
Last time:
Fix n, and let a be an integer with gcdpa, nq “ 1. The order of a
pmod nq, written |a| or |a|n, is the smallest k ą 0 such that
ak ” 1 pmod nq. (Book: enpaq “ |a|n)

Define

ψnpkq “ #t1 ď a ă n | |a| “ ku.

Ex: Modulo 7, we have

a 1 2 3 4 5 6

|a| 1 3 6 3 6 2
.

So
ψ7p1q “ 1, ψ7p2q “ 1, ψ7p3q “ 2, ψ7p6q “ 2.

Notice,
ÿ

d|pp´1q

ψnpkq “ p´ 1

(every a rel. prime to p has some order, and that order divides φppq “ p´ 1).

Last time, we showed
ÿ

d|n

φpdq “ n.

Claim: For all d|pp´ 1q, we have ψppdq “ φpdq.
Namely, there are φpp´ 1q primitive roots (mod p) for all primes p.

Last time:
Fix n, and let a be an integer with gcdpa, nq “ 1. The order of a
pmod nq, written |a| or |a|n, is the smallest k ą 0 such that
ak ” 1 pmod nq. (Book: enpaq “ |a|n)

Define

ψnpkq “ #t1 ď a ă n | |a| “ ku.

Ex: Modulo 7, we have

a 1 2 3 4 5 6

|a| 1 3 6 3 6 2
.

So
ψ7p1q “ 1, ψ7p2q “ 1, ψ7p3q “ 2, ψ7p6q “ 2.

Notice,
ÿ

d|pp´1q

ψnpkq “ p´ 1

(every a rel. prime to p has some order, and that order divides φppq “ p´ 1).

Last time, we showed
ÿ

d|n

φpdq “ n.

Claim: For all d|pp´ 1q, we have ψppdq “ φpdq.
Namely, there are φpp´ 1q primitive roots (mod p) for all primes p.

Last time:
Fix n, and let a be an integer with gcdpa, nq “ 1. The order of a
pmod nq, written |a| or |a|n, is the smallest k ą 0 such that
ak ” 1 pmod nq. (Book: enpaq “ |a|n)

Define

ψnpkq “ #t1 ď a ă n | |a| “ ku.

Ex: Modulo 7, we have

a 1 2 3 4 5 6

|a| 1 3 6 3 6 2
.

So
ψ7p1q “ 1, ψ7p2q “ 1, ψ7p3q “ 2, ψ7p6q “ 2.

Notice,
ÿ

d|pp´1q

ψnpkq “ p´ 1

(every a rel. prime to p has some order, and that order divides φppq “ p´ 1).

Last time, we showed
ÿ

d|n

φpdq “ n.

Claim: For all d|pp´ 1q, we have ψppdq “ φpdq.
Namely, there are φpp´ 1q primitive roots (mod p) for all primes p.

Last time:
Fix n, and let a be an integer with gcdpa, nq “ 1. The order of a
pmod nq, written |a| or |a|n, is the smallest k ą 0 such that
ak ” 1 pmod nq. (Book: enpaq “ |a|n)

Define

ψnpkq “ #t1 ď a ă n | |a| “ ku.

Ex: Modulo 7, we have

a 1 2 3 4 5 6

|a| 1 3 6 3 6 2
.

So
ψ7p1q “ 1, ψ7p2q “ 1, ψ7p3q “ 2, ψ7p6q “ 2.

Notice,
ÿ

d|pp´1q

ψnpkq “ p´ 1

(every a rel. prime to p has some order, and that order divides φppq “ p´ 1).

Last time, we showed
ÿ

d|n

φpdq “ n.

Claim: For all d|pp´ 1q, we have ψppdq “ φpdq.
Namely, there are φpp´ 1q primitive roots (mod p) for all primes p.

Last time:

Define

ψnpkq “ #t1 ď a ă n | |a| “ ku.

Ex: Modulo 7, we have

a 1 2 3 4 5 6

|a| 1 3 6 3 6 2
.

So
ψ7p1q “ 1, ψ7p2q “ 1, ψ7p3q “ 2, ψ7p6q “ 2.

Notice,
ÿ

d|pp´1q

ψnpkq “ p´ 1

(every a rel. prime to p has some order, and that order divides φppq “ p´ 1).

Last time, we showed
ÿ

d|n

φpdq “ n.

Claim: For all d|pp´ 1q, we have ψppdq “ φpdq.
Namely, there are φpp´ 1q primitive roots (mod p) for all primes p.

Last time:

Define

ψnpkq “ #t1 ď a ă n | |a| “ ku.

Ex: Modulo 7, we have

a 1 2 3 4 5 6

|a| 1 3 6 3 6 2
.

So
ψ7p1q “ 1, ψ7p2q “ 1, ψ7p3q “ 2, ψ7p6q “ 2.

Notice,
ÿ

d|pp´1q

ψnpkq “ p´ 1

(every a rel. prime to p has some order, and that order divides φppq “ p´ 1).

Last time, we showed
ÿ

d|n

φpdq “ n.

Claim: For all d|pp´ 1q, we have ψppdq “ φpdq.
Namely, there are φpp´ 1q primitive roots (mod p) for all primes p.

Last time:
Define

ψnpkq “ #t1 ď a ă n | |a| “ ku.

Ex: Modulo 7, we have

a 1 2 3 4 5 6

|a| 1 3 6 3 6 2
.

So
ψ7p1q “ 1

loomoon

φp1q

, ψ7p2q “ 1
loomoon

φp2q

, ψ7p3q “ 2
loomoon

φp3q

, ψ7p6q “ 2
loomoon

φp6q

.

Notice,
ÿ

d|pp´1q

ψnpkq “ p´ 1

(every a rel. prime to p has some order, and that order divides φppq “ p´ 1).

Last time, we showed
ÿ

d|n

φpdq “ n.

Claim: For all d|pp´ 1q, we have ψppdq “ φpdq.
Namely, there are φpp´ 1q primitive roots (mod p) for all primes p.

Claim: For all d|pp´ 1q, we have ψppdq “ φpdq.
Namely, there are φpp´ 1q primitive roots (mod p) for all primes p.

We essentially showed last time that an ”p 1 iff |a|p divides n, i.e.

a is a solution to xn ´ 1 ”p 0
if and only if |a|p divides n.

(Proof: divide n by |a|p, and show the remainder must be 0.)

Recall. . .

Theorem (Polynomial Roots Mod p Theorem)

Let p be prime in Zą0, and let

fpxq “ a0 ` a1x` ¨ ¨ ¨ ` anx
n P Zrxs,

with n ě 1 and p - an. Then the congruence

fpxq ” 0 pmod pq

has at most p incongruent solutions.

Claim: For all d|pp´ 1q, we have ψppdq “ φpdq.
Namely, there are φpp´ 1q primitive roots (mod p) for all primes p.

We essentially showed last time that an ”p 1 iff |a|p divides n

, i.e.

a is a solution to xn ´ 1 ”p 0
if and only if |a|p divides n.

(Proof: divide n by |a|p, and show the remainder must be 0.)

Recall. . .

Theorem (Polynomial Roots Mod p Theorem)

Let p be prime in Zą0, and let

fpxq “ a0 ` a1x` ¨ ¨ ¨ ` anx
n P Zrxs,

with n ě 1 and p - an. Then the congruence

fpxq ” 0 pmod pq

has at most p incongruent solutions.

Claim: For all d|pp´ 1q, we have ψppdq “ φpdq.
Namely, there are φpp´ 1q primitive roots (mod p) for all primes p.

We essentially showed last time that an ”p 1 iff |a|p divides n, i.e.

a is a solution to xn ´ 1 ”p 0
if and only if |a|p divides n.

(Proof: divide n by |a|p, and show the remainder must be 0.)

Recall. . .

Theorem (Polynomial Roots Mod p Theorem)

Let p be prime in Zą0, and let

fpxq “ a0 ` a1x` ¨ ¨ ¨ ` anx
n P Zrxs,

with n ě 1 and p - an. Then the congruence

fpxq ” 0 pmod pq

has at most p incongruent solutions.

Claim: For all d|pp´ 1q, we have ψppdq “ φpdq.
Namely, there are φpp´ 1q primitive roots (mod p) for all primes p.

We essentially showed last time that an ”p 1 iff |a|p divides n, i.e.

a is a solution to xn ´ 1 ”p 0
if and only if |a|p divides n.

(Proof: divide n by |a|p, and show the remainder must be 0.)

Recall. . .

Theorem (Polynomial Roots Mod p Theorem)

Let p be prime in Zą0, and let

fpxq “ a0 ` a1x` ¨ ¨ ¨ ` anx
n P Zrxs,

with n ě 1 and p - an. Then the congruence

fpxq ” 0 pmod pq

has at most p incongruent solutions.

Define |a| “ |a|p as the smallest k ą 0 such that ak ” 1 pmod pq,
and let ψppdq “ #t1 ď a ă p | |a| “ du.

Claim: For all d|pp´ 1q, we have ψppdq “ φpdq.
Namely, there are φpp´ 1q primitive roots (mod p) for all primes p.

Proof. (bijective) Count the solutions to

xp´1 ´ 1 ”p 0

in two ways. Know: there are exactly most p´ 1 solutions
(Fermat says every non-multiple of p is a solution).

We have

Xm ´ 1 “ pX ´ 1qpXm´1 ` ¨ ¨ ¨ `X2 `X ` 1q. (˚)

Fix a divisor d|pp´ 1q, and write p´ 1 “ kd.
Plug X “ xd and m´ k into (˚):

xp´1 ´ 1 “ pxdqk ´ 1 “ pxd ´ 1qppxdqk´1 ` ¨ ¨ ¨ ` pxdq2 ` xd ` 1q.

d ě s “ pp´ 1q ´ r ě pp´ 1q ´ pk ´ 1qd
looomooon

pp´1q´d

“ d. So s “ d .

Define |a| “ |a|p as the smallest k ą 0 such that ak ” 1 pmod pq,
and let ψppdq “ #t1 ď a ă p | |a| “ du.

Claim: For all d|pp´ 1q, we have ψppdq “ φpdq.
Namely, there are φpp´ 1q primitive roots (mod p) for all primes p.

Proof. (bijective) Count the solutions to

xp´1 ´ 1 ”p 0

in two ways.

Know: there are exactly most p´ 1 solutions
(Fermat says every non-multiple of p is a solution).

We have

Xm ´ 1 “ pX ´ 1qpXm´1 ` ¨ ¨ ¨ `X2 `X ` 1q. (˚)

Fix a divisor d|pp´ 1q, and write p´ 1 “ kd.
Plug X “ xd and m´ k into (˚):

xp´1 ´ 1 “ pxdqk ´ 1 “ pxd ´ 1qppxdqk´1 ` ¨ ¨ ¨ ` pxdq2 ` xd ` 1q.

d ě s “ pp´ 1q ´ r ě pp´ 1q ´ pk ´ 1qd
looomooon

pp´1q´d

“ d. So s “ d .

Define |a| “ |a|p as the smallest k ą 0 such that ak ” 1 pmod pq,
and let ψppdq “ #t1 ď a ă p | |a| “ du.

Claim: For all d|pp´ 1q, we have ψppdq “ φpdq.
Namely, there are φpp´ 1q primitive roots (mod p) for all primes p.

Proof. (bijective) Count the solutions to

xp´1 ´ 1 ”p 0

in two ways. Know: there are exactly most p´ 1 solutions
(Fermat says every non-multiple of p is a solution).

We have

Xm ´ 1 “ pX ´ 1qpXm´1 ` ¨ ¨ ¨ `X2 `X ` 1q. (˚)

Fix a divisor d|pp´ 1q, and write p´ 1 “ kd.
Plug X “ xd and m´ k into (˚):

xp´1 ´ 1 “ pxdqk ´ 1 “ pxd ´ 1qppxdqk´1 ` ¨ ¨ ¨ ` pxdq2 ` xd ` 1q.

d ě s “ pp´ 1q ´ r ě pp´ 1q ´ pk ´ 1qd
looomooon

pp´1q´d

“ d. So s “ d .

Define |a| “ |a|p as the smallest k ą 0 such that ak ” 1 pmod pq,
and let ψppdq “ #t1 ď a ă p | |a| “ du.

Claim: For all d|pp´ 1q, we have ψppdq “ φpdq.
Namely, there are φpp´ 1q primitive roots (mod p) for all primes p.

Proof. (bijective) Count the solutions to

xp´1 ´ 1 ”p 0

in two ways. Know: there are exactly most p´ 1 solutions
(Fermat says every non-multiple of p is a solution).

We have

Xm ´ 1 “ pX ´ 1qpXm´1 ` ¨ ¨ ¨ `X2 `X ` 1q. (˚)

Fix a divisor d|pp´ 1q, and write p´ 1 “ kd.
Plug X “ xd and m´ k into (˚):

xp´1 ´ 1 “ pxdqk ´ 1 “ pxd ´ 1qppxdqk´1 ` ¨ ¨ ¨ ` pxdq2 ` xd ` 1q.

d ě s “ pp´ 1q ´ r ě pp´ 1q ´ pk ´ 1qd
looomooon

pp´1q´d

“ d. So s “ d .

Define |a| “ |a|p as the smallest k ą 0 such that ak ” 1 pmod pq,
and let ψppdq “ #t1 ď a ă p | |a| “ du.

Claim: For all d|pp´ 1q, we have ψppdq “ φpdq.
Namely, there are φpp´ 1q primitive roots (mod p) for all primes p.

Proof. (bijective) Count the solutions to

xp´1 ´ 1 ”p 0

in two ways. Know: there are exactly most p´ 1 solutions
(Fermat says every non-multiple of p is a solution).

We have

Xm ´ 1 “ pX ´ 1qpXm´1 ` ¨ ¨ ¨ `X2 `X ` 1q. (˚)

Fix a divisor d|pp´ 1q, and write p´ 1 “ kd.

Plug X “ xd and m´ k into (˚):

xp´1 ´ 1 “ pxdqk ´ 1 “ pxd ´ 1qppxdqk´1 ` ¨ ¨ ¨ ` pxdq2 ` xd ` 1q.

d ě s “ pp´ 1q ´ r ě pp´ 1q ´ pk ´ 1qd
looomooon

pp´1q´d

“ d. So s “ d .

Define |a| “ |a|p as the smallest k ą 0 such that ak ” 1 pmod pq,
and let ψppdq “ #t1 ď a ă p | |a| “ du.

Claim: For all d|pp´ 1q, we have ψppdq “ φpdq.
Namely, there are φpp´ 1q primitive roots (mod p) for all primes p.

Proof. (bijective) Count the solutions to

xp´1 ´ 1 ”p 0

in two ways. Know: there are exactly most p´ 1 solutions
(Fermat says every non-multiple of p is a solution).

We have

Xm ´ 1 “ pX ´ 1qpXm´1 ` ¨ ¨ ¨ `X2 `X ` 1q. (˚)

Fix a divisor d|pp´ 1q, and write p´ 1 “ kd.
Plug X “ xd and m´ k into (˚):

xp´1 ´ 1 “ pxdqk ´ 1 “ pxd ´ 1qppxdqk´1 ` ¨ ¨ ¨ ` pxdq2 ` xd ` 1q.

d ě s “ pp´ 1q ´ r ě pp´ 1q ´ pk ´ 1qd
looomooon

pp´1q´d

“ d. So s “ d .

Define |a| “ |a|p as the smallest k ą 0 such that ak ” 1 pmod pq,
and let ψppdq “ #t1 ď a ă p | |a| “ du.

Claim: For all d|pp´ 1q, we have ψppdq “ φpdq.
Namely, there are φpp´ 1q primitive roots (mod p) for all primes p.

Proof. (bijective) Count the solutions to

xp´1 ´ 1 ”p 0

in two ways. Know: there are exactly most p´ 1 solutions
(Fermat says every non-multiple of p is a solution).

We have

Xm ´ 1 “ pX ´ 1qpXm´1 ` ¨ ¨ ¨ `X2 `X ` 1q. (˚)

Fix a divisor d|pp´ 1q, and write p´ 1 “ kd.
Plug X “ xd and m´ k into (˚):

xp´1 ´ 1
loooomoooon

p´1 solns

“ pxdqk ´ 1 “ pxd ´ 1qppxdqk´1 ` ¨ ¨ ¨ ` pxdq2 ` xd ` 1q.

d ě s “ pp´ 1q ´ r ě pp´ 1q ´ pk ´ 1qd
looomooon

pp´1q´d

“ d. So s “ d .

Define |a| “ |a|p as the smallest k ą 0 such that ak ” 1 pmod pq,
and let ψppdq “ #t1 ď a ă p | |a| “ du.

Claim: For all d|pp´ 1q, we have ψppdq “ φpdq.
Namely, there are φpp´ 1q primitive roots (mod p) for all primes p.

Proof. (bijective) Count the solutions to

xp´1 ´ 1 ”p 0

in two ways. Know: there are exactly most p´ 1 solutions
(Fermat says every non-multiple of p is a solution).

We have

Xm ´ 1 “ pX ´ 1qpXm´1 ` ¨ ¨ ¨ `X2 `X ` 1q. (˚)

Fix a divisor d|pp´ 1q, and write p´ 1 “ kd.
Plug X “ xd and m´ k into (˚):

xp´1 ´ 1
loooomoooon

p´1 solns

“ pxdqk ´ 1 “ pxd ´ 1q ppxpk´1qd ` ¨ ¨ ¨ ` x2d ` xd ` 1q
looooooooooooooooooomooooooooooooooooooon

rď pk ´ 1qd solns (mod p roots)

.

d ě s “ pp´ 1q ´ r ě pp´ 1q ´ pk ´ 1qd
looomooon

pp´1q´d

“ d. So s “ d .

Define |a| “ |a|p as the smallest k ą 0 such that ak ” 1 pmod pq,
and let ψppdq “ #t1 ď a ă p | |a| “ du.

Claim: For all d|pp´ 1q, we have ψppdq “ φpdq.
Namely, there are φpp´ 1q primitive roots (mod p) for all primes p.

Proof. (bijective) Count the solutions to

xp´1 ´ 1 ”p 0

in two ways. Know: there are exactly most p´ 1 solutions
(Fermat says every non-multiple of p is a solution).

We have

Xm ´ 1 “ pX ´ 1qpXm´1 ` ¨ ¨ ¨ `X2 `X ` 1q. (˚)

Fix a divisor d|pp´ 1q, and write p´ 1 “ kd.
Plug X “ xd and m´ k into (˚):

xp´1 ´ 1
loooomoooon

p´1 solns

“ pxdqk ´ 1 “ pxd ´ 1q
looomooon

sďd sols

ppxpk´1qd ` ¨ ¨ ¨ ` x2d ` xd ` 1q
looooooooooooooooooomooooooooooooooooooon

rď pk ´ 1qd solns (mod p roots)

.

d ě s “ pp´ 1q ´ r ě pp´ 1q ´ pk ´ 1qd
looomooon

pp´1q´d

“ d. So s “ d .

Define |a| “ |a|p as the smallest k ą 0 such that ak ” 1 pmod pq,
and let ψppdq “ #t1 ď a ă p | |a| “ du.

Claim: For all d|pp´ 1q, we have ψppdq “ φpdq.
Namely, there are φpp´ 1q primitive roots (mod p) for all primes p.

Proof. (bijective) Count the solutions to

xp´1 ´ 1 ”p 0

in two ways. Know: there are exactly most p´ 1 solutions
(Fermat says every non-multiple of p is a solution).

We have

Xm ´ 1 “ pX ´ 1qpXm´1 ` ¨ ¨ ¨ `X2 `X ` 1q. (˚)

Fix a divisor d|pp´ 1q, and write p´ 1 “ kd.
Plug X “ xd and m´ k into (˚):

xp´1 ´ 1
loooomoooon

p´1 solns

“ pxdqk ´ 1 “ pxd ´ 1q
looomooon

sďd sols

ppxpk´1qd ` ¨ ¨ ¨ ` x2d ` xd ` 1q
looooooooooooooooooomooooooooooooooooooon

rď pk ´ 1qd solns (mod p roots)

.

d ě s

“ pp´ 1q ´ r ě pp´ 1q ´ pk ´ 1qd
looomooon

pp´1q´d

“ d. So s “ d .

Define |a| “ |a|p as the smallest k ą 0 such that ak ” 1 pmod pq,
and let ψppdq “ #t1 ď a ă p | |a| “ du.

Claim: For all d|pp´ 1q, we have ψppdq “ φpdq.
Namely, there are φpp´ 1q primitive roots (mod p) for all primes p.

Proof. (bijective) Count the solutions to

xp´1 ´ 1 ”p 0

in two ways. Know: there are exactly most p´ 1 solutions
(Fermat says every non-multiple of p is a solution).

We have

Xm ´ 1 “ pX ´ 1qpXm´1 ` ¨ ¨ ¨ `X2 `X ` 1q. (˚)

Fix a divisor d|pp´ 1q, and write p´ 1 “ kd.
Plug X “ xd and m´ k into (˚):

xp´1 ´ 1
loooomoooon

p´1 solns

“ pxdqk ´ 1 “ pxd ´ 1q
looomooon

sďd sols

ppxpk´1qd ` ¨ ¨ ¨ ` x2d ` xd ` 1q
looooooooooooooooooomooooooooooooooooooon

rď pk ´ 1qd solns (mod p roots)

.

d ě s “ pp´ 1q ´ r

ě pp´ 1q ´ pk ´ 1qd
looomooon

pp´1q´d

“ d. So s “ d .

Define |a| “ |a|p as the smallest k ą 0 such that ak ” 1 pmod pq,
and let ψppdq “ #t1 ď a ă p | |a| “ du.

Claim: For all d|pp´ 1q, we have ψppdq “ φpdq.
Namely, there are φpp´ 1q primitive roots (mod p) for all primes p.

Proof. (bijective) Count the solutions to

xp´1 ´ 1 ”p 0

in two ways. Know: there are exactly most p´ 1 solutions
(Fermat says every non-multiple of p is a solution).

We have

Xm ´ 1 “ pX ´ 1qpXm´1 ` ¨ ¨ ¨ `X2 `X ` 1q. (˚)

Fix a divisor d|pp´ 1q, and write p´ 1 “ kd.
Plug X “ xd and m´ k into (˚):

xp´1 ´ 1
loooomoooon

p´1 solns

“ pxdqk ´ 1 “ pxd ´ 1q
looomooon

sďd sols

ppxpk´1qd ` ¨ ¨ ¨ ` x2d ` xd ` 1q
looooooooooooooooooomooooooooooooooooooon

rď pk ´ 1qd solns (mod p roots)

.

d ě s “ pp´ 1q ´ r ě pp´ 1q ´ pk ´ 1qd
looomooon

pp´1q´d

“ d. So s “ d .

Define |a| “ |a|p as the smallest k ą 0 such that ak ” 1 pmod pq,
and let ψppdq “ #t1 ď a ă p | |a| “ du.

Claim: For all d|pp´ 1q, we have ψppdq “ φpdq.
Namely, there are φpp´ 1q primitive roots (mod p) for all primes p.

Proof. (bijective) Count the solutions to

xp´1 ´ 1 ”p 0

in two ways. Know: there are exactly most p´ 1 solutions
(Fermat says every non-multiple of p is a solution).

We have

Xm ´ 1 “ pX ´ 1qpXm´1 ` ¨ ¨ ¨ `X2 `X ` 1q. (˚)

Fix a divisor d|pp´ 1q, and write p´ 1 “ kd.
Plug X “ xd and m´ k into (˚):

xp´1 ´ 1
loooomoooon

p´1 solns

“ pxdqk ´ 1 “ pxd ´ 1q
looomooon

sďd sols

ppxpk´1qd ` ¨ ¨ ¨ ` x2d ` xd ` 1q
looooooooooooooooooomooooooooooooooooooon

rď pk ´ 1qd solns (mod p roots)

.

d ě s “ pp´ 1q ´ r ě pp´ 1q ´ pk ´ 1qd
looomooon

pp´1q´d

“ d.

So s “ d .

Define |a| “ |a|p as the smallest k ą 0 such that ak ” 1 pmod pq,
and let ψppdq “ #t1 ď a ă p | |a| “ du.

Claim: For all d|pp´ 1q, we have ψppdq “ φpdq.
Namely, there are φpp´ 1q primitive roots (mod p) for all primes p.

Proof. (bijective) Count the solutions to

xp´1 ´ 1 ”p 0

in two ways. Know: there are exactly most p´ 1 solutions
(Fermat says every non-multiple of p is a solution).

We have

Xm ´ 1 “ pX ´ 1qpXm´1 ` ¨ ¨ ¨ `X2 `X ` 1q. (˚)

Fix a divisor d|pp´ 1q, and write p´ 1 “ kd.
Plug X “ xd and m´ k into (˚):

xp´1 ´ 1
loooomoooon

p´1 solns

“ pxdqk ´ 1 “ pxd ´ 1q
looomooon

sďd sols

ppxpk´1qd ` ¨ ¨ ¨ ` x2d ` xd ` 1q
looooooooooooooooooomooooooooooooooooooon

rď pk ´ 1qd solns (mod p roots)

.

d ě s “ pp´ 1q ´ r ě pp´ 1q ´ pk ´ 1qd
looomooon

pp´1q´d

“ d. So s “ d .

Define |a| “ |a|p as the smallest k ą 0 such that ak ” 1 pmod pq,
and let ψppdq “ #t1 ď a ă p | |a| “ du.

Claim: For all d|pp´ 1q, we have ψppdq “ φpdq.
Namely, there are φpp´ 1q primitive roots (mod p) for all primes p.

Proof. (So far: Count the solutions to

xp´1 ´ 1 ”p 0

in two ways. . . Fix a divisor d|pp´ 1q, and write p´ 1 “ kd. . .)

So there are exactly d solutions to xd ´ 1 ”p 0.

Put another way, there are exactly d values a where |a| divides d.
(We have ad ”p 1 iff |a|p divides d.)

So

ÿ

`|d

φp`q “

d “
ÿ

`|d

ψp`q.

(counting every a with order dividing d, one order at a time.)

(LHS: last time.)

Show φpdq “ ψppdq by induction on d’s prime factorization. ˝

Define |a| “ |a|p as the smallest k ą 0 such that ak ” 1 pmod pq,
and let ψppdq “ #t1 ď a ă p | |a| “ du.

Claim: For all d|pp´ 1q, we have ψppdq “ φpdq.
Namely, there are φpp´ 1q primitive roots (mod p) for all primes p.

Proof. (So far: Count the solutions to

xp´1 ´ 1 ”p 0

in two ways. . . Fix a divisor d|pp´ 1q, and write p´ 1 “ kd. . .)

So there are exactly d solutions to xd ´ 1 ”p 0.
Put another way, there are exactly d values a where |a| divides d.

(We have ad ”p 1 iff |a|p divides d.)

So

ÿ

`|d

φp`q “

d “
ÿ

`|d

ψp`q.

(counting every a with order dividing d, one order at a time.)

(LHS: last time.)

Show φpdq “ ψppdq by induction on d’s prime factorization. ˝

Define |a| “ |a|p as the smallest k ą 0 such that ak ” 1 pmod pq,
and let ψppdq “ #t1 ď a ă p | |a| “ du.

Claim: For all d|pp´ 1q, we have ψppdq “ φpdq.
Namely, there are φpp´ 1q primitive roots (mod p) for all primes p.

Proof. (So far: Count the solutions to

xp´1 ´ 1 ”p 0

in two ways. . . Fix a divisor d|pp´ 1q, and write p´ 1 “ kd. . .)

So there are exactly d solutions to xd ´ 1 ”p 0.
Put another way, there are exactly d values a where |a| divides d.

(We have ad ”p 1 iff |a|p divides d.)

So

ÿ

`|d

φp`q “

d “
ÿ

`|d

ψp`q.

(counting every a with order dividing d, one order at a time.)

(LHS: last time.)

Show φpdq “ ψppdq by induction on d’s prime factorization. ˝

Define |a| “ |a|p as the smallest k ą 0 such that ak ” 1 pmod pq,
and let ψppdq “ #t1 ď a ă p | |a| “ du.

Claim: For all d|pp´ 1q, we have ψppdq “ φpdq.
Namely, there are φpp´ 1q primitive roots (mod p) for all primes p.

Proof. (So far: Count the solutions to

xp´1 ´ 1 ”p 0

in two ways. . . Fix a divisor d|pp´ 1q, and write p´ 1 “ kd. . .)

So there are exactly d solutions to xd ´ 1 ”p 0.
Put another way, there are exactly d values a where |a| divides d.

(We have ad ”p 1 iff |a|p divides d.)

So
ÿ

`|d

φp`q “ d “
ÿ

`|d

ψp`q.

(RHS: counting every a with order dividing d, one order at a time.)

(LHS: last time.)

Show φpdq “ ψppdq by induction on d’s prime factorization. ˝

Define |a| “ |a|p as the smallest k ą 0 such that ak ” 1 pmod pq,
and let ψppdq “ #t1 ď a ă p | |a| “ du.

Claim: For all d|pp´ 1q, we have ψppdq “ φpdq.
Namely, there are φpp´ 1q primitive roots (mod p) for all primes p.

Proof. (So far: Count the solutions to

xp´1 ´ 1 ”p 0

in two ways. . . Fix a divisor d|pp´ 1q, and write p´ 1 “ kd. . .)

So there are exactly d solutions to xd ´ 1 ”p 0.
Put another way, there are exactly d values a where |a| divides d.

(We have ad ”p 1 iff |a|p divides d.)

So
ÿ

`|d

φp`q “ d “
ÿ

`|d

ψp`q.

(RHS: counting every a with order dividing d, one order at a time.)

(LHS: last time.)

Show φpdq “ ψppdq by induction on d’s prime factorization.

˝

Define |a| “ |a|p as the smallest k ą 0 such that ak ” 1 pmod pq,
and let ψppdq “ #t1 ď a ă p | |a| “ du.

Claim: For all d|pp´ 1q, we have ψppdq “ φpdq.
Namely, there are φpp´ 1q primitive roots (mod p) for all primes p.

Proof. (So far: Count the solutions to

xp´1 ´ 1 ”p 0

in two ways. . . Fix a divisor d|pp´ 1q, and write p´ 1 “ kd. . .)

So there are exactly d solutions to xd ´ 1 ”p 0.
Put another way, there are exactly d values a where |a| divides d.

(We have ad ”p 1 iff |a|p divides d.)

So
ÿ

`|d

φp`q “ d “
ÿ

`|d

ψp`q.

(RHS: counting every a with order dividing d, one order at a time.)

(LHS: last time.)

Show φpdq “ ψppdq by induction on d’s prime factorization. ˝

Discrete logarithm

We call g a primitive root (mod p) if |g|p “ φppq “ p´ 1.

Last time: For p prime, we have |a|p “ p´ 1 if and only if

t1, 2, . . . , p´ 1u ”p t1, a, a
2, . . . , ap´2u.

Example: The primitive roots modulo 13 are 2, 6, 7, and 11:

Ò

g

Ó

gk pmod 13q :

Ð k Ñ

1 2 3 4 5 6 7 8 9 10 11 12

2 2 4 8 3 6 12 11 9 5 10 7 1

6 6 10 8 9 2 12 7 3 5 4 11 1

7 7 10 5 9 11 12 6 3 8 4 2 1

11 11 4 5 3 7 12 2 9 8 10 6 1

For a primitive root g, and 1 ď b ď p´ 1, the exponential map is
one-to-one! Define its inverse, the discrete logarithm (base g, mod
p) or index, by

dloggpbq ”p´1 k whenever gk ”p b.

Discrete logarithm

We call g a primitive root (mod p) if |g|p “ φppq “ p´ 1.
Last time: For p prime, we have |a|p “ p´ 1 if and only if

t1, 2, . . . , p´ 1u ”p t1, a, a
2, . . . , ap´2u.

Example: The primitive roots modulo 13 are 2, 6, 7, and 11:

Ò

g

Ó

gk pmod 13q :

Ð k Ñ

1 2 3 4 5 6 7 8 9 10 11 12

2 2 4 8 3 6 12 11 9 5 10 7 1

6 6 10 8 9 2 12 7 3 5 4 11 1

7 7 10 5 9 11 12 6 3 8 4 2 1

11 11 4 5 3 7 12 2 9 8 10 6 1

For a primitive root g, and 1 ď b ď p´ 1, the exponential map is
one-to-one! Define its inverse, the discrete logarithm (base g, mod
p) or index, by

dloggpbq ”p´1 k whenever gk ”p b.

Discrete logarithm

We call g a primitive root (mod p) if |g|p “ φppq “ p´ 1.
Last time: For p prime, we have |a|p “ p´ 1 if and only if

t1, 2, . . . , p´ 1u ”p t1, a, a
2, . . . , ap´2u.

Example: The primitive roots modulo 13 are 2, 6, 7, and 11

:

Ò

g

Ó

gk pmod 13q :

Ð k Ñ

1 2 3 4 5 6 7 8 9 10 11 12

2 2 4 8 3 6 12 11 9 5 10 7 1

6 6 10 8 9 2 12 7 3 5 4 11 1

7 7 10 5 9 11 12 6 3 8 4 2 1

11 11 4 5 3 7 12 2 9 8 10 6 1

For a primitive root g, and 1 ď b ď p´ 1, the exponential map is
one-to-one! Define its inverse, the discrete logarithm (base g, mod
p) or index, by

dloggpbq ”p´1 k whenever gk ”p b.

Discrete logarithm

We call g a primitive root (mod p) if |g|p “ φppq “ p´ 1.
Last time: For p prime, we have |a|p “ p´ 1 if and only if

t1, 2, . . . , p´ 1u ”p t1, a, a
2, . . . , ap´2u.

Example: The primitive roots modulo 13 are 2, 6, 7, and 11:

Ò

g

Ó

gk pmod 13q :

Ð k Ñ

1 2 3 4 5 6 7 8 9 10 11 12

2 2 4 8 3 6 12 11 9 5 10 7 1

6 6 10 8 9 2 12 7 3 5 4 11 1

7 7 10 5 9 11 12 6 3 8 4 2 1

11 11 4 5 3 7 12 2 9 8 10 6 1

For a primitive root g, and 1 ď b ď p´ 1, the exponential map is
one-to-one! Define its inverse, the discrete logarithm (base g, mod
p) or index, by

dloggpbq ”p´1 k whenever gk ”p b.

Discrete logarithm

We call g a primitive root (mod p) if |g|p “ φppq “ p´ 1.
Last time: For p prime, we have |a|p “ p´ 1 if and only if

t1, 2, . . . , p´ 1u ”p t1, a, a
2, . . . , ap´2u.

Example: The primitive roots modulo 13 are 2, 6, 7, and 11:

Ò

g

Ó

gk pmod 13q :

Ð k Ñ

1 2 3 4 5 6 7 8 9 10 11 12

2 2 4 8 3 6 12 11 9 5 10 7 1

6 6 10 8 9 2 12 7 3 5 4 11 1

7 7 10 5 9 11 12 6 3 8 4 2 1

11 11 4 5 3 7 12 2 9 8 10 6 1

For a primitive root g, and 1 ď b ď p´ 1, the exponential map is
one-to-one!

Define its inverse, the discrete logarithm (base g, mod
p) or index, by

dloggpbq ”p´1 k whenever gk ”p b.

Discrete logarithm

We call g a primitive root (mod p) if |g|p “ φppq “ p´ 1.
Last time: For p prime, we have |a|p “ p´ 1 if and only if

t1, 2, . . . , p´ 1u ”p t1, a, a
2, . . . , ap´2u.

Example: The primitive roots modulo 13 are 2, 6, 7, and 11:

Ò

g

Ó

gk pmod 13q :

Ð k Ñ

1 2 3 4 5 6 7 8 9 10 11 12

2 2 4 8 3 6 12 11 9 5 10 7 1

6 6 10 8 9 2 12 7 3 5 4 11 1

7 7 10 5 9 11 12 6 3 8 4 2 1

11 11 4 5 3 7 12 2 9 8 10 6 1

For a primitive root g, and 1 ď b ď p´ 1, the exponential map is
one-to-one! Define its inverse, the discrete logarithm (base g, mod
p) or index, by

dloggpbq ”p´1 k whenever gk ”p b.

gk pmod 13q :
Ò

g

Ó

Ð k Ñ

1 2 3 4 5 6 7 8 9 10 11 12

2 2 4 8 3 6 12 11 9 5 10 7 1

6 6 10 8 9 2 12 7 3 5 4 11 1

7 7 10 5 9 11 12 6 3 8 4 2 1

11 11 4 5 3 7 12 2 9 8 10 6 1

Fix p. For a primitive root g, and 1 ď b ď p´ 1, define the
discrete logarithm (base g, mod p) or index by

dloggpbq ”p´1 k whenever gk ”p b.

dloggpbq :
Ò

g

Ó

Ð k Ñ

1 2 3 4 5 6 7 8 9 10 11 12

2 12 1 4 2 9 5 11 3 8 10 7 6

6 12 5 8 10 9 1 7 3 4 2 11 6

7 12 11 8 10 3 7 1 9 4 2 5 6

11 12 7 4 2 3 11 5 9 8 10 1 6

Discrete logarithm
Fix p. For a primitive root g, and 1 ď b ď p´ 1, define the
discrete logarithm or index (base g, mod p) by

dloggpbq ”p´1 k whenever gk ”p b.

(Book: dloggpbq “ Ipbq)

Proposition

We have

dloggpabq ”p´1 dloggpaq ` dloggpbq

and

dloggpb
cq ”p´1 c ¨ dloggpbq

(Why p´ 1?? In short, dloggpbq corresponds to an exponent, so
lives in φppq’s world!)
Proof. Raise g to one side and reduce. . .

Discrete logarithm
Fix p. For a primitive root g, and 1 ď b ď p´ 1, define the
discrete logarithm or index (base g, mod p) by

dloggpbq ”p´1 k whenever gk ”p b.

(Book: dloggpbq “ Ipbq)

Proposition

We have

dloggpabq ”p´1 dloggpaq ` dloggpbq

and

dloggpb
cq ”p´1 c ¨ dloggpbq

(Why p´ 1?? In short, dloggpbq corresponds to an exponent, so
lives in φppq’s world!)
Proof. Raise g to one side and reduce. . .

Discrete logarithm
Fix p. For a primitive root g, and 1 ď b ď p´ 1, define the
discrete logarithm or index (base g, mod p) by

dloggpbq ”p´1 k whenever gk ”p b.

(Book: dloggpbq “ Ipbq)

Proposition

We have

dloggpabq ”p´1 dloggpaq ` dloggpbq

and

dloggpb
cq ”p´1 c ¨ dloggpbq

(Why p´ 1??

In short, dloggpbq corresponds to an exponent, so
lives in φppq’s world!)
Proof. Raise g to one side and reduce. . .

Discrete logarithm
Fix p. For a primitive root g, and 1 ď b ď p´ 1, define the
discrete logarithm or index (base g, mod p) by

dloggpbq ”p´1 k whenever gk ”p b.

(Book: dloggpbq “ Ipbq)

Proposition

We have

dloggpabq ”p´1 dloggpaq ` dloggpbq

and

dloggpb
cq ”p´1 c ¨ dloggpbq

(Why p´ 1?? In short, dloggpbq corresponds to an exponent, so
lives in φppq’s world!)

Proof. Raise g to one side and reduce. . .

Discrete logarithm
Fix p. For a primitive root g, and 1 ď b ď p´ 1, define the
discrete logarithm or index (base g, mod p) by

dloggpbq ”p´1 k whenever gk ”p b.

(Book: dloggpbq “ Ipbq)

Proposition

We have

dloggpabq ”p´1 dloggpaq ` dloggpbq

and

dloggpb
cq ”p´1 c ¨ dloggpbq

(Why p´ 1?? In short, dloggpbq corresponds to an exponent, so
lives in φppq’s world!)
Proof. Raise g to one side and reduce. . .

Using logarithms to do computations

Fix p “ 37. Then 2 is a primitive root.

The discrete logarithm values are given by the following.

b 1 2 3 4 5 6 7 8 9

dlog2pbq 36 1 26 2 23 27 32 3 16

b 10 11 12 13 14 15 16 17 18

dlog2pbq 24 30 28 11 33 13 4 7 17

b 19 20 21 22 23 24 25 26 27

dlog2pbq 35 25 22 31 15 29 10 12 6

b 28 29 30 31 32 33 34 35 36

dlog2pbq 34 21 14 9 5 20 8 19 18

Example: Use the logarithm table to compute the following
pmod 37q:

(1) 25 ¨ 16 (2) 2832 (3) 9´1

(4) x satisfying 20x ” 3 (5) 3x30 ” 4

