$b^2 \pmod{n}$:

					\leftarrow	n	\rightarrow			
		5	6	7	8	9	10	11	12	13
	1	1	1	1	1	1	1	1	1	1
	2	4	4	4	4	4	4	4	4	$\mid 4 \mid$
	3	4	3	2	1	0	9	9	9	9
↑	4	1	4	2	0	7	6	5	4	3
b	5		1	4	1	7	5	3	1	12
\downarrow	6			1	4	0	6	3	0	10
	7				1	4	9	5	1	10
	8					1	4	9	4	12
	9						1	4	9	3
	10							1	4	9
	11								1	$\mid 4 \mid$
	12									$\mid 1 \mid$

modulo 13:

b	b'	b^2		
1	1	1		
2	2	4		
3	3	9		
4	4	3		
5	5	12		
6	6	10		
7	- 6	10		
8	-5	12		
9	-4	3		
10	-3	9		
11	-2	4		
12	-1	1		

Most values will appear at least twice: $b^2 = (-b)^2 \equiv_n (n-b)^2$.

What values appear as $b^2 \pmod{n}$?

i.e. what values a have square roots modulo n?

For now, sticking to prime modulus p: Since

$$(p-b)^2 \equiv_p (-b)^2 = b^2,$$

we only need look at

$$b^2$$
 for $b = 1, 2, \ldots, \frac{p-1}{2}$.

Let b be a integer that's not a multiple of p. Then if b is congruent to a square modulo p, we call it a quadratic residue (QR) modulo p. Otherwise, it's a (quadratic) nonresidue (NR) modulo p.

Ex: Modulo 13, the QRs are 1, 3, 4, 8, 10, and 12, a.k.a. $\pm 1, \pm 3,$ and $\pm 4.$

Theorem. Let p be an odd prime. Then there are exactly (p-1)/2 quadratic residues modulo p and exactly (p-1)/2 nonresidues modulo p. (Namely, there are as many residues as possible, which is half.)

Arithmetic with quadratic residues

 $QR \times QR$: Suppose a and a' are QRs modulo p.

Since $p \nmid a$ and $p \nmid a'$, we have $p \nmid aa'$.

So aa' is either a QR or a NR mod p.

But we have some b,b' such that $b^2 \equiv_p a$ and $(b')^2 \equiv_p a'$.

So $aa' \equiv_p b^2(b')^2 = (bb')^2$. Thus aa' is a QR as well.

 $QR \times NR$: Fix a a QR and a' a NR.

Since $p \nmid a$ and $p \nmid a'$, we have $p \nmid aa'$.

So aa' is either a QR or a NR mod p.

Moreover, we have some b such that $b^2 \equiv_p a$.

Now, if aa' is a QR, then there's some c such that $c^2 \equiv_p aa'$. So

$$c^2 \equiv_p aa' \equiv_p b^2 a'.$$

Now, since $a \not\equiv_p 0$, we have $b \not\equiv_p 0$ also. So $\gcd(b,p) = 1$, and therefore there's a multiplicative inverse b^{-1} modulo p. So

$$a' \equiv_p (b^{-1})^2 \cdot b^2 \cdot a' \equiv_p (b^{-1})^2 c^2 \equiv_p (b^{-1}c)^2,$$

which is a contradiction. So aa' is a NR.

Arithmetic with quadratic residues

 $NR \times NR$: Fix a a NR.

Consider

$$a, 2a, \ldots, (p-1)a \pmod{p}$$
.

Since $p \nmid a$, we have gcd(a, p) = 1, so as we showed in proving Fermat's Little Theorem, this list is just a rearrangement of

$$1, 2, \ldots, (p-1) \pmod{p}$$
.

In particular, this list has the (p-1)/2 QRs and the (p-1)/2 NRs! But we showed that QR \times NR = NR. So

$$\{1,2,\ldots,p-1\} \to \{1,2,\ldots,p-1\}$$
 defined by $x \mapsto ax \pmod{p}$

sends the (p-1)/2 QRs to (distinct) NRs. Therefore, it *must* send the (p-1)/2 NRs all to QRs.

In other words, $NR \times NR = QR$.

Arithmetic with quadratic residues: Legendre symbol

We have

$$QR \times QR = QR$$
 $NR \times QR = QR$ $NR \times NR = QR$.

Compare to

$$1 \times 1 = 1$$
 $1 \times (-1) = -1$ $(-1) \times (-1) = 1$.

The Legendre symbol of a modulo p is

$$\left(\frac{a}{p}\right) = \begin{cases} 1 & \text{if } a \text{ is a QR,} \\ -1 & \text{if } a \text{ is a NR,} \\ 0 & \text{if } a \text{ is a multiple of } p. \end{cases}$$

Theorem (Quadratic Residue Multiplication Rule)

Let p be a prime. Then

$$\left(\frac{a}{p}\right)\left(\frac{b}{p}\right) = \left(\frac{ab}{p}\right).$$

Spotting small QRs

If p=2, then the possible residues are 0 and 1.

In particular, 1 is a QR. (Super easy case.)

Now, let p be an odd prime and fix $a \not\equiv_p 0$. Consider

$$A = a^{(p-1)/2}$$
 (reduced modulo p).

Then $A^2 = a^{p-1} \equiv_p 1$. So

$$p|A^2 - 1 = (A+1)(A-1)$$
. So $p|A+1$ or $p|A-1$.

But $1 \le A \le p-1$. So A=1 or p-1 (i.e. $A \equiv_p \pm 1$). Which one?

Spotting small QRs

$$A = a^{(p-1)/2}$$
 (reduced modulo p).

Theorem

If p is an odd prime then

$$a^{(p-1)/2} \equiv_p \left(\frac{a}{p}\right).$$

Proof: First suppose $\left(\frac{a}{p}\right)\equiv_p 1$. Then there is some $b\not\equiv_p 0$ such that $b^2\equiv_p a$. So

$$a^{(p-1)/2} \equiv_p (b^2)^{(p-1)/2} \equiv_p b^{p-1} \equiv 1 = \left(\frac{a}{p}\right).$$

Now consider the equation $x^N-1\equiv_p 0$ for N=(p-1)/2. Since p is prime, there are at $most\ (p-1)/2$ solutions. Also, every one of the (p-1)/2 quadratic residues are solutions. So that's it! (Every non-residue is not a solution.)

 $\{ \text{solns to } x^{(p-1)/2} - 1 \equiv_p 0 \} = \{ \text{quadratic residues modulo } p \}$

Spotting small QRs

$$A = a^{(p-1)/2}$$
 (reduced modulo p).

Theorem

If p is an odd prime then

$$a^{(p-1)/2} \equiv_p \left(\frac{a}{p}\right).$$

Proof: (continued) We have

{solns to $x^{(p-1)/2} - 1 \equiv_p 0$ } = {quadratic residues modulo p}.

Now let $\left(\frac{a}{p}\right) = -1$ (i.e. a is a non-res). We saw before that

$$p|a^{(p-1)/2} + 1$$
 or $p|a^{(p-1)/2} - 1$.

But $p \nmid a^{(p-1)/2} - 1$. So $p|a^{(p-1)/2} + 1$, i.e.

$$a^{(p-1)/2} \equiv_p -1 = \left(\frac{a}{p}\right).$$

Theorem

If p is an odd prime then

$$a^{(p-1)/2} \equiv_p \left(\frac{a}{p}\right).$$

Let

$$A = a^{(p-1)/2}$$
 (reduced modulo p).

Example:

Recall, modulo 13, the QRs are 1, 3, 4, 8, 10, and 12.

a	1	2	3	4	5	6	7	8	9	10	11	12
$\left(\frac{a}{13}\right)$	1	-1	1	1	-1	-1	-1	-1	1	1	-1	1
A	1	12	1	1	12	12	12	12	1	1	12	1

Theorem

If p is an odd prime then

$$a^{(p-1)/2} \equiv_p \left(\frac{a}{p}\right).$$

Corollary (Quadratic reciprocity)

Let p be an odd prime. Then

$$\left(\frac{-1}{p}\right) = \begin{cases} 1 & \text{if } p \equiv_4 1, \\ -1 & \text{if } p \equiv_4 1. \end{cases}$$

Proof.

Compute $(-1)^{(p-1)/2} \pmod{p}$.

$$b^2 \pmod{p}$$
:

	$\leftarrow p \rightarrow$									
		3	5	7	11	13				
	1	1	1	1	1	1				
	$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$	1	$\boxed{4}$	4	4	4				
			$\boxed{4}$	2	9	9				
↑	$\mid 4 \mid$		1	2	5	3				
b	5			4	3	12				
\downarrow				1	3	10				
	6 7				5	10				
	8 9				9 4	12				
	9				4	$\begin{bmatrix} 12 \\ 3 \end{bmatrix}$				
	10				1	9				
	11					4				
	12					1				

When is 2 a quadratic residue? (Read Chapter 21)

Let p be an odd prime, and let $P = \frac{p-1}{2}$. Consider

$$2 \cdot 4 \cdot 6 \cdots (p-1) = 2^{\frac{p-1}{2}} \left(1 \cdot 2 \cdot 3 \cdots \frac{p-1}{2} \right) = 2^{p} P!.$$

On the other hand, consider the residues of $2,4,6,\ldots,p-1$ between -P and P:

Ex: if p=7, then P=3, and

$$\{2,4,6\} \equiv_7 \{2,-3,-1\} = \{2\} \sqcup \{-1,-3\}.$$

Ex: if p = 13, then P = 6, and

$$\{2, 4, 6, 8, 10, 12\} \equiv_{13} \{2, 4, 6, -5, -3, -1\} = \{2, 4, 6\} \sqcup \{-1, -3, -5\}.$$

In general

$$\{2, 4, \dots, p-1\} \equiv_p \{2, 4, \dots, P\} \sqcup \{-1, -3, \dots, -(P-1)\}.$$

So

$$2 \cdot 4 \cdot \cdot \cdot (p-1) \equiv_p (-1)^N P!$$
, where $N = |\{-1, -3, \dots, -(P-1)\}|$.

So since gcd(P!, p) = 1, we have $(-1)^N \equiv_p 2^P$.

When is 2 a quadratic residue? (Read Chapter 21)

Let p be an odd prime, and let $P = \frac{p-1}{2}$. We have

$$(-1)^N \equiv_p 2^P$$
 where $N = |\{-1, -3, \dots, -(P-1)\}|$.

Theorem (Quadratic reciprocity, part 2)

Let p be an odd prime. Then

Proof.

Compute N...