
Using logarithms to do computations

Fix p “ 37. Then 2 is a primitive root.

The discrete logarithm values are given by the following.

b 1 2 3 4 5 6 7 8 9

dlog2pbq 36 1 26 2 23 27 32 3 16

b 10 11 12 13 14 15 16 17 18

dlog2pbq 24 30 28 11 33 13 4 7 17

b 19 20 21 22 23 24 25 26 27

dlog2pbq 35 25 22 31 15 29 10 12 6

b 28 29 30 31 32 33 34 35 36

dlog2pbq 34 21 14 9 5 20 8 19 18

Example: Use the logarithm table to compute the following
pmod 37q:

(1) 25 ¨ 16 (2) 2832 (3) 9´1

(4) x satisfying 20x ” 3 (5) 3x30 ” 4



Chapter 35: Number Theory and Imaginary Numbers
Let i “

?
´1.

Then

C “ ta` bi | a, b P Ru.
addition:

pa` biq ` pc` diq “ pa` cq ` pb` dqi

multiplication:

pa` biq ˚ pc` diq “ ac` adi` cbi` bdpiq2 “ pac´ bdq ` pad` bcqi

division:

a` bi

c` di

“
pa` biqpc´ diq

pc` diqpc´ diq

“
pac` bdq ` pbc´ adqi

c2 ` d2

“

ˆ

ac` bd

c2 ` d2

˙

`

ˆ

bc´ ad

c2 ` d2

˙

i

Try: Compute p2` 3iq3, p2` 3iqp´1` 4iq,
2` 3i

´1` 4i
, and

5´ i

1` 2i
.
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Galois integers:

Zris “ ta` bi | a, b P Zu Ď C.

For a` bi, c` di P Zris. . .
addition:

pa` biq ` pc` diq “ pa` cq ` pb` dqi P ZrxsX

multiplication:

pa` biq ˚ pc` diq “ pac´ bdq ` pad` bcqi P ZrxsX

division:
a` bi

c` di
“

ˆ

ac` bd

c2 ` d2

˙

`

ˆ

bc´ ad

c2 ` d2

˙

i

not always in Zris!

For m,n P Zris, we say m divides n if there is some k P Zris such
that mk “ n.
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Factorization.

Every integer n ě 2 has a unique factorization into primes.

(Up to rearrangement of prime factors!)

Every integer n ‰ 0 has a unique factorization into primes, up to
multiplication by units:

n “ p´1qkpr11 ¨ ¨ ¨ p
r`
`

with primes p1 ă p2 ă ¨ ¨ ¨ ă p`, and k unique up to parity.
(Recall: a unit is a divisor of 1; i.e. a number that has a
multiplicative inverse.)

Ex. 10 “ 2 ¨ 5 “ p´1q2 ¨ 2 ¨ 5 “ p´1q4 ¨ 2 ¨ 5 “ ¨ ¨ ¨ .

Units in Zris: 1, ´1, i, ´i,. . . More? Solve

pa` biq ˚ pc` diq “ 1` 0i,

namely

ac´ bd “ 1 and ad` bc “ 0.

We’ll show there are no more solutions momentarily.
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Units in Zris: ˘1, ˘i.

Primes in Zris? For any α P Zris, we have

α “ 1 ¨ α “ p´1qp´αq “ ip´iαq “ p´iqpiαq

so ˘1,˘i, ˘α, and ˘iα all “divide” α.

We say β P Zris is prime if the only divisors of β are of the form u
or uβ, where u is a unit.

How do we compute primes?
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Draw Zris in the complex plane as a lattice of points:

Re

Im

-4

-4

-3

-3

-2

-2

-1

-1

1

1

2

2

3

3

4

4

2` 3i

r

Define

N : Zris Ñ Zě0 by a` bi ÞÑ a2 ` b2,

so that r “
a

Npa` biq. Also

a` bi

c` di
“

ˆ

ac` bd

Npc` diq

˙

`

ˆ

bc´ ad

Npc` diq

˙

i.

We call N a norm of Zris.
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Norm

Define

N : Zris Ñ Zě0 by a` bi ÞÑ a2 ` b2.

Claim: For α, β P Zris, we have

Npαβq “ NpαqNpβq.

Back to units: If α is a unit, then there is some β for which
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Theorem
Let p be an odd prime. Then there are integers a, b satisfying

a2 ` b2 “ p

if and only if p ”4 1.

Proof. Show a2 ` b2 “ p implies p ”4 1 by direct computation.
For the reverse, see Ch. 24. ˝
Ex. There are no integer solutions to a2 ` b2 “ 3. So, using the
same idea as last time, suppose we have

pa` biqpc` diq “ 3.

Taking N of both sides, we get

pa2 ` b2qpc2 ` d2q “ 9.

Possibilities:

a2 ` b2 “ 1

: In this case, a` bi is a unit.

a2 ` b2 “ 3

: No solutions.

a2 ` b2 “ 9

: In this case, c` di is a unit.

So 3 is a prime in Zris.
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We say β P Zris is prime if the only divisors of β are of the form u
or uβ, where u is a unit (one of t˘1,˘iu).

Looking for primes so far:

1. If n P Z is composite in Z, then it is composite in Zris.
2. If p P Z is prime in Z, then either

(a) p “ 2, which is not prime in Zris; (we checked)
(b) p ”4 ´1, in which case p is prime in Zris; (prove using norms)
(c) p ”4 1, in which case there are a, b P Z with a2 ` b2 “ p, so

that a` ib ‰ u, pu for any unit u and

pa` ibqpa´ ibq “ a2 ` b2 “ p,

i.e. p is not prime in Zris.

Proposition

An integer n is prime in Zris if and only if n is a prime in Z
satisfying n ”4 1.

Are there any more?
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Theorem (Gaussian Prime Theorem)

The Gaussian primes can be described as follows:

(i) (ramified) 1 + i is a Gaussian prime.

(ii) (inert) Let p be a prime in Z with p ” ´1 pmod 4q. Then p
is a Gaussian prime.

(iii) (split) Let p be a prime in Z with p ” 1 pmod 4q. Then
p “ a2 ` b2 for a, b P Zą0, and a` bi is a Gaussian prime.

Moreover, every Gaussian prime is equal to a unit times a Gaussian
prime of the form (i), (ii), or (iii).




