u, pu for any unit uw and

(a+ib)(a —ib) = a® + b = p,

i.e. p is not prime in Z[i].

Proposition

An integer n is prime in Z[i] if and only if n is a prime in Z
satisfying n =4 1.

Are there any more?



Theorem (Gaussian Prime Theorem)
The Gaussian primes can be described as follows:
(i) (ramified) 1 + i is a Gaussian prime.
(ii) (inert) Let p be a prime in Z with p = —1 (mod 4). Then p
is a Gaussian prime.
(i) (split) Let p be a prime in Z with p =1 (mod 4). Then
p=a®+b% fora,be Z~g, and a + bi is a Gaussian prime.

Moreover, every Gaussian prime is equal to a unit times a Gaussian
prime of the form (i), (ii), or (iii).






