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Ó
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Ð n Ñ

5 6 7 8 9 10 11 12 13
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2 4 4 4 4 4 4 4 4 4
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Most values will appear at least twice: b2 “ p´bq2 ”n pn´ bq2.
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What values appear as b2 pmod nq?
i.e. what values a have square roots modulo n?

For now, sticking to prime modulus p:
Since

pp´ bq2 ”p p´bq
2 “ b2,

we only need look at

b2 for b “ 1, 2, . . . ,
p´ 1

2
.

Let b be a integer that’s not a multiple of p. Then if b is congruent
to a square modulo p, we call it a quadratic residue (QR) modulo
p. Otherwise, it’s a (quadratic) nonresidue (NR) modulo p.

Ex: Modulo 13, the QRs are 1, 3, 4, 9, 10, and 12, a.k.a. ˘1,˘3,
and ˘4.

Theorem. Let p be an odd prime. Then there are exactly
pp´ 1q{2 quadratic residues modulo p and exactly pp´ 1q{2
nonresidues modulo p. (Namely, there are as many residues as
possible, which is half.)
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Arithmetic with quadratic residues

QR ˆ QR: Suppose a and a1 are QRs modulo p.

Since p - a and p - a1, we have p - aa1.
So aa1 is either a QR or a NR mod p.

But we have some b, b1 such that b2 ”p a and pb1q2 ”p a
1.

So aa1 ”p b
2pb1q2 “ pbb1q2. Thus aa1 is a QR as well.

QR ˆ NR: Fix a a QR and a1 a NR.
Since p - a and p - a1, we have p - aa1.
So aa1 is either a QR or a NR mod p.
Moreover, we have some b such that b2 ”p a.

Now, if aa1 is a QR, then there’s some c such that c2 ”p aa
1. So

c2 ”p aa
1 ”p b

2a1.

Now, since a ıp 0, we have b ıp 0 also. So gcdpb, pq “ 1, and
therefore there’s a multiplicative inverse b´1 modulo p. So

a1 ”p pb
´1q2 ¨ b2 ¨ a1 ”p pb

´1q2c2 ”p pb
´1cq2,

which is a contradiction. So aa1 is a NR.
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Arithmetic with quadratic residues

NR ˆ NR: Fix a a NR.

Consider

a, 2a, . . . , pp´ 1qa pmod pq.

Since p - a, we have gcdpa, pq “ 1, so as we showed in proving
Fermat’s Little Theorem, this list is just a rearrangement of

1, 2, . . . , pp´ 1q pmod pq.

In particular, this list has the pp´ 1q{2 QRs and the pp´ 1q{2
NRs! But we showed that QR ˆ NR “ NR. So

t1, 2, . . . , p´ 1u Ñ t1, 2, . . . , p´ 1u defined by x ÞÑ ax pmod pq

sends the pp´ 1q{2 QRs to (distinct) NRs. Therefore, it must send
the pp´ 1q{2 NRs all to QRs.

In other words, NR ˆ NR “ QR.



Arithmetic with quadratic residues

NR ˆ NR: Fix a a NR.
Consider

a, 2a, . . . , pp´ 1qa pmod pq.

Since p - a, we have gcdpa, pq “ 1, so as we showed in proving
Fermat’s Little Theorem, this list is just a rearrangement of

1, 2, . . . , pp´ 1q pmod pq.

In particular, this list has the pp´ 1q{2 QRs and the pp´ 1q{2
NRs! But we showed that QR ˆ NR “ NR. So

t1, 2, . . . , p´ 1u Ñ t1, 2, . . . , p´ 1u defined by x ÞÑ ax pmod pq

sends the pp´ 1q{2 QRs to (distinct) NRs. Therefore, it must send
the pp´ 1q{2 NRs all to QRs.

In other words, NR ˆ NR “ QR.



Arithmetic with quadratic residues

NR ˆ NR: Fix a a NR.
Consider

a, 2a, . . . , pp´ 1qa pmod pq.

Since p - a, we have gcdpa, pq “ 1

, so as we showed in proving
Fermat’s Little Theorem, this list is just a rearrangement of

1, 2, . . . , pp´ 1q pmod pq.

In particular, this list has the pp´ 1q{2 QRs and the pp´ 1q{2
NRs! But we showed that QR ˆ NR “ NR. So

t1, 2, . . . , p´ 1u Ñ t1, 2, . . . , p´ 1u defined by x ÞÑ ax pmod pq

sends the pp´ 1q{2 QRs to (distinct) NRs. Therefore, it must send
the pp´ 1q{2 NRs all to QRs.

In other words, NR ˆ NR “ QR.



Arithmetic with quadratic residues

NR ˆ NR: Fix a a NR.
Consider

a, 2a, . . . , pp´ 1qa pmod pq.

Since p - a, we have gcdpa, pq “ 1, so as we showed in proving
Fermat’s Little Theorem, this list is just a rearrangement of

1, 2, . . . , pp´ 1q pmod pq.

In particular, this list has the pp´ 1q{2 QRs and the pp´ 1q{2
NRs! But we showed that QR ˆ NR “ NR. So

t1, 2, . . . , p´ 1u Ñ t1, 2, . . . , p´ 1u defined by x ÞÑ ax pmod pq

sends the pp´ 1q{2 QRs to (distinct) NRs. Therefore, it must send
the pp´ 1q{2 NRs all to QRs.

In other words, NR ˆ NR “ QR.



Arithmetic with quadratic residues

NR ˆ NR: Fix a a NR.
Consider

a, 2a, . . . , pp´ 1qa pmod pq.

Since p - a, we have gcdpa, pq “ 1, so as we showed in proving
Fermat’s Little Theorem, this list is just a rearrangement of

1, 2, . . . , pp´ 1q pmod pq.

In particular, this list has the pp´ 1q{2 QRs and the pp´ 1q{2
NRs!

But we showed that QR ˆ NR “ NR. So

t1, 2, . . . , p´ 1u Ñ t1, 2, . . . , p´ 1u defined by x ÞÑ ax pmod pq

sends the pp´ 1q{2 QRs to (distinct) NRs. Therefore, it must send
the pp´ 1q{2 NRs all to QRs.

In other words, NR ˆ NR “ QR.



Arithmetic with quadratic residues

NR ˆ NR: Fix a a NR.
Consider

a, 2a, . . . , pp´ 1qa pmod pq.

Since p - a, we have gcdpa, pq “ 1, so as we showed in proving
Fermat’s Little Theorem, this list is just a rearrangement of

1, 2, . . . , pp´ 1q pmod pq.

In particular, this list has the pp´ 1q{2 QRs and the pp´ 1q{2
NRs! But we showed that QR ˆ NR “ NR.

So

t1, 2, . . . , p´ 1u Ñ t1, 2, . . . , p´ 1u defined by x ÞÑ ax pmod pq

sends the pp´ 1q{2 QRs to (distinct) NRs. Therefore, it must send
the pp´ 1q{2 NRs all to QRs.

In other words, NR ˆ NR “ QR.



Arithmetic with quadratic residues

NR ˆ NR: Fix a a NR.
Consider

a, 2a, . . . , pp´ 1qa pmod pq.

Since p - a, we have gcdpa, pq “ 1, so as we showed in proving
Fermat’s Little Theorem, this list is just a rearrangement of

1, 2, . . . , pp´ 1q pmod pq.

In particular, this list has the pp´ 1q{2 QRs and the pp´ 1q{2
NRs! But we showed that QR ˆ NR “ NR. So

t1, 2, . . . , p´ 1u Ñ t1, 2, . . . , p´ 1u defined by x ÞÑ ax pmod pq

sends the pp´ 1q{2 QRs to (distinct) NRs.

Therefore, it must send
the pp´ 1q{2 NRs all to QRs.

In other words, NR ˆ NR “ QR.



Arithmetic with quadratic residues

NR ˆ NR: Fix a a NR.
Consider

a, 2a, . . . , pp´ 1qa pmod pq.

Since p - a, we have gcdpa, pq “ 1, so as we showed in proving
Fermat’s Little Theorem, this list is just a rearrangement of

1, 2, . . . , pp´ 1q pmod pq.

In particular, this list has the pp´ 1q{2 QRs and the pp´ 1q{2
NRs! But we showed that QR ˆ NR “ NR. So

t1, 2, . . . , p´ 1u Ñ t1, 2, . . . , p´ 1u defined by x ÞÑ ax pmod pq

sends the pp´ 1q{2 QRs to (distinct) NRs. Therefore, it must send
the pp´ 1q{2 NRs all to QRs.

In other words, NR ˆ NR “ QR.



Arithmetic with quadratic residues

NR ˆ NR: Fix a a NR.
Consider

a, 2a, . . . , pp´ 1qa pmod pq.

Since p - a, we have gcdpa, pq “ 1, so as we showed in proving
Fermat’s Little Theorem, this list is just a rearrangement of

1, 2, . . . , pp´ 1q pmod pq.

In particular, this list has the pp´ 1q{2 QRs and the pp´ 1q{2
NRs! But we showed that QR ˆ NR “ NR. So

t1, 2, . . . , p´ 1u Ñ t1, 2, . . . , p´ 1u defined by x ÞÑ ax pmod pq

sends the pp´ 1q{2 QRs to (distinct) NRs. Therefore, it must send
the pp´ 1q{2 NRs all to QRs.

In other words, NR ˆ NR “ QR.



Arithmetic with quadratic residues: Legendre symbol

We have
QR ˆ QR “ QR NR ˆ QR “ QR NR ˆ NR “ QR.

Compare to
1ˆ 1 “ 1 1ˆ p´1q “ ´1 p´1q ˆ p´1q “ 1.

The Legendre symbol of a modulo p is

ˆ

a

p

˙

“

$

’

&

’

%

1 if a is a QR,

´1 if a is a NR,

0 if a is a multiple of p.

Theorem (Quadratic Residue Multiplication Rule)

Let p be a prime. Then

ˆ

a

p

˙ˆ

b

p

˙

“

ˆ

ab

p

˙

.



Arithmetic with quadratic residues: Legendre symbol

We have
QR ˆ QR “ QR NR ˆ QR “ QR NR ˆ NR “ QR.

Compare to
1ˆ 1 “ 1 1ˆ p´1q “ ´1 p´1q ˆ p´1q “ 1.

The Legendre symbol of a modulo p is

ˆ

a

p

˙

“

$

’

&

’

%

1 if a is a QR,

´1 if a is a NR,

0 if a is a multiple of p.

Theorem (Quadratic Residue Multiplication Rule)

Let p be a prime. Then

ˆ

a

p

˙ˆ

b

p

˙

“

ˆ

ab

p

˙

.



Arithmetic with quadratic residues: Legendre symbol

We have
QR ˆ QR “ QR NR ˆ QR “ QR NR ˆ NR “ QR.

Compare to
1ˆ 1 “ 1 1ˆ p´1q “ ´1 p´1q ˆ p´1q “ 1.

The Legendre symbol of a modulo p is

ˆ

a

p

˙

“

$

’

&

’

%

1 if a is a QR,

´1 if a is a NR,

0 if a is a multiple of p.

Theorem (Quadratic Residue Multiplication Rule)

Let p be a prime. Then

ˆ

a

p

˙ˆ

b

p

˙

“

ˆ

ab

p

˙

.



Arithmetic with quadratic residues: Legendre symbol

We have
QR ˆ QR “ QR NR ˆ QR “ QR NR ˆ NR “ QR.

Compare to
1ˆ 1 “ 1 1ˆ p´1q “ ´1 p´1q ˆ p´1q “ 1.

The Legendre symbol of a modulo p is

ˆ

a

p

˙

“

$

’

&

’

%

1 if a is a QR,

´1 if a is a NR,

0 if a is a multiple of p.

Theorem (Quadratic Residue Multiplication Rule)

Let p be a prime. Then

ˆ

a

p

˙ˆ

b

p

˙

“

ˆ

ab

p

˙

.



Spotting small QRs
If p “ 2, then the possible residues are 0 and 1.

In particular, 1 is a QR. (Super easy case.)

Now, let p be an odd prime and fix a ıp 0. Consider

A “ app´1q{2 (reduced modulo p).

Then A2 “ ap´1 ”p 1. So

p|A2 ´ 1 “ pA` 1qpA´ 1q. So p|A` 1 or p|A´ 1.

But 1 ď A ď p´ 1. So A “ 1 or p´ 1 (i.e. A ”p ˘1). Which one?

Theorem (Euler’s Criterion)

If p is an odd prime then

app´1q{2 ”p

ˆ

a

p

˙

.

Proof: First suppose
´

a
p

¯

”p 1. Then there is some b ıp 0 such

that b2 ”p a. So

app´1q{2 ”p pb
2qpp´1q{2 ”p b

p´1 ” 1 “

ˆ

a

p

˙

.

Now consider the equation xN ´ 1 ”p 0 for N “ pp´ 1q{2.
Since p is prime, there are at most pp´ 1q{2 solutions. Also, every
one of the pp´ 1q{2 quadratic residues are solutions. So that’s it!
(Every non-residue is not a solution.)

tsolns to xpp´1q{2 ´ 1 ”p 0u “ tquadratic residues modulo pu
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Theorem
If p is an odd prime then

app´1q{2 ”p

ˆ

a

p

˙

.

Let
A “ app´1q{2 (reduced modulo p).

Example:
Recall, modulo 13, the QRs are 1, 3, 4, 9, 10, and 12.

a 1 2 3 4 5 6 7 8 9 10 11 12

´ a

13

¯

1 ´1 1 1 ´1 ´1 ´1 ´1 1 1 ´1 1

A 1 12 1 1 12 12 12 12 1 1 12 1



Theorem
If p is an odd prime then

app´1q{2 ”p

ˆ

a

p

˙

.

Corollary (Quadratic reciprocity)

Let p be an odd prime. Then

ˆ

´1

p

˙

“

#

1 if p ”4 1,

´1 if p ”4 ´1.

Proof.
Compute p´1qpp´1q{2 pmod pq.
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Ò

b

Ó

b2 pmod pq :

Ð p Ñ

3 5 7 11 13

1 1 1 1 1 1

2 1 4 4 4 4

3 4 2 9 9

4 1 2 5 3

5 4 3 12

6 1 3 10

7 5 10

8 9 12

9 4 3

10 1 9

11 4

12 1
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When is 2 a quadratic residue? (Read Chapter 21)

Let p be an odd prime, and let P “ p´1
2 .

Consider

2 ¨ 4 ¨ 6 ¨ ¨ ¨ pp´ 1q “ 2
p´1
2

ˆ

1 ¨ 2 ¨ 3 ¨ ¨ ¨
p´ 1

2

˙

“ 2PP !.

On the other hand, consider the residues of 2, 4, 6, . . . , p´ 1
between ´P and P :
Ex: if p “ 7, then P “ 3, and

t2, 4, 6u ”7 t2,´3,´1u “ t2u \ t´1,´3u.

Ex: if p “ 13, then P “ 6, and

t2, 4, 6, 8, 10, 12u ”13 t2, 4, 6,´5,´3,´1u “ t2, 4, 6u \ t´1,´3,´5u.

In general

t2, 4, . . . , p´ 1u ”p t2, 4, . . . , P u \ t´1,´3, . . . ,´pP ´ 1qu.

So

2 ¨ 4 ¨ ¨ ¨ pp´ 1q ”p p´1q
NP !, where N “ |t´1,´3, . . . ,´pP ´ 1qu|.

So since gcdpP !, pq “ 1, we have p´1qN ”p 2
P .
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Theorem (Quadratic reciprocity, part 2)

Let p be an odd prime. Then

ˆ

2

p

˙

“

#

1 if p ”8 ˘1,

´1 if p ”8 ˘3.

Proof.
Compute N . . .
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p

˙

“

#

1 if p ”8 ˘1,

´1 if p ”8 ˘3.

Proof.
Compute N . . .



When is 2 a quadratic residue? (Read Chapter 21)

Let p be an odd prime, and let P “ p´1
2 .

We have

p´1qN ”p 2
P where N “ |t´1,´3, . . . ,´pP ´ 1qu|.

Theorem (Quadratic reciprocity, part 2)

Let p be an odd prime. Then
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#

1 if p ”8 ˘1,

´1 if p ”8 ˘3.

Proof.
Compute N . . .


