b? (mod n) :

— n — modulo 13:
5167189 10]11]12|13 b |V |V
T T s O O R O R O 1] 1 |1
2144|4444 | 4] 4] 4 21 2 | 4
31413[2(1]0[/9]9]9]9 313 |9
T4 |1/4(2]0]7|6|5|4]3 41 4 |3
bl 5 114|175 |3|1]12 51 5 |12
/6 1{4[0]6|3]0]10 6| 6 |10
7 11495 ]1]10 7| —6110
8 1149 |4]12 8 | —5 |12
9 114913 9| —41] 3
10 11419 10 =319
11 1] 4 11| -2 4
12 1 121 —11]1

Most values will appear at least twice: b = (—b)? =, (n — b)2.

What values appear as b* (mod n)?

i.e. what values a have square roots modulo n?

For now, sticking to prime modulus p:
Since

(p—b)* =p (=b)* = b*,
we only need look at

1
2 forb=1,2, ... pT.

Let b be a integer that's not a multiple of p. Then if b is congruent
to a square modulo p, we call it a quadratic residue (QR) modulo
p. Otherwise, it's a (quadratic) nonresidue (NR) modulo p.

Ex: Modulo 13, the QRs are 1, 3, 4, 8, 10, and 12, a.k.a. +1, +3,
and +4.

Theorem. Let p be an odd prime. Then there are exactly

(p — 1)/2 quadratic residues modulo p and exactly (p — 1)/2
nonresidues modulo p. (Namely, there are as many residues as
possible, which is half.)




Arithmetic with quadratic residues

QR x QR: Suppose a and a’ are QRs modulo p.
Since p{a and ptad’, we have ptad.
So ad’ is either a QR or a NR mod p.

But we have some b, b’ such that v =, a and (V')* =, d’.
So aa’ =, b*(V')? = (bb')?. Thus aad’ is a QR as well.

QR x NR: Fix @ a QR and a’ a NR.

Since pfa and p1a’, we have ptad'.
So ad’ is either a QR or a NR mod p.

Moreover, we have some b such that b2 =, a.
Now, if aa’ is a QR, then there's some ¢ such that ¢? =, aa’. So
c? =p aa’ =p bd'.
Now, since a #, 0, we have b #, 0 also. So ged(b,p) =1, and
therefore there’s a multiplicative inverse b= modulo p. So
I (b—1)2 . b2_ I (b—1)2 2 _ (b—l )2

a =p a =p c” = c)”,

which is a contradiction. So aa’ is a NR.

Arithmetic with quadratic residues

NR x NR: Fix a a NR.
Consider

a, 2a, ..., (p—1a (mod p).

Since p 1 a, we have ged(a,p) = 1, so as we showed in proving
Fermat’s Little Theorem, this list is just a rearrangement of

1,2 ..., (p—1) (mod p).
In particular, this list has the (p — 1)/2 QRs and the (p — 1)/2
NRs! But we showed that QR x NR = NR. So

{1,2,...,p—1} > {1,2,...,p—1} defined by x— azx (mod p)

sends the (p — 1)/2 QRs to (distinct) NRs. Therefore, it must send
the (p — 1)/2 NRs all to QRs.

In other words, NR x NR = QR.



Arithmetic with quadratic residues: Legendre symbol

We have
QR x QR=QR NR x QR=QR NR x NR = QR.
Compare to
Ix1=1 Ix(=1)=-1 (—1) x (=1) =1.

The Legendre symbol of @ modulo p is

1 if a is a QR,

a
(—) =< -1 ifaisaNR,
p

0 if a is a multiple of p.

Theorem (Quadratic Residue Multiplication Rule)

.

Spotting small QRs
If p = 2, then the possible residues are 0 and 1.
In particular, 1 is a QR. (Super easy case.)
Now, let p be an odd prime and fix a #, 0. Consider
A=a®P1?  (reduced modulo p).
Then A2 =aP~1 =, 1. So
plA? —1=(A+1)(A—1). SoplA+1orpA—1.
Butl1< A<p—1. SoA=1orp—1(i.e. A=, +1). Which one?



Spotting small QRs
A=aP12  (reduced modulo p).

Theorem
If p is an odd prime then

_ a
Q2 = (5) |

Proof: First suppose (%) =, 1. Then there is some b #, 0 such
that b2 =, a. So

QD2 = ()2 = g = (%) |

Now consider the equation %V — 1=, 0 for N = (p — 1)/2.

Since p is prime, there are at most (p — 1)/2 solutions. Also, every
one of the (p — 1)/2 quadratic residues are solutions. So that's it!
(Every non-residue is not a solution.)

{solns to zP~1/2 — 1 =, 0} = {quadratic residues modulo p}

Spotting small QRs
A=a®P12  (reduced modulo p).

Theorem
If p is an odd prime then

(p-1)/2 _ 2)
a = .
g (p

Proof: (continued) We have

{solns to P12 _ 1 =, 0} = {quadratic residues modulo p}.

Now let (ﬁ) = —1 (i.e. a is a non-res). We saw before that
p

pla® V2 11 or  plalP~D2 1.
But ptaP~1/2 - 1. So plaP~1/2 41, ie.

_ a
D2 = g (5> |



Theorem
If p is an odd prime then

QD2 = (

Let
A = oP1)/2

Example:

)

(reduced modulo p).

Recall, modulo 13, the QRs are 1, 3, 4, 8, 10, and 12.

a 112 (34| 5 6 7 8 10| 11 | 12
a
(—)1—111—1—1—1—1 1 -1 1
13
A 1712 (1|1 12| 12| 12 | 12 1112 |1
Theorem
If p is an odd prime then
(r-1)/2 _ (2)
a = .
"\p
Corollary (Quadratic reciprocity)
Let p be an odd prime. Then
(—1)_ 1 ifp=al,
p) -1 ifp=41.

Proof.
Compute (—1)®=1/2 (mod

p).




v (mod p) :

«— p —
5 711 13

1 1[1[1] 1

2 4141 4

3 2191] 9

1 4 1 (2|5 3
b| 5 413 |12
L] 6 1] 3] 10
7 5| 10

8 9 |12

9 41 3
10 1] 9
11 4
12 1

When is 2 a quadratic residue? (Read Chapter 21)

Let p be an odd prime, and let P = E=1.

p)
Consider
_ 1
2.4.6---(p—1)=2" (1-2-3---]’7) — 9P pr,

On the other hand, consider the residues of 2,4,6,...,p—1
between —P and P:
Ex: if p=7, then P =3, and

{27476} =7 {27 —3, _1} = {2} U {_17 _3}
Ex: if p =13, then P = 6, and
{2,4,6,8,10,12} =13 {2,4,6,—5,—-3,—1} = {2,4,6} u {—1, -3, —5}.

In general
{2,4,....,p—1} =, {2,4,..., P} u{-1,-3,...,—(P—-1)}.
So
2-4--(p—1)=, (~1)NP!,  where N = |{—1,-3,...,—(P —1)}].

So since ged(P!,p) = 1, we have (—1) =, 27,



When is 2 a quadratic residue? (Read Chapter 21)

1

Let p be an odd prime, and let P = =,
We have
(- =, 2" where N = |{—1,-3,...,—(P - 1)}].

Theorem (Quadratic reciprocity, part 2)
Let p be an odd prime. Then

(2) 1 ifp=s 1,
p 1 ifp=g +3.
Proof.

Compute N. .. O



