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Fix n, and let a be an integer with ged(a,n) = 1. The order of a
(mod n), written |a| or |al,, is the smallest k > 0 such that
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Define
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Last time:
Define
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Ex: Modulo 7, we have
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Claim: For all d|(p — 1), we have ¢,(d) = ¢(d).
Namely, there are ¢(p — 1) primitive roots (mod p) for all primes p.

We essentially showed last time that o™ =, 1 iff |a|, divides n, i.e.

a is a solution to 2" — 1=, 0
if and only if |a|, divides n.

(Proof: divide n by |a|,, and show the remainder must be 0.)

Recall. ..

Theorem (Polynomial Roots Mod p Theorem)
Let p be prime in Z~q, and let

f(x) =ao+ a1z + -+ apa” € Z[x],
withn > 1 and p { a,,. Then the congruence
f(z)=0 (mod p)

has at most p incongruent solutions.
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Define |a| = |a|, as the smallest k& > 0 such that a* =1 (mod p),
and let ¢, (d) = #{1 <a<p| |a| = d}.
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So there are exactly d solutions to 2% — 1 =, 0.
Put another way, there are exactly d values a where |a| divides d.
(We have a =, 1 iff |a|, divides d.)
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(RHS: counting every a with order dividing d, one order at a time.)
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Discrete logarithm
We call g a primitive root (mod p) if |g|, = ¢(p) = p — 1.
Last time: For p prime, we have |a|, = p — 1 if and only if

{1,2,...,p—1} = {1,a,d?,...,aP"?}.
Example: The primitive roots modulo 13 are 2,6,7, and 11:

gk(modl?)):
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| 1 3 4 6 7 8 9 10 11 12
22 4 8 3 12 11 9 5 10 7 1
T6 6 10 8 9 2 12 7 3 5 4 11 1
f? 7 10 59 11 12 6 3 8 4 2 1
111 4 53 7 12 2 9 8 10 6 1
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Discrete logarithm
We call g a primitive root (mod p) if |g|, = ¢(p) = p — 1.
Last time: For p prime, we have |a|, = p — 1 if and only if

{1,2,...,p—1} = {1,a,d?,...,aP"?}.
Example: The primitive roots modulo 13 are 2,6,7, and 11:

gk(modl?)):
—k
| 1 3 4 6 7 8 9 10 11 12
22 4 8 3 12 11 9 5 10 7 1
T6 6 10 8 9 2 12 7 3 5 4 11 1
f? 7 10 59 11 12 6 3 8 4 2 1
11t 4 5 3 12 2 9 8 10 6 1

7
For a primitive root g, and 1 < b < p — 1, the exponential map is
one-to-one! Define its inverse, the discrete logarithm (base g, mod
p) or index, by

dlog,(b) =p-1 k  whenever g" =, b.



— k —

| 1 3 4 6 7 8 9 10 11 12

o (mod 13) : 212 4 8 3 6 12 11 9 5 10 7 1
T 616 10 8 9 2 12 7 3 5 4 11 1

g 717 105 9 11 12 6 3 8 4 2 1

J11fj11 4 5 3 7 12 2 9 8 10 6 1

Fix p. For a primitive root g, and 1 < b < p — 1, define the
discrete logarithm (base g, mod p) or index by

dlog,(b) =p—1 k  whenever g" =, b.
—k—
|1 2 3 4 5 6 7 89 10 11 12
dlog, (b) 212 1 4 2 9 5 11 3 8 10 7 6
T 612 5 8 10 9 1 7 3 4 2 11 6
g 712 11 8103 7 1 94 2 5 6
1112 7 4 2 3 11 5 9 8 10 1 6
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Discrete logarithm
Fix p. For a primitive root g, and 1 < b < p — 1, define the
discrete logarithm or index (base g, mod p) by

dlog,(b) =p—1 k  whenever g" =, b.
(Book: dlog,(b) = 1(b))

Proposition
We have
dlog,(ab) =,-1 dlog(a) + dlog,(b)
and
dlog,(b°) =p-1 c - dlog,(b)

(Why p — 177 In short, dlog,(b) corresponds to an exponent, so
lives in ¢(p)'s world!)
Proof. Raise g to one side and reduce. ..



Using logarithms to do computations

Fix p = 37. Then 2 is a primitive root.

The discrete logarithm values are given by the following.

b

1

2

3

4

5

6

7

8

9

dlogy(b)

36

1

26

2

23

27

32

3

16

b

10

11

12

13

14

15

16

17

18

dlog,(b)

24

30

28

11

33

13

4

7

17

b

19

20

21

22

23

24

25

26

27

dlog,(b)

35

25

22

31

15

29

10

12

6

b

28

29

30

31

32

33

34

35

36

d10g2 (b)

34

21

14

9

5

20

8

19

18

Example: Use the logarithm table to compute the following

(mod 37):

(1) 25-16

(2) 2832
(4) x satisfying 20z = 3

(3)9°!
(5) 3230 =4







