Recall

$$\phi(n) = \#\{1 \le a \le n \mid \gcd(a, n) = 1\}$$

satisfies

$$\phi(p^k) = p^k - p^{k-1}$$
 and $\phi(mn) = \phi(m)\phi(n)$

if p is prime, and gcd(m, n) = 1.

Define

$$F(n) = \sum_{d|n} \phi(d)$$

to be the sum of ϕ applied to all of the divisors of n (including 1 and n).

Ex: The divisors of 12 are 1, 2, 3, 4, 6, and 12, so

$$F(12) = \phi(1) + \phi(2) + \phi(3) + \phi(4) + \phi(6) + \phi(12)$$

= 1 + 1 + 2 + (4 - 2) + 1 * 2 + (4 - 2) * 2
= 1 + 1 + 2 + 2 + 2 + 4 = 12

$$\begin{split} \phi(n) &= \#\{1\leqslant a\leqslant n \mid \gcd(a,n)=1\}\\ \phi(p^k) &= p^k - p^{k-1} \quad \text{and} \quad \phi(mn) = \phi(m)\phi(n)\\ &\qquad \qquad \text{for p is prime, and $\gcd(m,n)=1$.} \end{split}$$

Define $F(n) = \sum_{d|n} \phi(d)$.

Ex: The divisors of 12 are 1, 2, 3, 4, 6, and 12, so

$$F(12) = \phi(1) + \phi(2) + \phi(3) + \phi(4) + \phi(6) + \phi(12) = 12$$

Theorem

For $n \in \mathbb{Z}_{>0}$, we have F(n) = n.

Prove in two parts:

Lemma (1)

If p is prime, then $F(p^k) = p^k$.

Proof. The divisors of p^k are $1, p, p^2, \dots, p^k$. So

$$F(p^k) = \sum_{i=0}^k \phi(p^i) = 1 + \sum_{i=1}^k (p^i - p^{i-1}) = 1 + p^k - 1 = p^k.$$
telescoping sum!

$$\phi(p^k)=p^k-p^{k-1} \quad \text{ and } \quad \phi(mn)=\phi(m)\phi(n)$$
 for p is prime, and $\gcd(m,n)=1.$ Define
$$F(n)=\sum_{d|n}\phi(d).$$

Define
$$F(n) = \sum_{d|n} \phi(d)$$

Theorem

For $n \in \mathbb{Z}_{>0}$, we have F(n) = n.

Prove in two parts:

Lemma (1)

If p is prime, then $F(p^k) = p^k$.

Lemma (2)

If
$$gcd(m, n) = 1$$
, then $F(mn) = F(m)F(n)$.
(F, ϕ are multiplicative)

Proof. Let d_1, \ldots, d_k be the divisors of m and e_1, \ldots, e_ℓ the divisors of n. Then $\gcd(d_i,e_j)=1$, and the divisors of mn are

$$d_i e_j \quad \text{ for } 1 \leqslant i \leqslant k, 1 \leqslant j \leqslant \ell.$$

Compute F(m)F(n)...

Back to Fermat's little theorem

We computed that for a prime p and integer a with $p \nmid a$, we have $a^{p-1} \equiv 1 \pmod{p}$.

Question: What is the *least* (positive) power k with $a^k \equiv_p 1$?

		$a^k \pmod{7}$:													
	$a^k \pmod{5}$:							$\leftarrow k \rightarrow$							
	$\leftarrow k \rightarrow$								1	2	3	4	5	6	
$\uparrow \\ a \\ \downarrow$		1	2	3	4	$ 1 _5 = 1$	†	1	1	1	1	1	1	1	$ 1 _7 = 1$
	1	1	1	1	1			2	2	4	1	2	4	1	$ 2 _7 = 3$
	2	2	4	3	1	$ 2 _5 = 4$		3	3	2	6	4		1	1 1:
	3	3	4	2	1	$ 3 _5 = 4$	a	4	4	2	1	4	2	1	$ 4 _7 = 3$
	4	4	1	4	1	$ 4 _5 = 2$	\	5	5	4	6	2	3	1	$ 5 _7 = 6$
		•						6	6	1	6	1	6	1	$ 6 _7 = 2$

Define: The order of $a \pmod{p}$, written |a| or $|a|_p$, is the smallest positive integer k such that $a^k \equiv 1 \pmod{p}$. (Book: $e_p(a) = |a|_p$)

Order

Define: Fix n, and let a be an integer with gcd(a, n) = 1. The order of $a \pmod{n}$, written |a| or $|a|_n$, is the smallest positive integer k such that $a^k \equiv 1 \pmod{n}$. (Book: $e_n(a) = |a|_n$)

Facts:

- (1) |a| = 1 if and only if a = 1.
- (2) $1 \le |a|_n \le \phi(n)$.
- (3) $|a|_n$ divides $\phi(n)$.
- (4) If $|a|_n=k$, then $1,a,a^2,\ldots,a^{k-1}$ are all pairwise distinct (mod n). In particular, for p prime, we have $|a|_p=p-1$ if and only if

$$\{1, 2, \dots, p-1\} \equiv_p \{1, a, a^2, \dots, a^{p-2}\}.$$

We call a a primitive root (mod n) if $|a|_n = \phi(n)$. Define

$$\psi_n(k) = \#\{1 \le a < n \mid |a| = k\}$$

You try: Compute $\psi_p(k)$ for $1 \le k \le p-1$ for p=3,5, and 7.