Computing data with spreadsheets

Example: Computing triangular numbers and their square roots. Recall, we showed $1+2+\cdots+n=n(n+1) / 2$.

Computing data with spreadsheets

Example: Computing triangular numbers and their square roots.
Recall, we showed $1+2+\cdots+n=n(n+1) / 2$.
Enter the following into the corresponding cells:
A1: n
B1: triangle
C1: sqrt
A2: 1
$\mathrm{B} 2:=\mathrm{A} 2 *(\mathrm{~A} 2+1) / 2$
C2: =SQRT(B2)
$\mathrm{A} 2:=\mathrm{A} 2+1 \quad \mathrm{~B} 2:=\mathrm{A} 3^{*}(\mathrm{~A} 3+1) / 2 \quad \mathrm{C} 3:=\operatorname{SQRT}(\mathrm{B} 3)$

Computing data with spreadsheets

Example: Computing triangular numbers and their square roots.
Recall, we showed $1+2+\cdots+n=n(n+1) / 2$.
Enter the following into the corresponding cells:
A1: n
B1: triangle
C1: sqrt
A2: 1
$\mathrm{B} 2:=\mathrm{A} 2 *(\mathrm{~A} 2+1) / 2$
C2: =SQRT(B2)

$$
\mathrm{A} 2:=\mathrm{A} 2+1 \quad \mathrm{~B} 2:=\mathrm{A} 3^{*}(\mathrm{~A} 3+1) / 2 \quad \mathrm{C} 3:=\mathrm{SQRT}(\mathrm{~B} 3)
$$

The result should look like

Computing data with spreadsheets

Example: Computing triangular numbers and their square roots.
Recall, we showed $1+2+\cdots+n=n(n+1) / 2$.
Enter the following into the corresponding cells:
A1: n
B1: triangle
C1: sqrt
A2: 1
$\mathrm{B} 2:=\mathrm{A} 2 *(\mathrm{~A} 2+1) / 2$
C2: $=$ SQRT(B2)
$\mathrm{A} 2:=\mathrm{A} 2+1 \quad \mathrm{~B} 2:=\mathrm{A} 3^{*}(\mathrm{~A} 3+1) / 2 \quad \mathrm{C} 3:=\operatorname{SQRT}(\mathrm{B} 3)$

Next, select cells A3, B3, and C3 and copy.

Computing data with spreadsheets

Example: Computing triangular numbers and their square roots.
Recall, we showed $1+2+\cdots+n=n(n+1) / 2$.
Enter the following into the corresponding cells:
A1: n
B 1 : triangle
C1: sqrt
A2: 1
$\mathrm{B} 2:=\mathrm{A} 2^{*}(\mathrm{~A} 2+1) / 2$
C2: =SQRT(B2)
A2: $=A 2+1$
$B 2:=A 3 *(A 3+1) / 2$
C3: =SQRT(B3)

Next, select cells A3, B3, and C3 and copy.
Finally, select cells in as many rows as you want below that, in the columns A, B, and C, and paste.

Example: Computing triangular numbers and their square roots.
Enter the following into the corresponding cells:

$$
\begin{array}{lll}
\text { A1: n } & \text { B1: triangle } & \text { C1: sqrt } \\
\text { A2: } 1 & \text { B2: }=\mathrm{A} 2^{*}(\mathrm{~A} 2+1) / 2 & \text { C2: }=\mathrm{SQRT}(\mathrm{~B} 2) \\
\mathrm{A} 2:=\mathrm{A} 2+1 & \mathrm{~B} 2:=\mathrm{A} 3^{*}(\mathrm{~A} 3+1) / 2 & \mathrm{C} 3:=\mathrm{SQRT}(\mathrm{~B} 3)
\end{array}
$$

Next, select cells A3, B3, and C3 and copy.
Finally, select cells in as many rows as you want below that, in the columns A, B, and C, and paste. The spreadsheet will extrapolate for you, and make new formulas relative to their shifted positions.

				$\operatorname{fx}=A 7 *(A 7+1) / 2$
\triangle	A		C	
1	n	trangle	sqrt	
2	1	1	1	
3	2	3	1.73205081	
4	3	6	2.44948974	
5	4	10	3.16227766	
6	5	15	3.87298335	
7	6	21	4.58257569	
8	7	28	5.29150262	
9	8	36	6	

Example: Computing triangular numbers and their square roots.
Enter the following into the corresponding cells:

$$
\begin{array}{lll}
\text { A1: n } & \text { B1: triangle } & \text { C1: sqrt } \\
\text { A2: } 1 & \text { B2: }=\mathrm{A} 2^{*}(\mathrm{~A} 2+1) / 2 & \text { C2: }=\operatorname{SQRT}(\mathrm{B} 2) \\
\mathrm{A} 2:=\mathrm{A} 2+1 & \mathrm{~B} 2:=\mathrm{A} 3^{*}(\mathrm{~A} 3+1) / 2 & \mathrm{C} 3:=\operatorname{SQRT}(\mathrm{B} 3)
\end{array}
$$

Next, select cells A3, B3, and C3 and copy.
Finally, select cells in as many rows as you want below that, in the columns A, B, and C, and paste. The spreadsheet will extrapolate for you, and make new formulas relative to their shifted positions.

	A		C
1	n	trangle	sqrt
2	1	- 1	1
3	2	3	1.73205081
4	3	6	2.44948974
5	4	10	3.16227766
6	5	15	3.87298335
7	6	21	4.58257569
8	7	28	5.29150262
9	8	36	6

$\mathrm{Fx}_{x}=A 7 *(A 7+1) / 2$

If you don't want it to adjust part of a formula with shifts, add a $\$$ in front of the row number, cell number, or both:
$\mathrm{A} \$ 2, \$ \mathrm{~A} 2$, or $\$ \mathrm{~A} \$ 2$.

Pythagorean Triples

The Pythagorean theorem says the lengths of the sides of a right triangle satisfy the following:

$$
a^{2}+b^{2}=c^{2}
$$

Pythagorean Triples

The Pythagorean theorem says the lengths of the sides of a right triangle satisfy the following:

$$
a^{2}+b^{2}=c^{2}
$$

Geometric proof: Compare the area of the white spaces in

versus

Pythagorean Triples

The Pythagorean theorem says the lengths of the sides of a right triangle satisfy the following:

$$
a^{2}+b^{2}=c^{2}
$$

Number theorists ask: Are there integer solutions?

Pythagorean Triples

The Pythagorean theorem says the lengths of the sides of a right triangle satisfy the following:

$$
a^{2}+b^{2}=c^{2}
$$

Number theorists ask: Are there integer solutions? If so, are there infinitely many integer solutions?

Pythagorean Triples

The Pythagorean theorem says the lengths of the sides of a right triangle satisfy the following:

$$
a^{2}+b^{2}=c^{2}
$$

Number theorists ask: Are there integer solutions? If so, are there infinitely many integer solutions? Do they all follow some common pattern, or are the solutions random? etc.

Pythagorean Triples

The Pythagorean theorem says the lengths of the sides of a right triangle satisfy the following:

$$
a^{2}+b^{2}=c^{2}
$$

Number theorists ask: Are there integer solutions? If so, are there infinitely many integer solutions? Do they all follow some common pattern, or are the solutions random? etc.
Integer solutions: are there $a, b, c \in \mathbb{Z}$ satisfying $a^{2}+b^{2}=c^{2}$?

Pythagorean Triples

The Pythagorean theorem says the lengths of the sides of a right triangle satisfy the following:

$$
a^{2}+b^{2}=c^{2}
$$

Number theorists ask: Are there integer solutions? If so, are there infinitely many integer solutions? Do they all follow some common pattern, or are the solutions random? etc.
Integer solutions: are there $a, b, c \in \mathbb{Z}$ satisfying $a^{2}+b^{2}=c^{2}$? Yes!

$$
3^{2}+4^{2}=5^{2}
$$

Pythagorean Triples

The Pythagorean theorem says the lengths of the sides of a right triangle satisfy the following:

$$
a^{2}+b^{2}=c^{2}
$$

Number theorists ask: Are there integer solutions? If so, are there infinitely many integer solutions? Do they all follow some common pattern, or are the solutions random? etc.
Integer solutions: are there $a, b, c \in \mathbb{Z}$ satisfying $a^{2}+b^{2}=c^{2}$? Yes!

$$
3^{2}+4^{2}=5^{2}, \quad 5^{2}+12^{2}=13^{2}
$$

Pythagorean Triples

The Pythagorean theorem says the lengths of the sides of a right triangle satisfy the following:

$$
a^{2}+b^{2}=c^{2}
$$

Number theorists ask: Are there integer solutions? If so, are there infinitely many integer solutions? Do they all follow some common pattern, or are the solutions random? etc.
Integer solutions: are there $a, b, c \in \mathbb{Z}$ satisfying $a^{2}+b^{2}=c^{2}$? Yes!

$$
3^{2}+4^{2}=5^{2}, \quad 5^{2}+12^{2}=13^{2}, \quad 8^{2}+15^{2}=17^{2} \ldots
$$

Pythagorean Triples

The Pythagorean theorem says the lengths of the sides of a right triangle satisfy the following:

$$
a^{2}+b^{2}=c^{2}
$$

Number theorists ask: Are there integer solutions? If so, are there infinitely many integer solutions? Do they all follow some common pattern, or are the solutions random? etc.
Integer solutions: are there $a, b, c \in \mathbb{Z}$ satisfying $a^{2}+b^{2}=c^{2}$? Yes!

$$
3^{2}+4^{2}=5^{2}, \quad 5^{2}+12^{2}=13^{2}, \quad 8^{2}+15^{2}=17^{2} \ldots
$$

These are called Pythagorean triples.

Pythagorean Triples

The Pythagorean theorem says the lengths of the sides of a right triangle satisfy the following:

$$
a^{2}+b^{2}=c^{2}
$$

Number theorists ask: Are there integer solutions? If so, are there infinitely many integer solutions? Do they all follow some common pattern, or are the solutions random? etc.
Integer solutions: are there $a, b, c \in \mathbb{Z}$ satisfying $a^{2}+b^{2}=c^{2}$? Yes!

$$
3^{2}+4^{2}=5^{2}, \quad 5^{2}+12^{2}=13^{2}, \quad 8^{2}+15^{2}=17^{2} \ldots
$$

These are called Pythagorean triples.
Trivial solution: $a=b=c=0$.

Pythagorean Triples

The Pythagorean theorem says the lengths of the sides of a right triangle satisfy the following:

$$
a^{2}+b^{2}=c^{2}
$$

Number theorists ask: Are there integer solutions? If so, are there infinitely many integer solutions? Do they all follow some common pattern, or are the solutions random? etc.
Integer solutions: are there $a, b, c \in \mathbb{Z}$ satisfying $a^{2}+b^{2}=c^{2}$? Yes!

$$
3^{2}+4^{2}=5^{2}, \quad 5^{2}+12^{2}=13^{2}, \quad 8^{2}+15^{2}=17^{2} \ldots
$$

These are called Pythagorean triples.
Trivial solution: $a=b=c=0$.
(Don't forget to look for the simplest solutions!!)

Pythagorean Triples

Number theorists ask: Are there integer solutions? If so, are there infinitely many integer solutions? Do they all follow some common pattern, or are the solutions random? etc.

Integer solutions: are there $a, b, c \in \mathbb{Z}_{\geqslant 0}$ satisfying $a^{2}+b^{2}=c^{2}$?
Yes!

$$
3^{2}+4^{2}=5^{2}, 5^{2}+12^{2}=13^{2}, 8^{2}+15^{2}=17^{2}
$$

These are called Pythagorean triples.
Trivial solution: $a=b=c=0$.
(Don't forget to look for the simplest solutions!!)
Infinitely many?

Pythagorean Triples

Number theorists ask: Are there integer solutions? If so, are there infinitely many integer solutions? Do they all follow some common pattern, or are the solutions random? etc.

Integer solutions: are there $a, b, c \in \mathbb{Z}_{\geqslant 0}$ satisfying $a^{2}+b^{2}=c^{2}$?
Yes!

$$
3^{2}+4^{2}=5^{2}, 5^{2}+12^{2}=13^{2}, 8^{2}+15^{2}=17^{2}
$$

These are called Pythagorean triples.
Trivial solution: $a=b=c=0$.
(Don't forget to look for the simplest solutions!!)
Infinitely many?
Claim: If (a, b, c) is a Pythagorean triple, then so is $(n a, n b, n c)$ for any $n \in \mathbb{Z}_{\geqslant 0}$.

Pythagorean Triples

Number theorists ask: Are there integer solutions? If so, are there infinitely many integer solutions? Do they all follow some common pattern, or are the solutions random? etc.

Integer solutions: are there $a, b, c \in \mathbb{Z}_{\geqslant 0}$ satisfying $a^{2}+b^{2}=c^{2}$?
Yes!

$$
3^{2}+4^{2}=5^{2}, 5^{2}+12^{2}=13^{2}, 8^{2}+15^{2}=17^{2}
$$

These are called Pythagorean triples.
Trivial solution: $a=b=c=0$.
(Don't forget to look for the simplest solutions!!)
Infinitely many?
Claim: If (a, b, c) is a Pythagorean triple, then so is $(n a, n b, n c)$ for any $n \in \mathbb{Z}_{\geqslant 0}$. So, yes, but this doesn't generate all solutions!

Pythagorean Triples

Number theorists ask: Are there integer solutions? If so, are there infinitely many integer solutions? Do they all follow some common pattern, or are the solutions random? etc.

Integer solutions: are there $a, b, c \in \mathbb{Z}_{\geqslant 0}$ satisfying $a^{2}+b^{2}=c^{2}$? Yes!

$$
3^{2}+4^{2}=5^{2}, 5^{2}+12^{2}=13^{2}, 8^{2}+15^{2}=17^{2}
$$

These are called Pythagorean triples.
Trivial solution: $a=b=c=0$.
(Don't forget to look for the simplest solutions!!)
Infinitely many?
Claim: If (a, b, c) is a Pythagorean triple, then so is $(n a, n b, n c)$ for any $n \in \mathbb{Z}_{\geqslant 0}$. So, yes, but this doesn't generate all solutions!

We call a Pythagorean triple (a, b, c) primitive if a, b, and c have no common factors, meaning there is no $d \in \mathbb{Z}_{>0}$ such that a, b, and c are all multiples of d.

Pythagorean Triples

Number theorists ask: Are there integer solutions? If so, are there infinitely many integer solutions? Do they all follow some common pattern, or are the solutions random? etc.

Integer solutions: are there $a, b, c \in \mathbb{Z}_{\geqslant 0}$ satisfying $a^{2}+b^{2}=c^{2}$? Yes!

$$
3^{2}+4^{2}=5^{2}, 5^{2}+12^{2}=13^{2}, 8^{2}+15^{2}=17^{2}
$$

These are called Pythagorean triples.
Trivial solution: $a=b=c=0$.
(Don't forget to look for the simplest solutions!!)
Infinitely many?
Claim: If (a, b, c) is a Pythagorean triple, then so is ($n a, n b, n c$) for any $n \in \mathbb{Z}_{\geqslant 0}$. So, yes, but this doesn't generate all solutions!

We call a Pythagorean triple (a, b, c) primitive if a, b, and c have no common factors, meaning there is no $d \in \mathbb{Z}_{>0}$ such that a, b, and c are all multiples of d.

Ex: $(3,4,5) \quad$ Non-ex: $(6,8,10)$.

Primitive Pythagorean triples (PPTs)

More examples:

$$
\begin{array}{cccc}
(3,4,5) & (20,21,29) & (28,45,53) & (5,12,13) \\
(9,40,41) & (33,56,65) & (8,15,17) & (7,24,25) \\
(12,35,37) & (11,60,61) & (16,63,65) & (48,55,73)
\end{array}
$$

Primitive Pythagorean triples (PPTs)

More examples:

$$
\begin{array}{cccc}
(3,4,5) & (20,21,29) & (28,45,53) & (5,12,13) \\
(9,40,41) & (33,56,65) & (8,15,17) & (7,24,25) \\
(12,35,37) & (11,60,61) & (16,63,65) & (48,55,73)
\end{array}
$$

Generic even numbers are written $2 k$ with $k \in \mathbb{Z}$. Generic odd numbers are written $2 k+1$ with $k \in \mathbb{Z}$.

Primitive Pythagorean triples (PPTs)

More examples:

$$
\begin{array}{cccc}
(3,4,5) & (20,21,29) & (28,45,53) & (5,12,13) \\
(9,40,41) & (33,56,65) & (8,15,17) & (7,24,25) \\
(12,35,37) & (11,60,61) & (16,63,65) & (48,55,73)
\end{array}
$$

Generic even numbers are written $2 k$ with $k \in \mathbb{Z}$. Generic odd numbers are written $2 k+1$ with $k \in \mathbb{Z}$.

Square of an even number:

Primitive Pythagorean triples (PPTs)

More examples:

$$
\begin{array}{cccc}
(3,4,5) & (20,21,29) & (28,45,53) & (5,12,13) \\
(9,40,41) & (33,56,65) & (8,15,17) & (7,24,25) \\
(12,35,37) & (11,60,61) & (16,63,65) & (48,55,73)
\end{array}
$$

Generic even numbers are written $2 k$ with $k \in \mathbb{Z}$. Generic odd numbers are written $2 k+1$ with $k \in \mathbb{Z}$.
Square of an even number: $(2 k)^{2}=2 \underbrace{\left(2 k^{2}\right)}_{\text {int }}$

Primitive Pythagorean triples (PPTs)

More examples:

$$
\begin{array}{cccc}
(3,4,5) & (20,21,29) & (28,45,53) & (5,12,13) \\
(9,40,41) & (33,56,65) & (8,15,17) & (7,24,25) \\
(12,35,37) & (11,60,61) & (16,63,65) & (48,55,73)
\end{array}
$$

Generic even numbers are written $2 k$ with $k \in \mathbb{Z}$. Generic odd numbers are written $2 k+1$ with $k \in \mathbb{Z}$.

Square of an even number: $(2 k)^{2}=2 \underbrace{\left(2 k^{2}\right)}_{\text {int }}$ Even!

Primitive Pythagorean triples (PPTs)

More examples:

$$
\begin{array}{cccc}
(3,4,5) & (20,21,29) & (28,45,53) & (5,12,13) \\
(9,40,41) & (33,56,65) & (8,15,17) & (7,24,25) \\
(12,35,37) & (11,60,61) & (16,63,65) & (48,55,73)
\end{array}
$$

Generic even numbers are written $2 k$ with $k \in \mathbb{Z}$. Generic odd numbers are written $2 k+1$ with $k \in \mathbb{Z}$.

Square of an even number: $(2 k)^{2}=2 \underbrace{\left(2 k^{2}\right)}_{\text {int }}$ Even!
Square of an odd number:

Primitive Pythagorean triples (PPTs)

More examples:

$$
\begin{array}{cccc}
(3,4,5) & (20,21,29) & (28,45,53) & (5,12,13) \\
(9,40,41) & (33,56,65) & (8,15,17) & (7,24,25) \\
(12,35,37) & (11,60,61) & (16,63,65) & (48,55,73)
\end{array}
$$

Generic even numbers are written $2 k$ with $k \in \mathbb{Z}$. Generic odd numbers are written $2 k+1$ with $k \in \mathbb{Z}$.

Square of an even number: $(2 k)^{2}=2 \underbrace{\left(2 k^{2}\right)}_{\text {int }}$ Even!
Square of an odd number:

$$
(2 k+1)^{2}=4 k^{2}+4 k+1
$$

Primitive Pythagorean triples (PPTs)

More examples:

$$
\begin{array}{cccc}
(3,4,5) & (20,21,29) & (28,45,53) & (5,12,13) \\
(9,40,41) & (33,56,65) & (8,15,17) & (7,24,25) \\
(12,35,37) & (11,60,61) & (16,63,65) & (48,55,73)
\end{array}
$$

Generic even numbers are written $2 k$ with $k \in \mathbb{Z}$. Generic odd numbers are written $2 k+1$ with $k \in \mathbb{Z}$.
Square of an even number: $(2 k)^{2}=2 \underbrace{\left(2 k^{2}\right)}_{\text {int }}$ Even!
Square of an odd number:

$$
(2 k+1)^{2}=4 k^{2}+4 k+1=2 \underbrace{\left(2 k^{2}+2 k\right)}_{\text {integer }}+1
$$

Primitive Pythagorean triples (PPTs)

More examples:

$(3,4,5)$	$(20,21,29)$	$(28,45,53)$	$(5,12,13)$
$(9,40,41)$	$(33,56,65)$	$(8,15,17)$	$(7,24,25)$
$(12,35,37)$	$(11,60,61)$	$(16,63,65)$	$(48,55,73)$

Generic even numbers are written $2 k$ with $k \in \mathbb{Z}$. Generic odd numbers are written $2 k+1$ with $k \in \mathbb{Z}$.

Square of an even number: $(2 k)^{2}=2 \underbrace{\left(2 k^{2}\right)}_{\text {int }}$ Even!
Square of an odd number:

$$
(2 k+1)^{2}=4 k^{2}+4 k+1=2 \underbrace{\left(2 k^{2}+2 k\right)}_{\text {integer }}+1 \quad \text { Odd! }
$$

Similarly, you can show that sum of evens and odds follows the pattern

+	even	odd
even	even	odd
odd	odd	even

Primitive Pythagorean triples (PPTs)

You try: For solutions $a, b, c \in Z Z$ to $a^{2}+b^{2}=c^{2}$, complete the following table.

a	b	c
even	even	
even	odd	
odd	even	
odd	odd	

Which could possibly be primitive?

Primitive Pythagorean triples (PPTs)

You try: For solutions $a, b, c \in Z Z$ to $a^{2}+b^{2}=c^{2}$, complete the following table.

a	b	c
even	even	
even	odd	
odd	even	
odd	odd	

Which could possibly be primitive?

Without loss of generality (WLOG), assume a is odd and b is even.
(WLOG here means that since a and b are interchangeable, we don't need to also consider the cases where the reverse is true)

Looking for more primitive Pythagorean triples (PPTs)

 Without loss of generality (WLOG), assume a is odd and b is even, so c is odd. (WLOG here means that sincea and b are interchangeable, we don't need to also consider the cases where the reverse is true)If $a^{2}+b^{2}=c^{2}$, then $a^{2}=c^{2}-b^{2}$

Looking for more primitive Pythagorean triples (PPTs)

 Without loss of generality (WLOG), assume a is odd and b is even, so c is odd. (WLOG here means that sincea and b are interchangeable, we don't need to also consider the cases where the reverse is true)$$
\text { If } a^{2}+b^{2}=c^{2} \text {, then } a^{2}=c^{2}-b^{2}=(c-b)(c+b)
$$

Looking for more primitive Pythagorean triples (PPTs)

 Without loss of generality (WLOG), assume a is odd and b is even, so c is odd. (WLOG here means that sincea and b are interchangeable, we don't need to also consider the cases where the reverse is true) If $a^{2}+b^{2}=c^{2}$, then $a^{2}=c^{2}-b^{2}=(c-b)(c+b)$.Claims: Assume $a, b, c>0$.

1. Both $c-b$ and $c+b$ are positive odd integers.

Looking for more primitive Pythagorean triples (PPTs)

 Without loss of generality (WLOG), assume a is odd and b is even, so c is odd. (WLOG here means that sincea and b are interchangeable, we don't need to also consider the cases where the reverse is true)$$
\text { If } a^{2}+b^{2}=c^{2}, \text { then } a^{2}=c^{2}-b^{2}=(c-b)(c+b)
$$

Claims: Assume $a, b, c>0$.

1. Both $c-b$ and $c+b$ are positive odd integers.
2. There are no divisors common to $c-b$ and $c+b$.

Looking for more primitive Pythagorean triples (PPTs)

 Without loss of generality (WLOG), assume a is odd and b is even, so c is odd. (WLOG here means that since a and b are interchangeable, we don't need to also consider the cases where the reverse is true)If $a^{2}+b^{2}=c^{2}$, then $a^{2}=c^{2}-b^{2}=(c-b)(c+b)$.
Claims: Assume $a, b, c>0$.

1. Both $c-b$ and $c+b$ are positive odd integers.
2. There are no divisors common to $c-b$ and $c+b$.
3. Both $c-b$ and $c+b$ are perfect squares.

Later we will talk about the uniqueness of prime factorizations. For today, assume that if

$$
n=a b \quad \text { for positive integers } n, a, \text { and } b,
$$

then there is a one-to-one correspondence between

$$
\text { \{prime divisors of } n \text {, counting multiplicity\} and }
$$

\{prime divs of a, counting mult $\} \sqcup\{$ prime divs of b, counting mult $\}$.

Looking for more primitive Pythagorean triples (PPTs)

Let (a, b, c) be a PPT with $a, b, c>0$. We've shown that $c-b$ and $c+b$ are positive perfect squares with no common divisors.

Looking for more primitive Pythagorean triples (PPTs)

Let (a, b, c) be a PPT with $a, b, c>0$. We've shown that $c-b$ and $c+b$ are positive perfect squares with no common divisors. Define $s, t \in \mathbb{Z}_{>0}$ by

$$
c+b=s^{2} \quad \text { and } \quad c-b=t^{2} .
$$

Looking for more primitive Pythagorean triples (PPTs)

 Let (a, b, c) be a PPT with $a, b, c>0$. We've shown that $c-b$ and $c+b$ are positive perfect squares with no common divisors. Define $s, t \in \mathbb{Z}_{>0}$ by$$
c+b=s^{2} \quad \text { and } \quad c-b=t^{2} .
$$

Theorem
Primitive Pythagorean triples are classified by positive integers a, b, and c such that

$$
a=s t, \quad b=\frac{s^{2}-t^{2}}{2}, \quad \text { and } \quad c=\frac{s^{2}+t^{2}}{2}
$$

for odd integers $s>t \geqslant 1$ with no common factors.

Looking for more primitive Pythagorean triples (PPTs)

 Let (a, b, c) be a PPT with $a, b, c>0$. We've shown that $c-b$ and $c+b$ are positive perfect squares with no common divisors. Define $s, t \in \mathbb{Z}_{>0}$ by$$
c+b=s^{2} \quad \text { and } \quad c-b=t^{2} .
$$

Theorem
Primitive Pythagorean triples are classified by positive integers a, b, and c such that

$$
a=s t, \quad b=\frac{s^{2}-t^{2}}{2}, \quad \text { and } \quad c=\frac{s^{2}+t^{2}}{2}
$$

for odd integers $s>t \geqslant 1$ with no common factors.
You try: Exercise 5, parts (c), (d), and/or (e).

