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Define: Fix n, and let a be an integer with ged(a,n) = 1. The
order of a (mod n), written |a| or |a|,, is the smallest positive

integer k such that a* =1 (mod n). (Book: e, (a) = |al,)

Facts:

(1) |a] =1 if and only if a = 1.

(2) 1< laln < ¢(n).

(3) |al, divides ¢(n).

(4) If |a|, = k, then 1,a,a?,...,a*"" are all pairwise distinct
(mod n). In particular, for p prime, we have |a|, = p — 1 if
and only if

{1,2,...,p—1} =, {1,a,d,...,aP72}.
We call a a primitive root (mod n) if |a|, = ¢(n).
Define

(k) = #{

1 <n|la| =k}
You try: Compute ,(k) for 1

a
k<p—1forp=3,5 and 7.
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