$b^2 \pmod{n} : \leftarrow n \rightarrow$

		5	6	7	8	9	10	11	12	13
	1	1	1	1	1	1	1	1	1	1
	2	4	4	4	4	4	4	4	4	4
	3	4	3	2	1	0	9	9	9	9
	4	1	4	2	0	7	6	5	4	3
'	5		1	4	1	7	5	3	1	12
	6			1	4	0	6	3	0	10
	7				1	4	9	5	1	10
	8					1	4	9	4	12
	9						1	4	9	3
	10							1	4	9
	11								1	4
	12									1

b ↓

$b^2 \pmod{n} : \leftarrow n \xrightarrow{\rightarrow}$

modulo 13:

		5	6	7	8	9	10	11	12	13
	1	1	1	1	1	1	1	1	1	1
	2	4	4	4	4	4	4	4	4	4
	3	4	3	2	1	0	9	9	9	9
1	4	1	4	2	0	7	6	5	4	3
b	5		1	4	1	7	5	3	1	12
\downarrow	6			1	4	0	6	3	0	10
	7				1	4	9	5	1	10
	8					1	4	9	4	12
	9						1	4	9	3
	10							1	4	9
	11								1	4
	12									1

b	b'	b^2		
1	1	1		
2	2	4		
3	3	9		
4	4	3		
5	5	12		
6	6	10		
7	-6	10		
8	-5	12		
9	-4	3		
10	- 3	9		
11	-2	4		
12	- 1	1		

$b^2 \pmod{n}$:

 $\leftarrow n \rightarrow$

modulo 13:

		5	6	7	8	9	10	11	12	13	b	b'	b^2
	1	1	1	1	1	1	1	1	1	1	1	1	1
	2	4	4	4	4	4	4	4	4	4	2	2	4
	3	4	3	2	1	0	9	9	9	9	3	3	9
\uparrow	4	1	4	2	0	7	6	5	4	3	4	4	3
b	5		1	4	1	7	5	3	1	12	5	5	12
\downarrow	6			1	4	0	6	3	0	10	6	6	10
	7				1	4	9	5	1	10	7	- 6	10
	8					1	4	9	4	12	8	-5	12
	9						1	4	9	3	9	- 4	3
	10							1	4	9	10	- 3	9
	11								1	4	11	-2	4
	12									1	12	- 1	1

Most values will appear at least twice: $b^2 = (-b)^2 \equiv_n (n-b)^2$.

 $b^2 \pmod{n}$:

 $\leftarrow n \rightarrow$

modulo 13:

		5	6	7	8	9	10	11	12	13	b	b'	b^2
	1	1	1	1	1	1	1	1	1	1	1	1	1
	2	4	4	4	4	4	4	4	4	4	2	2	4
	3	4	3	2	1	0	9	9	9	9	3	3	9
1	4	1	4	2	0	7	6	5	4	3	4	4	3
b	5		1	4	1	7	5	3	1	12	5	5	12
\downarrow	6			1	4	0	6	3	0	10	6	6	10
	7				1	4	9	5	1	10	7	- 6	10
	8					1	4	9	4	12	8	-5	12
	9						1	4	9	3	9	- 4	3
	10							1	4	9	10	- 3	9
	11								1	4	11	-2	4
	12									1	12	- 1	1

Most values will appear at least twice: $b^2 = (-b)^2 \equiv_n (n-b)^2$.

 $b^2 \pmod{n}$:

 $\leftarrow n \rightarrow$

modulo 13:

		5	6	7	8	9	10	11	12	13]	b	b'	b^2
	1	1	1	1	1	1	1	1	1	1		1	1	1
	2	4	4	4	4	4	4	4	4	4		2	2	4
	3	4	3	2	1	0	9	9	9	9		3	3	9
1	4	1	4	2	0	7	6	5	4	3		4	4	3
b	5		1	4	1	7	5	3	1	12		5	5	12
↓	6			1	4	0	6	3	0	10		6	6	10
	7				1	4	9	5	1	10		7	- 6	10
	8					1	4	9	4	12		8	-5	12
	9						1	4	9	3		9	- 4	3
	10							1	4	9		10	- 3	9
	11								1	4		11	-2	4
	12									1		12	-1	1

Most values will appear at least twice: $b^2 = (-b)^2 \equiv_n (n-b)^2$.

i.e. what values a have square roots modulo n?

i.e. what values a have square roots modulo n?

For now, sticking to prime modulus p:

i.e. what values a have square roots modulo n?

For now, sticking to prime modulus p: Since

$$(p-b)^2 \equiv_p (-b)^2 = b^2,$$

we only need look at

$$b^2$$
 for $b = 1, 2, \ldots, \frac{p-1}{2}$.

i.e. what values a have square roots modulo n?

For now, sticking to prime modulus p: Since

$$(p-b)^2 \equiv_p (-b)^2 = b^2,$$

we only need look at

$$b^2$$
 for $b=1,\ 2,\ \ldots,\ rac{p-1}{2}$.

Let b be a integer that's not a multiple of p. Then if b is congruent to a square modulo p, we call it a quadratic residue (QR) modulo p. Otherwise, it's a (quadratic) nonresidue (NR) modulo p.

i.e. what values a have square roots modulo n?

For now, sticking to prime modulus p: Since

$$(p-b)^2 \equiv_p (-b)^2 = b^2,$$

we only need look at

$$b^2$$
 for $b = 1, 2, \ldots, \frac{p-1}{2}$.

Let b be a integer that's not a multiple of p. Then if b is congruent to a square modulo p, we call it a quadratic residue (QR) modulo p. Otherwise, it's a (quadratic) nonresidue (NR) modulo p.

Ex: Modulo 13, the QRs are 1, 3, 4, 9, 10, and 12

i.e. what values a have square roots modulo n?

For now, sticking to prime modulus p: Since

$$(p-b)^2 \equiv_p (-b)^2 = b^2,$$

we only need look at

$$b^2$$
 for $b = 1, 2, \ldots, \frac{p-1}{2}$.

Let b be a integer that's not a multiple of p. Then if b is congruent to a square modulo p, we call it a quadratic residue (QR) modulo p. Otherwise, it's a (quadratic) nonresidue (NR) modulo p.

Ex: Modulo 13, the QRs are 1, 3, 4, 9, 10, and 12, a.k.a. $\pm 1, \pm 3,$ and $\pm 4.$

i.e. what values a have square roots modulo n?

For now, sticking to prime modulus p: Since

$$(p-b)^2 \equiv_p (-b)^2 = b^2,$$

we only need look at

$$b^2$$
 for $b = 1, 2, \ldots, \frac{p-1}{2}$.

Let b be a integer that's not a multiple of p. Then if b is congruent to a square modulo p, we call it a quadratic residue (QR) modulo p. Otherwise, it's a (quadratic) nonresidue (NR) modulo p.

Ex: Modulo 13, the QRs are 1, 3, 4, 9, 10, and 12, a.k.a. $\pm 1,\pm 3,$ and $\pm 4.$

Theorem. Let p be an odd prime. Then there are exactly (p-1)/2 quadratic residues modulo p and exactly (p-1)/2 nonresidues modulo p. (Namely, there are as many residues as possible, which is half.)

 $QR \times QR$: Suppose a and a' are QRs modulo p.

 $QR \times QR$: Suppose a and a' are QRs modulo p. Since $p \nmid a$ and $p \nmid a'$, we have $p \nmid aa'$.

 $QR \times QR$: Suppose a and a' are QRs modulo p. Since $p \nmid a$ and $p \nmid a'$, we have $p \nmid aa'$. So aa' is either a QR or a NR mod p.

 $QR \times QR$: Suppose a and a' are QRs modulo p. Since $p \nmid a$ and $p \nmid a'$, we have $p \nmid aa'$. So aa' is either a QR or a NR mod p.

But we have some b, b' such that $b^2 \equiv_p a$ and $(b')^2 \equiv_p a'$.

 $QR \times QR$: Suppose a and a' are QRs modulo p. Since $p \nmid a$ and $p \nmid a'$, we have $p \nmid aa'$. So aa' is either a QR or a NR mod p.

But we have some b,b' such that $b^2\equiv_p a$ and $(b')^2\equiv_p a'.$ So $aa'\equiv_p b^2(b')^2$

 $QR \times QR$: Suppose a and a' are QRs modulo p. Since $p \nmid a$ and $p \nmid a'$, we have $p \nmid aa'$. So aa' is either a QR or a NR mod p.

But we have some b, b' such that $b^2 \equiv_p a$ and $(b')^2 \equiv_p a'$. So $aa' \equiv_p b^2 (b')^2 = (bb')^2$.

 $QR \times QR$: Suppose a and a' are QRs modulo p. Since $p \nmid a$ and $p \nmid a'$, we have $p \nmid aa'$. So aa' is either a QR or a NR mod p.

But we have some b, b' such that $b^2 \equiv_p a$ and $(b')^2 \equiv_p a'$. So $aa' \equiv_p b^2 (b')^2 = (bb')^2$. Thus aa' is a QR as well.

 $QR \times QR$: Suppose a and a' are QRs modulo p. Since $p \nmid a$ and $p \nmid a'$, we have $p \nmid aa'$. So aa' is either a QR or a NR mod p.

But we have some b, b' such that $b^2 \equiv_p a$ and $(b')^2 \equiv_p a'$. So $aa' \equiv_p b^2 (b')^2 = (bb')^2$. Thus aa' is a QR as well.

 $QR \times NR$: Fix a a QR and a' a NR.

 $QR \times QR$: Suppose a and a' are QRs modulo p. Since $p \nmid a$ and $p \nmid a'$, we have $p \nmid aa'$. So aa' is either a QR or a NR mod p.

But we have some b, b' such that $b^2 \equiv_p a$ and $(b')^2 \equiv_p a'$. So $aa' \equiv_p b^2 (b')^2 = (bb')^2$. Thus aa' is a QR as well.

 $QR \times NR$: Fix a = QR and a' = NR. Since $p \nmid a$ and $p \nmid a'$, we have $p \nmid aa'$. So aa' is either a QR or a NR mod p.

 $QR \times QR$: Suppose a and a' are QRs modulo p. Since $p \nmid a$ and $p \nmid a'$, we have $p \nmid aa'$. So aa' is either a QR or a NR mod p.

But we have some b, b' such that $b^2 \equiv_p a$ and $(b')^2 \equiv_p a'$. So $aa' \equiv_p b^2 (b')^2 = (bb')^2$. Thus aa' is a QR as well.

 $QR \times NR$: Fix a a QR and a' a NR. Since $p \nmid a$ and $p \nmid a'$, we have $p \nmid aa'$. So aa' is either a QR or a NR mod p. Moreover, we have some b such that $b^2 \equiv_p a$.

 $QR \times QR$: Suppose a and a' are QRs modulo p. Since $p \nmid a$ and $p \nmid a'$, we have $p \nmid aa'$. So aa' is either a QR or a NR mod p.

But we have some b, b' such that $b^2 \equiv_p a$ and $(b')^2 \equiv_p a'$. So $aa' \equiv_p b^2 (b')^2 = (bb')^2$. Thus aa' is a QR as well.

QR × NR: Fix a = QR and a' = NR. Since $p \nmid a$ and $p \nmid a'$, we have $p \nmid aa'$. So aa' is either a QR or a NR mod p. Moreover, we have some b such that $b^2 \equiv_p a$. Now, if aa' is a QR, then there's some c such that $c^2 \equiv_p aa'$.

 $QR \times QR$: Suppose a and a' are QRs modulo p. Since $p \nmid a$ and $p \nmid a'$, we have $p \nmid aa'$. So aa' is either a QR or a NR mod p.

But we have some b, b' such that $b^2 \equiv_p a$ and $(b')^2 \equiv_p a'$. So $aa' \equiv_p b^2 (b')^2 = (bb')^2$. Thus aa' is a QR as well.

 $QR \times NR$: Fix a = QR and a' = NR. Since $p \nmid a$ and $p \nmid a'$, we have $p \nmid aa'$. So aa' is either a QR or a NR mod p. Moreover, we have some b such that $b^2 \equiv_p a$. Now, if aa' is a QR, then there's some c such that $c^2 \equiv_p aa'$. So

$$c^2 \equiv_p aa'$$

 $QR \times QR$: Suppose a and a' are QRs modulo p. Since $p \nmid a$ and $p \nmid a'$, we have $p \nmid aa'$. So aa' is either a QR or a NR mod p.

But we have some b, b' such that $b^2 \equiv_p a$ and $(b')^2 \equiv_p a'$. So $aa' \equiv_p b^2 (b')^2 = (bb')^2$. Thus aa' is a QR as well.

QR × NR: Fix a = QR and a' = NR. Since $p \nmid a$ and $p \nmid a'$, we have $p \nmid aa'$. So aa' is either a QR or a NR mod p. Moreover, we have some b such that $b^2 \equiv_p a$. Now, if aa' is a QR, then there's some c such that $c^2 \equiv_p aa'$. So

$$c^2 \equiv_p aa' \equiv_p b^2 a'.$$

 $QR \times QR$: Suppose a and a' are QRs modulo p. Since $p \nmid a$ and $p \nmid a'$, we have $p \nmid aa'$. So aa' is either a QR or a NR mod p.

But we have some b, b' such that $b^2 \equiv_p a$ and $(b')^2 \equiv_p a'$. So $aa' \equiv_p b^2 (b')^2 = (bb')^2$. Thus aa' is a QR as well.

 $\begin{array}{l} \mathsf{QR}\times\mathsf{NR}\text{: Fix }a\text{ a QR and }a'\text{ a NR.}\\ \mathsf{Since }p \nmid a \text{ and }p \nmid a', \text{ we have }p \nmid aa'.\\ \mathsf{So }aa'\text{ is either a QR or a NR mod }p.\\ \mathsf{Moreover}, \text{ we have some }b\text{ such that }b^2\equiv_p a.\\ \mathsf{Now, if }aa'\text{ is a QR, then there's some }c\text{ such that }c^2\equiv_p aa'. \text{ So }c^2\equiv_p aa'\equiv_p b^2a'. \end{array}$

Now, since $a \not\equiv_p 0$, we have $b \not\equiv_p 0$ also.

 $QR \times QR$: Suppose a and a' are QRs modulo p. Since $p \nmid a$ and $p \nmid a'$, we have $p \nmid aa'$. So aa' is either a QR or a NR mod p.

But we have some b, b' such that $b^2 \equiv_p a$ and $(b')^2 \equiv_p a'$. So $aa' \equiv_p b^2(b')^2 = (bb')^2$. Thus aa' is a QR as well.

 $QR \times NR$: Fix a = QR and a' = NR. Since $p \nmid a$ and $p \nmid a'$, we have $p \nmid aa'$. So aa' is either a QR or a NR mod p. Moreover, we have some b such that $b^2 \equiv_p a$. Now, if aa' is a QR, then there's some c such that $c^2 \equiv_p aa'$. So $c^2 \equiv_p aa' \equiv_p b^2a'$.

Now, since $a \neq_p 0$, we have $b \neq_p 0$ also. So gcd(b, p) = 1, and therefore there's a multiplicative inverse b^{-1} modulo p.

 $QR \times QR$: Suppose a and a' are QRs modulo p. Since $p \nmid a$ and $p \nmid a'$, we have $p \nmid aa'$. So aa' is either a QR or a NR mod p.

But we have some b, b' such that $b^2 \equiv_p a$ and $(b')^2 \equiv_p a'$. So $aa' \equiv_p b^2(b')^2 = (bb')^2$. Thus aa' is a QR as well.

QR × NR: Fix a a QR and a' a NR. Since $p \nmid a$ and $p \nmid a'$, we have $p \nmid aa'$. So aa' is either a QR or a NR mod p. Moreover, we have some b such that $b^2 \equiv_p a$. Now, if aa' is a QR, then there's some c such that $c^2 \equiv_p aa'$. So $c^2 \equiv_p aa' \equiv_p b^2a'$.

Now, since $a \neq_p 0$, we have $b \neq_p 0$ also. So gcd(b, p) = 1, and therefore there's a multiplicative inverse b^{-1} modulo p. So

$$a' \equiv_p (b^{-1})^2 \cdot b^2 \cdot a'$$

 $QR \times QR$: Suppose a and a' are QRs modulo p. Since $p \nmid a$ and $p \nmid a'$, we have $p \nmid aa'$. So aa' is either a QR or a NR mod p.

But we have some b, b' such that $b^2 \equiv_p a$ and $(b')^2 \equiv_p a'$. So $aa' \equiv_p b^2(b')^2 = (bb')^2$. Thus aa' is a QR as well.

QR × NR: Fix a a QR and a' a NR. Since $p \nmid a$ and $p \nmid a'$, we have $p \nmid aa'$. So aa' is either a QR or a NR mod p. Moreover, we have some b such that $b^2 \equiv_p a$. Now, if aa' is a QR, then there's some c such that $c^2 \equiv_p aa'$. So $c^2 \equiv_p aa' \equiv_p b^2a'$.

Now, since $a \neq_p 0$, we have $b \neq_p 0$ also. So gcd(b, p) = 1, and therefore there's a multiplicative inverse b^{-1} modulo p. So

$$a' \equiv_p (b^{-1})^2 \cdot b^2 \cdot a' \equiv_p (b^{-1})^2 c^2$$

 $QR \times QR$: Suppose a and a' are QRs modulo p. Since $p \nmid a$ and $p \nmid a'$, we have $p \nmid aa'$. So aa' is either a QR or a NR mod p.

But we have some b, b' such that $b^2 \equiv_p a$ and $(b')^2 \equiv_p a'$. So $aa' \equiv_p b^2(b')^2 = (bb')^2$. Thus aa' is a QR as well.

QR × NR: Fix a a QR and a' a NR. Since $p \nmid a$ and $p \nmid a'$, we have $p \nmid aa'$. So aa' is either a QR or a NR mod p. Moreover, we have some b such that $b^2 \equiv_p a$. Now, if aa' is a QR, then there's some c such that $c^2 \equiv_p aa'$. So $c^2 \equiv_p aa' \equiv_p b^2a'$.

Now, since $a \neq_p 0$, we have $b \neq_p 0$ also. So gcd(b, p) = 1, and therefore there's a multiplicative inverse b^{-1} modulo p. So

$$a' \equiv_p (b^{-1})^2 \cdot b^2 \cdot a' \equiv_p (b^{-1})^2 c^2 \equiv_p (b^{-1}c)^2$$

 $QR \times QR$: Suppose a and a' are QRs modulo p. Since $p \nmid a$ and $p \nmid a'$, we have $p \nmid aa'$. So aa' is either a QR or a NR mod p.

But we have some b, b' such that $b^2 \equiv_p a$ and $(b')^2 \equiv_p a'$. So $aa' \equiv_p b^2(b')^2 = (bb')^2$. Thus aa' is a QR as well.

QR × NR: Fix a = QR and a' = NR. Since $p \nmid a$ and $p \nmid a'$, we have $p \nmid aa'$. So aa' is either a QR or a NR mod p. Moreover, we have some b such that $b^2 \equiv_p a$. Now, if aa' is a QR, then there's some c such that $c^2 \equiv_p aa'$. So

$$c^2 \equiv_p aa' \equiv_p b^2 a'.$$

Now, since $a \neq_p 0$, we have $b \neq_p 0$ also. So gcd(b, p) = 1, and therefore there's a multiplicative inverse b^{-1} modulo p. So

$$a' \equiv_p (b^{-1})^2 \cdot b^2 \cdot a' \equiv_p (b^{-1})^2 c^2 \equiv_p (b^{-1}c)^2,$$

which is a contradiction.

 $QR \times QR$: Suppose a and a' are QRs modulo p. Since $p \nmid a$ and $p \nmid a'$, we have $p \nmid aa'$. So aa' is either a QR or a NR mod p.

But we have some b, b' such that $b^2 \equiv_p a$ and $(b')^2 \equiv_p a'$. So $aa' \equiv_p b^2(b')^2 = (bb')^2$. Thus aa' is a QR as well.

QR × NR: Fix a a QR and a' a NR. Since $p \nmid a$ and $p \nmid a'$, we have $p \nmid aa'$. So aa' is either a QR or a NR mod p. Moreover, we have some b such that $b^2 \equiv_p a$. Now, if aa' is a QR, then there's some c such that $c^2 \equiv_p aa'$. So $c^2 \equiv_p aa' \equiv_p b^2a'$.

Now, since $a \neq_p 0$, we have $b \neq_p 0$ also. So gcd(b, p) = 1, and therefore there's a multiplicative inverse b^{-1} modulo p. So

$$a' \equiv_p (b^{-1})^2 \cdot b^2 \cdot a' \equiv_p (b^{-1})^2 c^2 \equiv_p (b^{-1}c)^2,$$

which is a contradiction. So aa' is a NR.

 $NR \times NR$: Fix a a NR.

 $NR \times NR$: Fix a a NR. Consider

$$a, 2a, \ldots, (p-1)a \pmod{p}.$$

 $NR \times NR$: Fix a a NR. Consider

$$a, 2a, \ldots, (p-1)a \pmod{p}.$$

Since $p \nmid a$, we have gcd(a, p) = 1

 $NR \times NR$: Fix a a NR. Consider

$$a, 2a, \ldots, (p-1)a \pmod{p}.$$

Since $p \nmid a$, we have gcd(a, p) = 1, so as we showed in proving Fermat's Little Theorem, this list is just a rearrangement of

1, 2, ...,
$$(p-1) \pmod{p}$$
.
$NR \times NR$: Fix a a NR. Consider

$$a, 2a, \ldots, (p-1)a \pmod{p}.$$

Since $p \nmid a$, we have gcd(a, p) = 1, so as we showed in proving Fermat's Little Theorem, this list is just a rearrangement of

1, 2, ...,
$$(p-1) \pmod{p}$$
.

In particular, this list has the $(p-1)/2~{\rm QRs}$ and the $(p-1)/2~{\rm NRs!}$

 $NR \times NR$: Fix a a NR. Consider

$$a, 2a, \ldots, (p-1)a \pmod{p}.$$

Since $p \nmid a$, we have gcd(a, p) = 1, so as we showed in proving Fermat's Little Theorem, this list is just a rearrangement of

1, 2, ...,
$$(p-1) \pmod{p}$$
.

In particular, this list has the (p-1)/2 QRs and the (p-1)/2 NRs! But we showed that QR \times NR = NR.

 $NR \times NR$: Fix a a NR. Consider

$$a, 2a, \ldots, (p-1)a \pmod{p}.$$

Since $p \nmid a$, we have gcd(a, p) = 1, so as we showed in proving Fermat's Little Theorem, this list is just a rearrangement of

1, 2, ...,
$$(p-1) \pmod{p}$$
.

In particular, this list has the (p-1)/2 QRs and the (p-1)/2 NRs! But we showed that QR \times NR = NR. So

 $\{1,2,\ldots,p-1\} \to \{1,2,\ldots,p-1\} \quad \text{defined by} \quad x \mapsto ax \pmod{p} \\ \text{sends the } (p-1)/2 \text{ QRs to (distinct) NRs.}$

 $NR \times NR$: Fix a a NR. Consider

$$a, 2a, \ldots, (p-1)a \pmod{p}.$$

Since $p \nmid a$, we have gcd(a, p) = 1, so as we showed in proving Fermat's Little Theorem, this list is just a rearrangement of

1, 2, ...,
$$(p-1) \pmod{p}$$
.

In particular, this list has the (p-1)/2 QRs and the (p-1)/2 NRs! But we showed that QR \times NR = NR. So

 $\begin{array}{ll} \{1,2,\ldots,p-1\} \rightarrow \{1,2,\ldots,p-1\} & \mbox{defined by} & x \mapsto ax \pmod{p} \\ \mbox{sends the } (p-1)/2 \mbox{ QRs to (distinct) NRs. Therefore, it $must$ send $the $(p-1)/2$ NRs all to QRs. } \end{array}$

 $NR \times NR$: Fix a a NR. Consider

$$a, 2a, \ldots, (p-1)a \pmod{p}.$$

Since $p \nmid a$, we have gcd(a, p) = 1, so as we showed in proving Fermat's Little Theorem, this list is just a rearrangement of

1, 2, ...,
$$(p-1) \pmod{p}$$
.

In particular, this list has the (p-1)/2 QRs and the (p-1)/2 NRs! But we showed that QR \times NR = NR. So

 $\begin{array}{ll} \{1,2,\ldots,p-1\} \rightarrow \{1,2,\ldots,p-1\} & \mbox{defined by} & x \mapsto ax \pmod{p} \\ \mbox{sends the } (p-1)/2 \mbox{ QRs to (distinct) NRs. Therefore, it $must$ send $the $(p-1)/2$ NRs all to QRs. } \end{array}$

In other words, NR \times NR = QR.

We have

 $QR \times QR = QR$ $NR \times QR = QR$ $NR \times NR = QR$.

We have

 $\label{eq:QR} QR \,\times\, QR \,=\, QR \quad \, NR \,\times\, QR \,=\, QR \quad \, NR \,\times\, NR \,=\, QR.$ Compare to

$$1 \times 1 = 1$$
 $1 \times (-1) = -1$ $(-1) \times (-1) = 1$.

We have

$$1 \times 1 = 1$$
 $1 \times (-1) = -1$ $(-1) \times (-1) = 1$.

The Legendre symbol of a modulo p is

$$\left(\frac{a}{p}\right) = \begin{cases} 1 & \text{if } a \text{ is a QR,} \\ -1 & \text{if } a \text{ is a NR,} \\ 0 & \text{if } a \text{ is a multiple of } p. \end{cases}$$

We have

$$1 \times 1 = 1$$
 $1 \times (-1) = -1$ $(-1) \times (-1) = 1$.

The Legendre symbol of a modulo p is

$$\left(\frac{a}{p}\right) = \begin{cases} 1 & \text{if } a \text{ is a QR,} \\ -1 & \text{if } a \text{ is a NR,} \\ 0 & \text{if } a \text{ is a multiple of } p. \end{cases}$$

Theorem (Quadratic Residue Multiplication Rule) Let p be a prime. Then

$$\left(\frac{a}{p}\right)\left(\frac{b}{p}\right) = \left(\frac{ab}{p}\right).$$

If p = 2, then the possible residues are 0 and 1.

If p = 2, then the possible residues are 0 and 1. In particular, 1 is a QR.

If p = 2, then the possible residues are 0 and 1. In particular, 1 is a QR. (Super easy case.)

If p = 2, then the possible residues are 0 and 1. In particular, 1 is a QR. (Super easy case.)

Now, let p be an odd prime and fix $a \neq_p 0$.

If p = 2, then the possible residues are 0 and 1. In particular, 1 is a QR. (Super easy case.)

Now, let p be an odd prime and fix $a \neq_p 0$. Consider

$$A = a^{(p-1)/2}$$
 (reduced modulo p).

If p = 2, then the possible residues are 0 and 1. In particular, 1 is a QR. (Super easy case.)

Now, let p be an odd prime and fix $a\not\equiv_p 0.$ Consider $A=a^{(p-1)/2} \quad (\text{reduced modulo } p).$ Then $A^2=a^{p-1}$

If p = 2, then the possible residues are 0 and 1. In particular, 1 is a QR. (Super easy case.)

Now, let p be an odd prime and fix $a \neq_p 0$. Consider

 $A = a^{(p-1)/2}$ (reduced modulo p).

Then $A^2 = a^{p-1} \equiv_p 1$.

If p = 2, then the possible residues are 0 and 1. In particular, 1 is a QR. (Super easy case.)

Now, let p be an odd prime and fix $a\not\equiv_p 0.$ Consider $A=a^{(p-1)/2} \quad (\text{reduced modulo }p).$ Then $A^2=a^{p-1}\equiv_p 1.$ So $p|A^2-1$

If p = 2, then the possible residues are 0 and 1. In particular, 1 is a QR. (Super easy case.)

Now, let p be an odd prime and fix $a \not\equiv_p 0$. Consider $A = a^{(p-1)/2}$ (reduced modulo p). Then $A^2 = a^{p-1} \equiv_n 1$. So

$$p | A^2 - 1 = (A + 1)(A - 1).$$

If p = 2, then the possible residues are 0 and 1. In particular, 1 is a QR. (Super easy case.)

Now, let p be an odd prime and fix $a \not\equiv_p 0$. Consider

 $A = a^{(p-1)/2}$ (reduced modulo p).

Then $A^2 = a^{p-1} \equiv_p 1$. So $p|A^2 - 1 = (A+1)(A-1)$. So p|A+1 or p|A-1.

If p = 2, then the possible residues are 0 and 1. In particular, 1 is a QR. (Super easy case.)

Now, let p be an odd prime and fix $a \not\equiv_p 0$. Consider $A = a^{(p-1)/2}$ (reduced modulo p). Then $A^2 = a^{p-1} \equiv_p 1$. So $p|A^2 - 1 = (A+1)(A-1)$. So p|A+1 or p|A-1. But $1 \leq A \leq p-1$.

If p = 2, then the possible residues are 0 and 1. In particular, 1 is a QR. (Super easy case.)

Now, let p be an odd prime and fix $a \neq_p 0$. Consider $A = a^{(p-1)/2}$ (reduced modulo p). Then $A^2 = a^{p-1} \equiv_p 1$. So $p|A^2 - 1 = (A+1)(A-1)$. So p|A+1 or p|A-1. But $1 \leq A \leq p-1$. So A = 1 or p-1 (i.e. $A \equiv_p \pm 1$).

If p = 2, then the possible residues are 0 and 1. In particular, 1 is a QR. (Super easy case.)

Now, let p be an odd prime and fix $a \neq_p 0$. Consider

 $A = a^{(p-1)/2}$ (reduced modulo p).

Then $A^2 = a^{p-1} \equiv_p 1$. So $p|A^2 - 1 = (A + 1)(A - 1)$. So p|A + 1 or p|A - 1. But $1 \leq A \leq p - 1$. So A = 1 or p - 1 (i.e. $A \equiv_p \pm 1$). Which one?

If p = 2, then the possible residues are 0 and 1. In particular, 1 is a QR. (Super easy case.)

Now, let p be an odd prime and fix $a \neq_p 0$. Consider $A = a^{(p-1)/2}$ (reduced modulo p). Then $A^2 = a^{p-1} \equiv_p 1$. So $p|A^2 - 1 = (A + 1)(A - 1)$. So p|A + 1 or p|A - 1.

But $1 \leq A \leq p-1$. So A = 1 or p-1 (i.e. $A \equiv_p \pm 1$). Which one? Theorem (Euler's Criterion)

If p is an odd prime then

$$a^{(p-1)/2} \equiv_p \left(\frac{a}{p}\right).$$

If p = 2, then the possible residues are 0 and 1. In particular, 1 is a QR. (Super easy case.)

Now, let p be an odd prime and fix $a \not\equiv_p 0$. Consider

 $A = a^{(p-1)/2}$ (reduced modulo p).

Then $A^2 = a^{p-1} \equiv_p 1$. So $p|A^2 - 1 = (A+1)(A-1)$. So p|A+1 or p|A-1. But $1 \leq A \leq p-1$. So A = 1 or p-1 (i.e. $A \equiv_p \pm 1$). Which one? Theorem (Euler's Criterion)

If p is an odd prime then

$$a^{(p-1)/2} \equiv_p \left(\frac{a}{p}\right).$$

Proof: First suppose $\left(\frac{a}{p}\right) \equiv_p 1$.

If p = 2, then the possible residues are 0 and 1. In particular, 1 is a QR. (Super easy case.)

Now, let p be an odd prime and fix $a \neq_p 0$. Consider

 $A = a^{(p-1)/2}$ (reduced modulo p).

Then $A^2 = a^{p-1} \equiv_p 1$. So $p|A^2 - 1 = (A+1)(A-1)$. So p|A+1 or p|A-1. But $1 \leq A \leq p-1$. So A = 1 or p-1 (i.e. $A \equiv_p \pm 1$). Which one? Theorem (Euler's Criterion)

If p is an odd prime then

$$a^{(p-1)/2} \equiv_p \left(\frac{a}{p}\right).$$

If p = 2, then the possible residues are 0 and 1. In particular, 1 is a QR. (Super easy case.)

Now, let p be an odd prime and fix $a \not\equiv_p 0$. Consider

 $A = a^{(p-1)/2}$ (reduced modulo p).

Then $A^2 = a^{p-1} \equiv_p 1$. So $p|A^2 - 1 = (A+1)(A-1)$. So p|A+1 or p|A-1. But $1 \leq A \leq p-1$. So A = 1 or p-1 (i.e. $A \equiv_p \pm 1$). Which one? Theorem (Euler's Criterion)

If p is an odd prime then

$$a^{(p-1)/2} \equiv_p \left(\frac{a}{p}\right).$$

$$a^{(p-1)/2} \equiv_p (b^2)^{(p-1)/2}$$

If p = 2, then the possible residues are 0 and 1. In particular, 1 is a QR. (Super easy case.)

Now, let p be an odd prime and fix $a \not\equiv_p 0$. Consider

 $A = a^{(p-1)/2}$ (reduced modulo p).

Then $A^2 = a^{p-1} \equiv_p 1$. So $p|A^2 - 1 = (A+1)(A-1)$. So p|A+1 or p|A-1. But $1 \leq A \leq p-1$. So A = 1 or p-1 (i.e. $A \equiv_p \pm 1$). Which one? Theorem (Euler's Criterion)

If p is an odd prime then

$$a^{(p-1)/2} \equiv_p \left(\frac{a}{p}\right).$$

$$a^{(p-1)/2} \equiv_p (b^2)^{(p-1)/2} \equiv_p b^{p-1}$$

If p = 2, then the possible residues are 0 and 1. In particular, 1 is a QR. (Super easy case.)

Now, let p be an odd prime and fix $a \not\equiv_p 0$. Consider

 $A = a^{(p-1)/2}$ (reduced modulo p).

Then $A^2 = a^{p-1} \equiv_p 1$. So $p|A^2 - 1 = (A+1)(A-1)$. So p|A+1 or p|A-1. But $1 \leq A \leq p-1$. So A = 1 or p-1 (i.e. $A \equiv_p \pm 1$). Which one? Theorem (Euler's Criterion)

If p is an odd prime then

$$a^{(p-1)/2} \equiv_p \left(\frac{a}{p}\right).$$

$$a^{(p-1)/2} \equiv_p (b^2)^{(p-1)/2} \equiv_p b^{p-1} \equiv 1$$

If p = 2, then the possible residues are 0 and 1. In particular, 1 is a QR. (Super easy case.)

Now, let p be an odd prime and fix $a \neq_p 0$. Consider

 $A = a^{(p-1)/2}$ (reduced modulo p).

Then $A^2 = a^{p-1} \equiv_p 1$. So $p|A^2 - 1 = (A+1)(A-1)$. So p|A+1 or p|A-1. But $1 \leq A \leq p-1$. So A = 1 or p-1 (i.e. $A \equiv_p \pm 1$). Which one? Theorem (Euler's Criterion)

If p is an odd prime then

$$a^{(p-1)/2} \equiv_p \left(\frac{a}{p}\right).$$

$$a^{(p-1)/2} \equiv_p (b^2)^{(p-1)/2} \equiv_p b^{p-1} \equiv 1 = \left(\frac{a}{p}\right).$$

$$A = a^{(p-1)/2}$$
 (reduced modulo p).

Theorem (Euler's Criterion) If p is an odd prime then

$$a^{(p-1)/2} \equiv_p \left(\frac{a}{p}\right).$$

Proof: First suppose $\left(\frac{a}{p}\right) \equiv_p 1$. Then there is some $b \neq_p 0$ such that $b^2 \equiv_p a$. So

$$a^{(p-1)/2} \equiv_p (b^2)^{(p-1)/2} \equiv_p b^{p-1} \equiv 1 = \left(\frac{a}{p}\right).$$

Now consider the equation $x^N - 1 \equiv_p 0$ for N = (p - 1)/2.

$$A = a^{(p-1)/2}$$
 (reduced modulo p).

Theorem (Euler's Criterion) If p is an odd prime then

$$a^{(p-1)/2} \equiv_p \left(\frac{a}{p}\right).$$

Proof: First suppose $\left(\frac{a}{p}\right) \equiv_p 1$. Then there is some $b \neq_p 0$ such that $b^2 \equiv_p a$. So

$$a^{(p-1)/2} \equiv_p (b^2)^{(p-1)/2} \equiv_p b^{p-1} \equiv 1 = \left(\frac{a}{p}\right).$$

Now consider the equation $x^N - 1 \equiv_p 0$ for N = (p - 1)/2. Since p is prime, there are at most (p - 1)/2 solutions.

$$A = a^{(p-1)/2}$$
 (reduced modulo p).

Theorem (Euler's Criterion) If p is an odd prime then

$$a^{(p-1)/2} \equiv_p \left(\frac{a}{p}\right).$$

Proof: First suppose $\left(\frac{a}{p}\right) \equiv_p 1$. Then there is some $b \neq_p 0$ such that $b^2 \equiv_p a$. So

$$a^{(p-1)/2} \equiv_p (b^2)^{(p-1)/2} \equiv_p b^{p-1} \equiv 1 = \left(\frac{a}{p}\right).$$

Now consider the equation $x^N - 1 \equiv_p 0$ for N = (p-1)/2. Since p is prime, there are at most (p-1)/2 solutions. Also, every one of the (p-1)/2 quadratic residues are solutions.

$$A = a^{(p-1)/2}$$
 (reduced modulo p).

Theorem (Euler's Criterion) If p is an odd prime then

$$a^{(p-1)/2} \equiv_p \left(\frac{a}{p}\right).$$

Proof: First suppose $\left(\frac{a}{p}\right) \equiv_p 1$. Then there is some $b \neq_p 0$ such that $b^2 \equiv_p a$. So

$$a^{(p-1)/2} \equiv_p (b^2)^{(p-1)/2} \equiv_p b^{p-1} \equiv 1 = \left(\frac{a}{p}\right).$$

Now consider the equation $x^N - 1 \equiv_p 0$ for N = (p - 1)/2. Since p is prime, there are at most (p - 1)/2 solutions. Also, every one of the (p - 1)/2 quadratic residues are solutions. So that's it! (Every non-residue is not a solution.)

$$A = a^{(p-1)/2}$$
 (reduced modulo p).

Theorem (Euler's Criterion) If p is an odd prime then

$$a^{(p-1)/2} \equiv_p \left(\frac{a}{p}\right).$$

Proof: First suppose $\left(\frac{a}{p}\right) \equiv_p 1$. Then there is some $b \neq_p 0$ such that $b^2 \equiv_p a$. So

$$a^{(p-1)/2} \equiv_p (b^2)^{(p-1)/2} \equiv_p b^{p-1} \equiv 1 = \left(\frac{a}{p}\right).$$

Now consider the equation $x^N - 1 \equiv_p 0$ for N = (p - 1)/2. Since p is prime, there are at most (p - 1)/2 solutions. Also, every one of the (p - 1)/2 quadratic residues are solutions. So that's it! (Every non-residue is not a solution.)

 $\{\text{solns to } x^{(p-1)/2} - 1 \equiv_p 0\} = \{\text{quadratic residues modulo } p\}$

$$A = a^{(p-1)/2}$$
 (reduced modulo p).

Theorem (Euler's Criterion) If p is an odd prime then

$$a^{(p-1)/2} \equiv_p \left(\frac{a}{p}\right).$$

Proof: (continued) We have {solns to $x^{(p-1)/2} - 1 \equiv_p 0$ } = {quadratic residues modulo p}. Now let $\left(\frac{a}{p}\right) = -1$ (i.e. a is a non-res).

$$A = a^{(p-1)/2}$$
 (reduced modulo p).

Theorem (Euler's Criterion) If p is an odd prime then

$$a^{(p-1)/2} \equiv_p \left(\frac{a}{p}\right).$$

Proof: (continued) We have {solns to $x^{(p-1)/2} - 1 \equiv_p 0$ } = {quadratic residues modulo p}. Now let $\left(\frac{a}{p}\right) = -1$ (i.e. a is a non-res). We saw before that $p|a^{(p-1)/2} + 1$ or $p|a^{(p-1)/2} - 1$.
$$A = a^{(p-1)/2}$$
 (reduced modulo p).

Theorem (Euler's Criterion) If p is an odd prime then

$$a^{(p-1)/2} \equiv_p \left(\frac{a}{p}\right).$$

Proof: (continued) We have {solns to $x^{(p-1)/2} - 1 \equiv_p 0$ } = {quadratic residues modulo p}. Now let $\left(\frac{a}{p}\right) = -1$ (i.e. a is a non-res). We saw before that $p|a^{(p-1)/2} + 1$ or $p|a^{(p-1)/2} - 1$.

$$A = a^{(p-1)/2}$$
 (reduced modulo p).

Theorem (Euler's Criterion) If p is an odd prime then

$$a^{(p-1)/2} \equiv_p \left(\frac{a}{p}\right).$$

Proof: (continued) We have {solns to $x^{(p-1)/2} - 1 \equiv_p 0$ } = {quadratic residues modulo p}. Now let $\left(\frac{a}{p}\right) = -1$ (i.e. a is a non-res). We saw before that $p|a^{(p-1)/2} + 1$ or $p|a^{(p-1)/2} - 1$. But $p \nmid a^{(p-1)/2} - 1$.

$$A = a^{(p-1)/2}$$
 (reduced modulo p).

Theorem (Euler's Criterion) If p is an odd prime then

$$a^{(p-1)/2} \equiv_p \left(\frac{a}{p}\right).$$

Proof: (continued) We have {solns to $x^{(p-1)/2} - 1 \equiv_p 0$ } = {quadratic residues modulo p}. Now let $\left(\frac{a}{p}\right) = -1$ (i.e. a is a non-res). We saw before that $p|a^{(p-1)/2} + 1$ or $p|a^{(p-1)/2} - 1$. But $p \nmid a^{(p-1)/2} - 1$. So $p|a^{(p-1)/2} + 1$

$$A = a^{(p-1)/2}$$
 (reduced modulo p).

Theorem (Euler's Criterion) If p is an odd prime then

$$a^{(p-1)/2} \equiv_p \left(\frac{a}{p}\right).$$

Proof: (continued) We have {solns to $x^{(p-1)/2} - 1 \equiv_p 0$ } = {quadratic residues modulo p}. Now let $\left(\frac{a}{p}\right) = -1$ (i.e. a is a non-res). We saw before that $p|a^{(p-1)/2} + 1$ or $p|a^{(p-1)/2} - 1$. But $p \nmid a^{(p-1)/2} - 1$. So $p|a^{(p-1)/2} + 1$, i.e. $a^{(p-1)/2} \equiv_p -1$

$$A = a^{(p-1)/2}$$
 (reduced modulo p).

Theorem (Euler's Criterion) If p is an odd prime then

$$a^{(p-1)/2} \equiv_p \left(\frac{a}{p}\right).$$

Proof: (continued) We have {solns to $x^{(p-1)/2} - 1 \equiv_p 0$ } = {quadratic residues modulo p}. Now let $\left(\frac{a}{p}\right) = -1$ (i.e. a is a non-res). We saw before that $p|a^{(p-1)/2} + 1$ or $p|a^{(p-1)/2} - 1$. But $p \nmid a^{(p-1)/2} - 1$. So $p|a^{(p-1)/2} + 1$, i.e. $a^{(p-1)/2} \equiv_p -1 = \left(\frac{a}{p}\right)$.

Theorem If p is an odd prime then

$$a^{(p-1)/2} \equiv_p \left(\frac{a}{p}\right).$$

Let

$$A = a^{(p-1)/2}$$
 (reduced modulo p).

Example:

Recall, modulo 13, the QRs are 1, 3, 4, 9, 10, and 12.

a	1	2	3	4	5	6	7	8	9	10	11	12
$\left(\frac{a}{13}\right)$	1	-1	1	1	-1	-1	-1	-1	1	1	-1	1
A	1	12	1	1	12	12	12	12	1	1	12	1

Theorem If p is an odd prime then

$$a^{(p-1)/2} \equiv_p \left(\frac{a}{p}\right).$$

Corollary (Quadratic reciprocity) Let p be an odd prime. Then

$$\left(\frac{-1}{p}\right) = \begin{cases} 1 & \text{if } p \equiv_4 1, \\ -1 & \text{if } p \equiv_4 -1. \end{cases}$$

Theorem If p is an odd prime then

$$a^{(p-1)/2} \equiv_p \left(\frac{a}{p}\right).$$

Corollary (Quadratic reciprocity) Let p be an odd prime. Then

$$\left(\frac{-1}{p}\right) = \begin{cases} 1 & \text{if } p \equiv_4 1, \\ -1 & \text{if } p \equiv_4 -1. \end{cases}$$

Proof. Compute $(-1)^{(p-1)/2} \pmod{p}$.

 $b^2 \pmod{p}$:

 $b^2 \pmod{p}$:

(Read Chapter 21)

(Read Chapter 21)

Let p be an odd prime, and let $P = \frac{p-1}{2}$.

(Read Chapter 21)

Let p be an odd prime, and let $P = \frac{p-1}{2}$. Consider

$$2 \cdot 4 \cdot 6 \cdots (p-1)$$

(Read Chapter 21)

Let p be an odd prime, and let $P = \frac{p-1}{2}$. Consider

$$2 \cdot 4 \cdot 6 \cdots (p-1) = 2^{\frac{p-1}{2}} \left(1 \cdot 2 \cdot 3 \cdots \frac{p-1}{2} \right)$$

(Read Chapter 21)

Let p be an odd prime, and let $P = \frac{p-1}{2}$. Consider

$$2 \cdot 4 \cdot 6 \cdots (p-1) = 2^{\frac{p-1}{2}} \left(1 \cdot 2 \cdot 3 \cdots \frac{p-1}{2} \right) = 2^{P} P!.$$

On the other hand, consider the residues of $2, 4, 6, \ldots, p-1$ between -P and P:

(Read Chapter 21)

Let p be an odd prime, and let $P = \frac{p-1}{2}$. Consider

$$2 \cdot 4 \cdot 6 \cdots (p-1) = 2^{\frac{p-1}{2}} \left(1 \cdot 2 \cdot 3 \cdots \frac{p-1}{2} \right) = 2^{P} P!.$$

On the other hand, consider the residues of $2, 4, 6, \ldots, p-1$ between -P and P: Ex: if p = 7

(Read Chapter 21)

Let p be an odd prime, and let $P = \frac{p-1}{2}$. Consider

$$2 \cdot 4 \cdot 6 \cdots (p-1) = 2^{\frac{p-1}{2}} \left(1 \cdot 2 \cdot 3 \cdots \frac{p-1}{2} \right) = 2^{P} P!.$$

On the other hand, consider the residues of $2, 4, 6, \ldots, p-1$ between -P and P: Ex: if p = 7, then P = 3

(Read Chapter 21)

Let p be an odd prime, and let $P = \frac{p-1}{2}$. Consider

$$2 \cdot 4 \cdot 6 \cdots (p-1) = 2^{\frac{p-1}{2}} \left(1 \cdot 2 \cdot 3 \cdots \frac{p-1}{2} \right) = 2^{P} P!.$$

On the other hand, consider the residues of $2,4,6,\ldots,p-1$ between -P and P:

Ex: if p = 7, then P = 3, and

$$\{2,4,6\} \equiv_7 \{2,-3,-1\}$$

(Read Chapter 21)

Let p be an odd prime, and let $P = \frac{p-1}{2}$. Consider

$$2 \cdot 4 \cdot 6 \cdots (p-1) = 2^{\frac{p-1}{2}} \left(1 \cdot 2 \cdot 3 \cdots \frac{p-1}{2} \right) = 2^{P} P!.$$

On the other hand, consider the residues of $2, 4, 6, \ldots, p-1$ between -P and P:

Ex: if p = 7, then P = 3, and $\{2, 4, 6\} \equiv_7 \{2, -3, -1\} = \{2\} \sqcup \{-1, -3\}.$

(Read Chapter 21)

Let p be an odd prime, and let $P = \frac{p-1}{2}$. Consider

$$2 \cdot 4 \cdot 6 \cdots (p-1) = 2^{\frac{p-1}{2}} \left(1 \cdot 2 \cdot 3 \cdots \frac{p-1}{2} \right) = 2^{P} P!.$$

On the other hand, consider the residues of $2, 4, 6, \ldots, p-1$ between -P and P:

Ex: if p = 7, then P = 3, and $\{2, 4, 6\} \equiv_7 \{2, -3, -1\} = \{2\} \sqcup \{-1, -3\}.$ Ex: if p = 13

(Read Chapter 21)

Let p be an odd prime, and let $P = \frac{p-1}{2}$. Consider

$$2 \cdot 4 \cdot 6 \cdots (p-1) = 2^{\frac{p-1}{2}} \left(1 \cdot 2 \cdot 3 \cdots \frac{p-1}{2} \right) = 2^{P} P!.$$

On the other hand, consider the residues of $2, 4, 6, \ldots, p-1$ between -P and P:

Ex: if p = 7, then P = 3, and $\{2, 4, 6\} \equiv_7 \{2, -3, -1\} = \{2\} \sqcup \{-1, -3\}.$ Ex: if p = 13, then P = 6

(Read Chapter 21)

Let p be an odd prime, and let $P = \frac{p-1}{2}$. Consider

$$2 \cdot 4 \cdot 6 \cdots (p-1) = 2^{\frac{p-1}{2}} \left(1 \cdot 2 \cdot 3 \cdots \frac{p-1}{2} \right) = 2^{P} P!.$$

On the other hand, consider the residues of $2,4,6,\ldots,p-1$ between -P and P:

Ex: if
$$p = 7$$
, then $P = 3$, and
 $\{2, 4, 6\} \equiv_7 \{2, -3, -1\} = \{2\} \sqcup \{-1, -3\}.$
Ex: if $p = 13$, then $P = 6$, and
 $2, 4, 6, 8, 10, 12\}$

(Read Chapter 21)

Let p be an odd prime, and let $P = \frac{p-1}{2}$. Consider

$$2 \cdot 4 \cdot 6 \cdots (p-1) = 2^{\frac{p-1}{2}} \left(1 \cdot 2 \cdot 3 \cdots \frac{p-1}{2} \right) = 2^{P} P!.$$

On the other hand, consider the residues of $2, 4, 6, \ldots, p-1$ between -P and P:

Ex: if
$$p = 7$$
, then $P = 3$, and
 $\{2, 4, 6\} \equiv_7 \{2, -3, -1\} = \{2\} \sqcup \{-1, -3\}.$
Ex: if $p = 13$, then $P = 6$, and
 $2, 4, 6, 8, 10, 12\} \equiv_{13} \{2, 4, 6, -5, -3, -1\}$

(Read Chapter 21)

Let p be an odd prime, and let $P = \frac{p-1}{2}$. Consider

$$2 \cdot 4 \cdot 6 \cdots (p-1) = 2^{\frac{p-1}{2}} \left(1 \cdot 2 \cdot 3 \cdots \frac{p-1}{2} \right) = 2^{P} P!.$$

On the other hand, consider the residues of $2, 4, 6, \ldots, p-1$ between -P and P:

Ex: if
$$p = 7$$
, then $P = 3$, and
 $\{2, 4, 6\} \equiv_7 \{2, -3, -1\} = \{2\} \sqcup \{-1, -3\}.$
Ex: if $p = 13$, then $P = 6$, and

 $\{2,4,6,8,10,12\} \equiv_{13} \{2,4,6,-5,-3,-1\} = \{2,4,6\} \sqcup \{-1,-3,-5\}.$

(Read Chapter 21)

Let p be an odd prime, and let $P = \frac{p-1}{2}$. Consider

$$2 \cdot 4 \cdot 6 \cdots (p-1) = 2^{\frac{p-1}{2}} \left(1 \cdot 2 \cdot 3 \cdots \frac{p-1}{2} \right) = 2^{P} P!.$$

On the other hand, consider the residues of $2, 4, 6, \ldots, p-1$ between -P and P:

Ex: if
$$p = 7$$
, then $P = 3$, and
 $\{2, 4, 6\} \equiv_7 \{2, -3, -1\} = \{2\} \sqcup \{-1, -3\}.$
Ex: if $p = 13$, then $P = 6$, and
 $\{2, 4, 6, 8, 10, 12\} \equiv_{13} \{2, 4, 6, -5, -3, -1\} = \{2, 4, 6\} \sqcup \{-1, -3, -5\}.$
In general

$$\{2, 4, \ldots, p-1\}$$

(Read Chapter 21)

Let p be an odd prime, and let $P = \frac{p-1}{2}$. Consider

$$2 \cdot 4 \cdot 6 \cdots (p-1) = 2^{\frac{p-1}{2}} \left(1 \cdot 2 \cdot 3 \cdots \frac{p-1}{2} \right) = 2^{P} P!.$$

On the other hand, consider the residues of $2, 4, 6, \ldots, p-1$ between -P and P:

Ex: if
$$p = 7$$
, then $P = 3$, and
 $\{2, 4, 6\} \equiv_7 \{2, -3, -1\} = \{2\} \sqcup \{-1, -3\}.$
Ex: if $p = 13$, then $P = 6$, and
 $\{2, 4, 6, 8, 10, 12\} \equiv_{13} \{2, 4, 6, -5, -3, -1\} = \{2, 4, 6\} \sqcup \{-1, -3, -5\}.$
In general

$$\{2, 4, \dots, p-1\} \equiv_p \{2, 4, \dots, P\} \sqcup \{-1, -3, \dots, -(P-1)\}.$$

(Read Chapter 21)

Let p be an odd prime, and let $P = \frac{p-1}{2}$. Consider

$$2 \cdot 4 \cdot 6 \cdots (p-1) = 2^{\frac{p-1}{2}} \left(1 \cdot 2 \cdot 3 \cdots \frac{p-1}{2} \right) = 2^{P} P!.$$

On the other hand, consider the residues of $2, 4, 6, \ldots, p-1$ between -P and P:

Ex: if
$$p = 7$$
, then $P = 3$, and
 $\{2, 4, 6\} = \{2, -3, -1\} = \{2\} + \{2\}$

$$\{2,4,6\} \equiv_7 \{2,-3,-1\} = \{2\} \sqcup \{-1,-3\}.$$

Ex: if p = 13, then P = 6, and $\{2, 4, 6, 8, 10, 12\} \equiv_{13} \{2, 4, 6, -5, -3, -1\} = \{2, 4, 6\} \sqcup \{-1, -3, -5\}.$ In general

$$\{2,4,\ldots,p-1\}\equiv_p \{2,4,\ldots,P\}\sqcup\{-1,-3,\ldots,-(P-1)\}.$$
 So

 $2 \cdot 4 \cdots (p-1)$

(Read Chapter 21)

Let p be an odd prime, and let $P = \frac{p-1}{2}$. Consider

$$2 \cdot 4 \cdot 6 \cdots (p-1) = 2^{\frac{p-1}{2}} \left(1 \cdot 2 \cdot 3 \cdots \frac{p-1}{2} \right) = 2^{P} P!.$$

On the other hand, consider the residues of $2, 4, 6, \ldots, p-1$ between -P and P:

Ex: if
$$p = 7$$
, then $P = 3$, and

$$\{2,4,6\} \equiv_7 \{2,-3,-1\} = \{2\} \sqcup \{-1,-3\}.$$

Ex: if p = 13, then P = 6, and $\{2, 4, 6, 8, 10, 12\} \equiv_{13} \{2, 4, 6, -5, -3, -1\} = \{2, 4, 6\} \sqcup \{-1, -3, -5\}.$ In general

$$\{2, 4, \dots, p-1\} \equiv_p \{2, 4, \dots, P\} \sqcup \{-1, -3, \dots, -(P-1)\}.$$

 $2\cdot 4\cdots (p-1)\equiv_p (-1)^N P!, \quad \text{ where } N=|\{-1,-3,\ldots,-(P-1)\}|.$

(Read Chapter 21)

Let p be an odd prime, and let $P = \frac{p-1}{2}$. Consider

$$2 \cdot 4 \cdot 6 \cdots (p-1) = 2^{\frac{p-1}{2}} \left(1 \cdot 2 \cdot 3 \cdots \frac{p-1}{2} \right) = 2^{P} P!.$$

On the other hand, consider the residues of $2, 4, 6, \ldots, p-1$ between -P and P:

Ex: if
$$p = 7$$
, then $P = 3$, and

$$\{2,4,6\} \equiv_7 \{2,-3,-1\} = \{2\} \sqcup \{-1,-3\}.$$

Ex: if p = 13, then P = 6, and $\{2, 4, 6, 8, 10, 12\} \equiv_{13} \{2, 4, 6, -5, -3, -1\} = \{2, 4, 6\} \sqcup \{-1, -3, -5\}.$ In general

$$\{2,4,\ldots,p-1\}\equiv_p \{2,4,\ldots,P\}\sqcup\{-1,-3,\ldots,-(P-1)\}.$$
 So

 $2 \cdot 4 \cdots (p-1) \equiv_p (-1)^N P!$, where $N = |\{-1, -3, \dots, -(P-1)\}|$. So since gcd(P!, p) = 1, we have $(-1)^N \equiv_p 2^P$.

(Read Chapter 21)

Let p be an odd prime, and let $P = \frac{p-1}{2}$.

(Read Chapter 21)

Let p be an odd prime, and let $P = \frac{p-1}{2}$. We have

$$(-1)^N \equiv_p 2^P$$
 where $N = |\{-1, -3, \dots, -(P-1)\}|.$

Theorem (Quadratic reciprocity, part 2) Let p be an odd prime. Then

$$\begin{pmatrix} 2\\ p \end{pmatrix} = \begin{cases} 1 & \text{if } p \equiv_8 \pm 1, \\ -1 & \text{if } p \equiv_8 \pm 3. \end{cases}$$

(Read Chapter 21)

Let p be an odd prime, and let $P = \frac{p-1}{2}$. We have

$$(-1)^N \equiv_p 2^P$$
 where $N = |\{-1, -3, \dots, -(P-1)\}|.$

Theorem (Quadratic reciprocity, part 2) Let p be an odd prime. Then

$$\begin{pmatrix} 2\\ \overline{p} \end{pmatrix} = \begin{cases} 1 & \text{if } p \equiv_8 \pm 1, \\ -1 & \text{if } p \equiv_8 \pm 3. \end{cases}$$

Proof. Compute *N*...