Fix n, and let a be an integer with gcd(a, n) = 1. The order of $a \pmod{n}$, written |a| or $|a|_n$, is the smallest k > 0 such that $a^k \equiv 1 \pmod{n}$. (Book: $e_n(a) = |a|_n$)

Fix n, and let a be an integer with gcd(a, n) = 1. The order of $a \pmod{n}$, written |a| or $|a|_n$, is the smallest k > 0 such that $a^k \equiv 1 \pmod{n}$. (Book: $e_n(a) = |a|_n$) Define

$$\psi_n(k) = \#\{1 \le a < n \mid |a| = k\}.$$

Fix n, and let a be an integer with gcd(a, n) = 1. The order of $a \pmod{n}$, written |a| or $|a|_n$, is the smallest k > 0 such that $a^k \equiv 1 \pmod{n}$. (Book: $e_n(a) = |a|_n$) Define

$$\psi_n(k) = \#\{1 \le a < n \mid |a| = k\}.$$

Ex: Modulo 7, we have

a	1	2	3	4	5	6
a	1	3	6	3	6	2

So

$$\psi_7(1) = 1$$
, $\psi_7(2) = 1$, $\psi_7(3) = 2$, $\psi_7(6) = 2$.

Fix n, and let a be an integer with gcd(a, n) = 1. The order of $a \pmod{n}$, written |a| or $|a|_n$, is the smallest k > 0 such that $a^k \equiv 1 \pmod{n}$. (Book: $e_n(a) = |a|_n$) Define

$$\psi_n(k) = \#\{1 \le a < n \mid |a| = k\}.$$

Ex: Modulo 7, we have

a	1	2	3	4	5	6
a	1	3	6	3	6	2

So

$$\psi_7(1) = 1, \quad \psi_7(2) = 1, \quad \psi_7(3) = 2, \quad \psi_7(6) = 2.$$

Notice,

$$\sum_{d|(p-1)}\psi_n(k) = p-1$$

(every a rel. prime to p has some order, and that order divides $\phi(p) = p - 1$).

Define

$$\psi_n(k) = \#\{1 \le a < n \mid |a| = k\}.$$

Ex: Modulo 7, we have

a	1	2	3	4	5	6
a	1	3	6	3	6	2

So

$$\psi_7(1) = 1, \quad \psi_7(2) = 1, \quad \psi_7(3) = 2, \quad \psi_7(6) = 2.$$

Notice,

$$\sum_{d|(p-1)}\psi_n(k)=p-1$$

(every a rel. prime to p has *some* order, and that order divides $\phi(p) = p - 1$). Last time, we showed

$$\sum_{d|n} \phi(d) = n.$$

Define

$$\psi_n(k) = \#\{1 \le a < n \mid |a| = k\}.$$

Ex: Modulo 7, we have

a	1	2	3	4	5	6
a	1	3	6	3	6	2

So

$$\psi_7(1) = 1, \quad \psi_7(2) = 1, \quad \psi_7(3) = 2, \quad \psi_7(6) = 2.$$

Notice,

$$\sum_{|(p-1)}\psi_n(k) = p - 1$$

(every a rel. prime to p has *some* order, and that order divides $\phi(p) = p - 1$). Last time, we showed

d

 $\sum_{d|n} \phi(d) = n.$ Claim: For all d|(p-1), we have $\psi_p(d) = \phi(d)$. Namely, there are $\phi(p-1)$ primitive roots (mod p) for all primes p.

Define

$$\psi_n(k) = \#\{1 \le a < n \mid |a| = k\}.$$

Ex: Modulo 7, we have

a	1	2	3	4	5	6
a	1	3	6	3	6	2

So $\psi_7(1) = \underbrace{1}_{\phi(1)}, \quad \psi_7(2) = \underbrace{1}_{\phi(2)}, \quad \psi_7(3) = \underbrace{2}_{\phi(3)}, \quad \psi_7(6) = \underbrace{2}_{\phi(6)}.$ Notice, $\sum_{\phi(6)} \psi_7(1) = \frac{1}{\phi(2)}, \quad \psi_7(1) = \underbrace{2}_{\phi(6)} \psi_7(1) = \underbrace{2}$

$$\sum_{d|(p-1)}\psi_n(k) = p-1$$

(every a rel. prime to p has some order, and that order divides $\phi(p)=p-1$). Last time, we showed

$$\sum_{d|n} \phi(d) = n.$$

Claim: For all d|(p-1), we have $\psi_p(d) = \phi(d)$. Namely, there are $\phi(p-1)$ primitive roots (mod p) for all primes p.

We essentially showed last time that $a^n \equiv_p 1$ iff $|a|_p$ divides n

We essentially showed last time that $a^n \equiv_p 1$ iff $|a|_p$ divides n, i.e. a is a solution to $x^n - 1 \equiv_p 0$ if and only if $|a|_p$ divides n. (Proof: divide n by $|a|_p$ and show the remainder must be 0)

(Proof: divide n by $|a|_p$, and show the remainder must be 0.)

We essentially showed last time that $a^n \equiv_p 1$ iff $|a|_p$ divides n, i.e. a is a solution to $x^n - 1 \equiv_p 0$ if and only if $|a|_p$ divides n. (Proof: divide n by $|a|_p$, and show the remainder must be 0.) Recall...

Theorem (Polynomial Roots Mod p Theorem) Let p be prime in $\mathbb{Z}_{>0}$, and let

$$f(x) = a_0 + a_1 x + \dots + a_n x^n \in \mathbb{Z}[x],$$

with $n \ge 1$ and $p \nmid a_n$. Then the congruence

$$f(x) \equiv 0 \pmod{p}$$

has at most p incongruent solutions.

Claim: For all d|(p-1), we have $\psi_p(d) = \phi(d)$. Namely, there are $\phi(p-1)$ primitive roots (mod p) for all primes p.

Claim: For all d|(p-1), we have $\psi_p(d) = \phi(d)$.

Namely, there are $\phi(p-1)$ primitive roots (mod p) for all primes p.

Proof. (bijective) Count the solutions to

$$x^{p-1} - 1 \equiv_p 0$$

in two ways.

Claim: For all d|(p-1), we have $\psi_p(d) = \phi(d)$.

Namely, there are $\phi(p-1)$ primitive roots (mod p) for all primes p. **Proof**. (bijective) Count the solutions to

$$x^{p-1} - 1 \equiv_p 0$$

in two ways. **Know:** there are exactly most p-1 solutions (Fermat says every non-multiple of p is a solution).

Claim: For all d|(p-1), we have $\psi_p(d) = \phi(d)$. Namely, there are $\phi(p-1)$ primitive roots (mod p) for all primes p. Proof. (bijective) Count the solutions to

$$x^{p-1} - 1 \equiv_p 0$$

in two ways. Know: there are exactly most p-1 solutions (Fermat says every non-multiple of p is a solution). We have

$$X^{m} - 1 = (X - 1)(X^{m-1} + \dots + X^{2} + X + 1).$$
 (*)

Claim: For all d|(p-1), we have $\psi_p(d) = \phi(d)$. Namely, there are $\phi(p-1)$ primitive roots (mod p) for all primes p. Proof. (bijective) Count the solutions to

$$x^{p-1} - 1 \equiv_p 0$$

in two ways. Know: there are exactly most p-1 solutions (Fermat says every non-multiple of p is a solution). We have

$$X^{m} - 1 = (X - 1)(X^{m-1} + \dots + X^{2} + X + 1).$$
 (*)

Fix a divisor d|(p-1), and write p-1 = kd.

Claim: For all d|(p-1), we have $\psi_p(d) = \phi(d)$. Namely, there are $\phi(p-1)$ primitive roots (mod p) for all primes p. Proof. (bijective) Count the solutions to

$$x^{p-1} - 1 \equiv_p 0$$

in two ways. Know: there are exactly most p-1 solutions (Fermat says every non-multiple of p is a solution). We have

$$X^{m} - 1 = (X - 1)(X^{m-1} + \dots + X^{2} + X + 1).$$
 (*)

Fix a divisor d|(p-1), and write p-1 = kd. Plug $X = x^d$ and m-k into (*): $x^{p-1}-1 = (x^d)^k - 1 = (x^d - 1)((x^d)^{k-1} + \dots + (x^d)^2 + x^d + 1)$.

Claim: For all d|(p-1), we have $\psi_p(d) = \phi(d)$. Namely, there are $\phi(p-1)$ primitive roots (mod p) for all primes p. Proof. (bijective) Count the solutions to

$$x^{p-1} - 1 \equiv_p 0$$

in two ways. Know: there are exactly most p-1 solutions (Fermat says every non-multiple of p is a solution). We have

$$X^{m} - 1 = (X - 1)(X^{m-1} + \dots + X^{2} + X + 1).$$
 (*)

Fix a divisor d|(p-1), and write p-1 = kd. Plug $X = x^d$ and m-k into (*): $x^{p-1}-1 = (x^d)^k - 1 = (x^d - 1)((x^d)^{k-1} + \dots + (x^d)^2 + x^d + 1)$. p-1 solns

Claim: For all d|(p-1), we have $\psi_p(d) = \phi(d)$. Namely, there are $\phi(p-1)$ primitive roots (mod p) for all primes p. Proof. (bijective) Count the solutions to

$$x^{p-1} - 1 \equiv_p 0$$

in two ways. Know: there are exactly most p-1 solutions (Fermat says every non-multiple of p is a solution). We have

$$X^{m} - 1 = (X - 1)(X^{m-1} + \dots + X^{2} + X + 1).$$
 (*)

Fix a divisor d|(p-1), and write p-1 = kd. Plug $X = x^d$ and m-k into (*): $\underbrace{x^{p-1}-1}_{p-1 \text{ solns}} = (x^d)^k - 1 = (x^d-1)\underbrace{((x^{(k-1)d} + \dots + x^{2d} + x^d + 1)}_{r \leq (k-1)d \text{ solns (mod } p \text{ roots)}}.$

Claim: For all d|(p-1), we have $\psi_p(d) = \phi(d)$. Namely, there are $\phi(p-1)$ primitive roots (mod p) for all primes p. Proof. (bijective) Count the solutions to

$$x^{p-1} - 1 \equiv_p 0$$

in two ways. Know: there are exactly most p-1 solutions (Fermat says every non-multiple of p is a solution). We have

$$X^{m} - 1 = (X - 1)(X^{m-1} + \dots + X^{2} + X + 1).$$
 (*)

Fix a divisor d|(p-1), and write p-1 = kd. Plug $X = x^d$ and m-k into (*): $\underbrace{x^{p-1}-1}_{p-1 \text{ solns}} = (x^d)^k - 1 = \underbrace{(x^d-1)}_{s \leqslant d \text{ sols}} \underbrace{((x^{(k-1)d} + \dots + x^{2d} + x^d + 1))}_{r \leqslant (k-1)d \text{ solns (mod } p \text{ roots)}}.$

Claim: For all d|(p-1), we have $\psi_p(d) = \phi(d)$. Namely, there are $\phi(p-1)$ primitive roots (mod p) for all primes p. Proof. (bijective) Count the solutions to

$$x^{p-1} - 1 \equiv_p 0$$

in two ways. Know: there are exactly most p-1 solutions (Fermat says every non-multiple of p is a solution). We have

$$X^{m} - 1 = (X - 1)(X^{m-1} + \dots + X^{2} + X + 1).$$
 (*)

Fix a divisor d|(p-1), and write p-1 = kd. Plug $X = x^d$ and m-k into (*): $\underbrace{x^{p-1}-1}_{p-1 \text{ solns}} = (x^d)^k - 1 = \underbrace{(x^d-1)}_{s \leqslant d \text{ sols}} \underbrace{((x^{(k-1)d} + \dots + x^{2d} + x^d + 1))}_{r \leqslant (k-1)d \text{ solns (mod } p \text{ roots)}}$.

 $d \ge s$

Claim: For all d|(p-1), we have $\psi_p(d) = \phi(d)$. Namely, there are $\phi(p-1)$ primitive roots (mod p) for all primes p. Proof. (bijective) Count the solutions to

$$x^{p-1} - 1 \equiv_p 0$$

in two ways. Know: there are exactly most p-1 solutions (Fermat says every non-multiple of p is a solution). We have

$$X^{m} - 1 = (X - 1)(X^{m-1} + \dots + X^{2} + X + 1).$$
 (*)

Fix a divisor d|(p-1), and write p-1 = kd. Plug $X = x^d$ and m-k into (*): $x^{p-1}-1 = (x^d)^k - 1 = (x^d-1) = (x^d-1) = (x^{(k-1)d} + \dots + x^{2d} + x^d + 1) = (x^{(k-1)d} + \dots + x^{2d} + x^d + 1)$. $d \ge s = (p-1) - r$

Claim: For all d|(p-1), we have $\psi_p(d) = \phi(d)$. Namely, there are $\phi(p-1)$ primitive roots (mod p) for all primes p. Proof. (bijective) Count the solutions to

$$x^{p-1} - 1 \equiv_p 0$$

in two ways. Know: there are exactly most p-1 solutions (Fermat says every non-multiple of p is a solution). We have

$$X^{m} - 1 = (X - 1)(X^{m-1} + \dots + X^{2} + X + 1).$$
 (*)

Fix a divisor d|(p-1), and write p-1 = kd. Plug $X = x^d$ and m-k into (*): $\underbrace{x^{p-1}-1}_{p-1 \text{ solns}} = (x^d)^k - 1 = \underbrace{(x^d-1)}_{s \leqslant d \text{ sols}} \underbrace{((x^{(k-1)d} + \dots + x^{2d} + x^d + 1))}_{r \leqslant (k-1)d \text{ solns (mod } p \text{ roots)}}$. $d \ge s = (p-1) - r \ge (p-1) - \underbrace{(k-1)d}_{(p-1)-d}$

Claim: For all d|(p-1), we have $\psi_p(d) = \phi(d)$. Namely, there are $\phi(p-1)$ primitive roots (mod p) for all primes p. Proof. (bijective) Count the solutions to

$$x^{p-1} - 1 \equiv_p 0$$

in two ways. Know: there are exactly most p-1 solutions (Fermat says every non-multiple of p is a solution). We have

$$X^{m} - 1 = (X - 1)(X^{m-1} + \dots + X^{2} + X + 1).$$
 (*)

Fix a divisor d|(p-1), and write p-1 = kd. Plug $X = x^d$ and m-k into (*): $\underbrace{x^{p-1}-1}_{p-1 \text{ solns}} = (x^d)^k - 1 = \underbrace{(x^d-1)}_{s \leqslant d \text{ sols}} \underbrace{((x^{(k-1)d} + \dots + x^{2d} + x^d + 1))}_{r \leqslant (k-1)d \text{ solns (mod } p \text{ roots)}}$. $d \ge s = (p-1) - r \ge (p-1) - \underbrace{(k-1)d}_{(p-1)-d} = d$.

Claim: For all d|(p-1), we have $\psi_p(d) = \phi(d)$. Namely, there are $\phi(p-1)$ primitive roots (mod p) for all primes p. Proof. (bijective) Count the solutions to

$$x^{p-1} - 1 \equiv_p 0$$

in two ways. Know: there are exactly most p-1 solutions (Fermat says every non-multiple of p is a solution). We have

$$X^{m} - 1 = (X - 1)(X^{m-1} + \dots + X^{2} + X + 1).$$
 (*)

Fix a divisor d|(p-1), and write p-1 = kd. Plug $X = x^d$ and m-k into (*): $\underbrace{x^{p-1}-1}_{p-1 \text{ solns}} = (x^d)^k - 1 = \underbrace{(x^d-1)}_{s \leqslant d \text{ sols}} \underbrace{((x^{(k-1)d} + \dots + x^{2d} + x^d + 1))}_{r \leqslant (k-1)d \text{ solns (mod } p \text{ roots)}}$ $d \ge s = (p-1) - r \ge (p-1) - \underbrace{(k-1)d}_{(p-1)-d} = d.$ So $\underline{s = d}$.

Claim: For all d|(p-1), we have $\psi_p(d) = \phi(d)$.

Namely, there are $\phi(p-1)$ primitive roots (mod p) for all primes p. **Proof**. (So far: *Count the solutions to*

$$x^{p-1} - 1 \equiv_p 0$$

in two ways... Fix a divisor d|(p-1), and write p-1=kd...)

So there are exactly d solutions to $x^d - 1 \equiv_p 0$.

Claim: For all d|(p-1), we have $\psi_p(d) = \phi(d)$.

Namely, there are $\phi(p-1)$ primitive roots (mod p) for all primes p. **Proof.** (So far: *Count the solutions to*

$$x^{p-1} - 1 \equiv_p 0$$

in two ways... Fix a divisor d|(p-1), and write p-1=kd...)

So there are exactly d solutions to $x^d - 1 \equiv_p 0$. Put another way, there are exactly d values a where |a| divides d. (We have $a^d \equiv_p 1$ iff $|a|_p$ divides d.)

Claim: For all d|(p-1), we have $\psi_p(d) = \phi(d)$.

Namely, there are $\phi(p-1)$ primitive roots (mod p) for all primes p. **Proof.** (So far: *Count the solutions to*

$$x^{p-1} - 1 \equiv_p 0$$

in two ways... Fix a divisor d|(p-1), and write p-1=kd...)

So there are exactly d solutions to $x^d - 1 \equiv_p 0$. Put another way, there are exactly d values a where |a| divides d. (We have $a^d \equiv_p 1$ iff $|a|_p$ divides d.)

So

$$d = \sum_{\ell \mid d} \psi(\ell).$$

(counting every a with order dividing d, one order at a time.)

Claim: For all d|(p-1), we have $\psi_p(d) = \phi(d)$.

Namely, there are $\phi(p-1)$ primitive roots (mod p) for all primes p. **Proof.** (So far: *Count the solutions to*

$$x^{p-1} - 1 \equiv_p 0$$

in two ways... Fix a divisor d|(p-1), and write p-1=kd...)

So there are exactly d solutions to $x^d - 1 \equiv_p 0$. Put another way, there are exactly d values a where |a| divides d. (We have $a^d \equiv_p 1$ iff $|a|_p$ divides d.)

So

$$\sum_{\ell \mid d} \phi(\ell) = d = \sum_{\ell \mid d} \psi(\ell).$$

(RHS: counting every a with order dividing d, one order at a time.) (LHS: last time.)

Claim: For all d|(p-1), we have $\psi_p(d) = \phi(d)$.

Namely, there are $\phi(p-1)$ primitive roots (mod p) for all primes p. **Proof**. (So far: *Count the solutions to*

$$x^{p-1} - 1 \equiv_p 0$$

in two ways... Fix a divisor d|(p-1), and write p-1=kd...)

So there are exactly d solutions to $x^d - 1 \equiv_p 0$. Put another way, there are exactly d values a where |a| divides d. (We have $a^d \equiv_p 1$ iff $|a|_p$ divides d.)

So

$$\sum_{\ell \mid d} \phi(\ell) = d = \sum_{\ell \mid d} \psi(\ell).$$

(RHS: counting every a with order dividing d, one order at a time.) (LHS: last time.)

Show $\phi(d) = \psi_p(d)$ by induction on d's prime factorization.

Claim: For all d|(p-1), we have $\psi_p(d) = \phi(d)$.

Namely, there are $\phi(p-1)$ primitive roots (mod p) for all primes p. **Proof**. (So far: *Count the solutions to*

$$x^{p-1} - 1 \equiv_p 0$$

in two ways... Fix a divisor d|(p-1), and write p-1=kd...)

So there are exactly d solutions to $x^d - 1 \equiv_p 0$. Put another way, there are exactly d values a where |a| divides d. (We have $a^d \equiv_p 1$ iff $|a|_p$ divides d.)

So

$$\sum_{\ell \mid d} \phi(\ell) = d = \sum_{\ell \mid d} \psi(\ell).$$

(RHS: counting every a with order dividing d, one order at a time.) (LHS: last time.)

Show $\phi(d) = \psi_p(d)$ by induction on d's prime factorization.

We call g a primitive root (mod p) if $|g|_p = \phi(p) = p - 1$.

We call g a primitive root (mod p) if $|g|_p = \phi(p) = p - 1$. Last time: For p prime, we have $|a|_p = p - 1$ if and only if $\{1, 2, \dots, p - 1\} \equiv_p \{1, a, a^2, \dots, a^{p-2}\}.$

We call g a primitive root (mod p) if $|g|_p = \phi(p) = p - 1$. Last time: For p prime, we have $|a|_p = p - 1$ if and only if

$$\{1, 2, \dots, p-1\} \equiv_p \{1, a, a^2, \dots, a^{p-2}\}.$$

Example: The primitive roots modulo 13 are 2, 6, 7, and 11

We call g a primitive root (mod p) if $|g|_p = \phi(p) = p - 1$. Last time: For p prime, we have $|a|_p = p - 1$ if and only if $\{1, 2, \dots, p - 1\} \equiv_p \{1, a, a^2, \dots, a^{p-2}\}$. Example: The primitive roots modulo 13 are 2, 6, 7, and 11: $g^k \pmod{13}$: $\leftarrow k \rightarrow$ $\parallel 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12$

_		1	2	3	4	5	6	7	8	9	10	11	12
^	2	2	4	8	3	6	12	11	9	5	10	7	1
- a	6	6	10	8	9	2	12	7	3	5	4	11	1
9- 	7	7	10	5	9	11	12	6	3	8	4	2	1
+-	11	11	4	5	3	7	12	2	9	8	10	6	1

11

11

We call g a primitive root (mod p) if $|g|_p = \phi(p) = p - 1$. Last time: For p prime, we have $|a|_p = p - 1$ if and only if $\{1, 2, \dots, p-1\} \equiv_p \{1, a, a^2, \dots, a^{p-2}\}.$ **Example:** The primitive roots modulo 13 are 2, 6, 7, and 11: $q^k \pmod{13}$: $\leftarrow k \rightarrow$ $1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10$ 11 12 $\hat{1}$ 2 4 8 3 6 12 11 9 5 10 7 1 6 6 10 8 9 2121 7 $3 \ 5$ 4 11 7 $10 \ 5 \ 9 \ 11$ 121 6 3 8 4 2

For a primitive root g, and $1 \le b \le p-1$, the exponential map is one-to-one!

2 9 8 10

6 1

 $4 \ 5 \ 3 \ 7 \ 12$

We call g a primitive root (mod p) if $|g|_p = \phi(p) = p - 1$. Last time: For p prime, we have $|a|_p = p - 1$ if and only if $\{1, 2, \dots, p - 1\} \equiv_p \{1, a, a^2, \dots, a^{p-2}\}$. Example: The primitive roots modulo 13 are 2, 6, 7, and 11: $g^k \pmod{13}$: $\leftarrow k \rightarrow$ $\parallel 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12$

		1	2	3	4	5	6	7	8	9	10	11	12
↑.	2	2	4	8	3	6	12	11	9	5	10	7	1
 	6	6	10	8	9	2	12	$\overline{7}$	3	5	4	11	1
9 [.]	7	7	10	5	9	11	12	6	3	8	4	2	1
	11	11	4	5	3	7	12	2	9	8	10	6	1

For a primitive root g, and $1 \le b \le p-1$, the exponential map is one-to-one! Define its inverse, the discrete logarithm (base g, mod p) or index, by

 $\operatorname{dlog}_g(b) \equiv_{p-1} k$ whenever $g^k \equiv_p b$.

$$g^k \pmod{13} : \underbrace{\begin{vmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ \hline 2 & 2 & 4 & 8 & 3 & 6 & 12 & 11 & 9 & 5 & 10 & 7 & 1 \\ \hline 6 & 6 & 10 & 8 & 9 & 2 & 12 & 7 & 3 & 5 & 4 & 11 & 1 \\ \hline 9 & 7 & 7 & 10 & 5 & 9 & 11 & 12 & 6 & 3 & 8 & 4 & 2 & 1 \\ \hline 11 & 11 & 4 & 5 & 3 & 7 & 12 & 2 & 9 & 8 & 10 & 6 & 1 \\ \hline \end{vmatrix}}$$

Fix p. For a primitive root g, and $1 \le b \le p-1$, define the discrete logarithm (base g, mod p) or index by

Fix p. For a primitive root g, and $1 \le b \le p-1$, define the discrete logarithm or index (base g, mod p) by

$$\label{eq:global_states} \boxed{ \mbox{dlog}_g(b) \equiv_{p-1} k \quad \mbox{whenever} \quad g^k \equiv_p b. } $$ (Book: \mbox{dlog}_g(b) = I(b)) $$$$

Fix p. For a primitive root g, and $1 \le b \le p-1$, define the discrete logarithm or index (base g, mod p) by

$$\label{eq:g} \boxed{ \mbox{dlog}_g(b) \equiv_{p-1} k \quad \mbox{whenever} \quad g^k \equiv_p b. } $$ (Book: \mbox{dlog}_g(b) = I(b)) $$$$

Proposition

We have

$$\operatorname{dlog}_g(ab) \equiv_{p-1} \operatorname{dlog}_g(a) + \operatorname{dlog}_g(b)$$

and

$$\operatorname{dlog}_g(b^c) \equiv_{p-1} c \cdot \operatorname{dlog}_g(b)$$

Fix p. For a primitive root g, and $1 \le b \le p-1$, define the discrete logarithm or index (base g, mod p) by

Proposition

We have

$$\operatorname{dlog}_g(ab) \equiv_{p-1} \operatorname{dlog}_g(a) + \operatorname{dlog}_g(b)$$

and

$$\operatorname{dlog}_g(b^c) \equiv_{p-1} c \cdot \operatorname{dlog}_g(b)$$

(Why p - 1??

Fix p. For a primitive root g, and $1 \le b \le p-1$, define the discrete logarithm or index (base g, mod p) by

Proposition

We have

$$\operatorname{dlog}_g(ab) \equiv_{p-1} \operatorname{dlog}_g(a) + \operatorname{dlog}_g(b)$$

and

$$\operatorname{dlog}_g(b^c) \equiv_{p-1} c \cdot \operatorname{dlog}_g(b)$$

(Why p-1?? In short, $dlog_g(b)$ corresponds to an *exponent*, so lives in $\phi(p)$'s world!)

Fix p. For a primitive root g, and $1 \le b \le p-1$, define the discrete logarithm or index (base g, mod p) by

Proposition

We have

$$\operatorname{dlog}_g(ab) \equiv_{p-1} \operatorname{dlog}_g(a) + \operatorname{dlog}_g(b)$$

and

$$\mathrm{dlog}_g(b^c) \equiv_{p-1} c \cdot \mathrm{dlog}_g(b)$$

(Why p - 1?? In short, $dlog_g(b)$ corresponds to an *exponent*, so lives in $\phi(p)$'s world!) Proof. Raise g to one side and reduce...

Using logarithms to do computations

Fix p = 37. Then 2 is a primitive root.

The discrete logarithm values are given by the following.

b	1	2	3	4	5	6	7	8	9
$dlog_2(b)$	36	1	26	2	23	27	32	3	16
b	10	11	12	13	14	15	16	17	18
$dlog_2(b)$	24	30	28	11	33	13	4	7	17
b	19	20	21	22	23	24	25	26	27
$dlog_2(b)$	35	25	22	31	15	29	10	12	6
b	28	29	30	31	32	33	34	35	36
$dlog_2(b)$	34	21	14	9	5	20	8	19	18

Example: Use the logarithm table to compute the following (mod 37):

(1) $25 \cdot 16$ (2) 28^{32} (3) 9^{-1} (4) x satisfying $20x \equiv 3$ (5) $3x^{30} \equiv 4$