$b^{2}(\bmod n):$

	5	6	7	8	9	10	11	12	13
1	1	1	1	1	1	1	1	1	1
2	4	4	4	4	4	4	4	4	4
3	4	3	2	1	0	9	9	9	9
4	1	4	2	0	7	6	5	4	3
\downarrow									
\downarrow		1	4	1	7	5	3	1	12
6			1	4	0	6	3	0	10
7				1	4	9	5	1	10
8					1	4	9	4	12
9						1	4	9	3
10							1	4	9
11								1	4
12									1

$b^{2}(\bmod n):$

	5	6	7	8	9	10	11	12	13
1	1	1	1	1	1	1	1	1	1
2	4	4	4	4	4	4	4	4	4
3	4	3	2	1	0	9	9	9	9
4	1	4	2	0	7	6	5	4	3
\downarrow									
\downarrow		1	4	1	7	5	3	1	12
6			1	4	0	6	3	0	10
7				1	4	9	5	1	10
8					1	4	9	4	12
9						1	4	9	3
10							1	4	9
11								1	4
12									1

modulo 13:

b	b^{\prime}	b^{2}
1	1	1
2	2	4
3	3	9
4	4	3
5	5	12
6	6	10
7	-6	10
8	-5	12
9	-4	3
10	-3	9
11	-2	4
12	-1	1

$\leftarrow n \rightarrow$										modulo 13:		
	5	6	7	8	9	10	11	12	13	b	b^{\prime}	b^{2}
1	1	1	1	1	1	1	1	1	1	1	1	1
2	4	4	4	4	4	4	4	4	4	2	2	4
3	4	3	2	1	0	9	9	9	9	3	3	9
4	1	4	2	0	7	6	5	4	3	4	4	3
5		1	4	1	7	5	3	1	12	5	5	12
6			1	4	0	6	3	0	10	6	6	10
7				1	4	9	5	1	10	7	-6	10
8					1	4	9	4	12	8	- 5	12
9						1	4	9	3	9	- 4	3
10							1	4	9	10	- 3	9
11								1	4	11	-2	4
12									1	12	-1	1

Most values will appear at least twice: $b^{2}=(-b)^{2} \equiv_{n}(n-b)^{2}$.
$b^{2}(\bmod n):$

	5	6	7	8	9	10	11	12	13
1	1	1	1	1	1	1	1	1	1
2	4	4	4	4	4	4	4	4	4
3	4	3	2	1	0	9	9	9	9
\downarrow	4	1	4	2	0	7	6	5	4
5		1	4	1	7	5	3	1	12
\downarrow			1	4	0	6	3	0	10
7				1	4	9	5	1	10
8					1	4	9	4	12
9						1	4	9	3
10							1	4	9
11								1	4
12									1

modulo 13:

b	b^{\prime}	b^{2}
1	1	1
2	2	4
3	3	9
4	4	3
5	5	12
6	6	10
7	-6	10
8	-5	12
9	-4	3
10	-3	9
11	-2	4
12	-1	1

Most values will appear at least twice: $b^{2}=(-b)^{2} \equiv_{n}(n-b)^{2}$.
$b^{2}(\bmod n):$

$\leftarrow n \rightarrow$										modulo 13:		
	5	6	7	8	9	10	11	12	13	b	b^{\prime}	b^{2}
1	1	1	1	1	1	1	1	1	1	1	1	1
2	4	4	4	4	4	4	4	4	4	2	2	4
3	4	3	2	1	0	9	9	9	9	3	3	9
4	1	4	2	0	7	6	5	4	3	4	4	3
5		1	4	1	7	5	3	1	12	5	5	12
6			1	4	0	6	3	0	10	6	6	10
7				1	4	9	5	1	10	7	-6	10
8					1	4	9	4	12	8	- 5	12
9						1	4	9	3	9	- 4	3
10							1	4	9	10	-3	9
11								1	4	11	-2	4
12									1	12	-1	1

Most values will appear at least twice: $b^{2}=(-b)^{2} \equiv_{n}(n-b)^{2}$.

What values appear as $b^{2}(\bmod n) ?$

i.e. what values a have square roots modulo n ?

What values appear as $b^{2}(\bmod n) ?$
i.e. what values a have square roots modulo n ?

For now, sticking to prime modulus p :

What values appear as $b^{2}(\bmod n) ?$

i.e. what values a have square roots modulo n ?

For now, sticking to prime modulus p :
Since

$$
(p-b)^{2} \equiv_{p}(-b)^{2}=b^{2}
$$

we only need look at

$$
b^{2} \quad \text { for } b=1,2, \ldots, \frac{p-1}{2} .
$$

What values appear as $b^{2}(\bmod n) ?$

i.e. what values a have square roots modulo n ?

For now, sticking to prime modulus p :
Since

$$
(p-b)^{2} \equiv_{p}(-b)^{2}=b^{2}
$$

we only need look at

$$
b^{2} \quad \text { for } b=1,2, \ldots, \frac{p-1}{2}
$$

Let b be a integer that's not a multiple of p. Then if b is congruent to a square modulo p, we call it a quadratic residue (QR) modulo p. Otherwise, it's a (quadratic) nonresidue (NR) modulo p.

What values appear as $b^{2}(\bmod n) ?$

i.e. what values a have square roots modulo n ?

For now, sticking to prime modulus p :
Since

$$
(p-b)^{2} \equiv_{p}(-b)^{2}=b^{2}
$$

we only need look at

$$
b^{2} \quad \text { for } b=1,2, \ldots, \frac{p-1}{2}
$$

Let b be a integer that's not a multiple of p. Then if b is congruent to a square modulo p, we call it a quadratic residue (QR) modulo p. Otherwise, it's a (quadratic) nonresidue (NR) modulo p.
Ex: Modulo 13, the QRs are 1, 3, 4, 9, 10, and 12

What values appear as $b^{2}(\bmod n) ?$

i.e. what values a have square roots modulo n ?

For now, sticking to prime modulus p :
Since

$$
(p-b)^{2} \equiv_{p}(-b)^{2}=b^{2}
$$

we only need look at

$$
b^{2} \quad \text { for } b=1,2, \ldots, \frac{p-1}{2}
$$

Let b be a integer that's not a multiple of p. Then if b is congruent to a square modulo p, we call it a quadratic residue (QR) modulo p. Otherwise, it's a (quadratic) nonresidue (NR) modulo p.
Ex: Modulo 13, the QRs are $1,3,4,9,10$, and 12, a.k.a. $\pm 1, \pm 3$, and ± 4.

What values appear as $b^{2}(\bmod n) ?$

i.e. what values a have square roots modulo n ?

For now, sticking to prime modulus p :
Since

$$
(p-b)^{2} \equiv_{p}(-b)^{2}=b^{2}
$$

we only need look at

$$
b^{2} \quad \text { for } b=1,2, \ldots, \frac{p-1}{2}
$$

Let b be a integer that's not a multiple of p. Then if b is congruent to a square modulo p, we call it a quadratic residue (QR) modulo p. Otherwise, it's a (quadratic) nonresidue (NR) modulo p.
Ex: Modulo 13, the QRs are $1,3,4,9,10$, and 12, a.k.a. $\pm 1, \pm 3$, and ± 4.

Theorem. Let p be an odd prime. Then there are exactly $(p-1) / 2$ quadratic residues modulo p and exactly $(p-1) / 2$ nonresidues modulo p. (Namely, there are as many residues as possible, which is half.)

Arithmetic with quadratic residues

QR $\times \mathrm{QR}:$ Suppose a and a^{\prime} are QRs modulo p.

Arithmetic with quadratic residues

QR $\times \mathrm{QR}$: Suppose a and a^{\prime} are QRs modulo p.
Since $p \nmid a$ and $p \nmid a^{\prime}$, we have $p \nmid a a^{\prime}$.

Arithmetic with quadratic residues

QR $\times \mathrm{QR}$: Suppose a and a^{\prime} are QRs modulo p.
Since $p \nmid a$ and $p \nmid a^{\prime}$, we have $p \nmid a a^{\prime}$.
So $a a^{\prime}$ is either a QR or a NR mod p.

Arithmetic with quadratic residues

QR $\times \mathrm{QR}:$ Suppose a and a^{\prime} are QRs modulo p.
Since $p \nmid a$ and $p \nmid a^{\prime}$, we have $p \nmid a a^{\prime}$.
So $a a^{\prime}$ is either a QR or a NR mod p.
But we have some b, b^{\prime} such that $b^{2} \equiv_{p} a$ and $\left(b^{\prime}\right)^{2} \equiv_{p} a^{\prime}$.

Arithmetic with quadratic residues

$\mathrm{QR} \times \mathrm{QR}:$ Suppose a and a^{\prime} are QRs modulo p.
Since $p \nmid a$ and $p \nmid a^{\prime}$, we have $p \nmid a a^{\prime}$.
So $a a^{\prime}$ is either a QR or a NR mod p.
But we have some b, b^{\prime} such that $b^{2} \equiv_{p} a$ and $\left(b^{\prime}\right)^{2} \equiv_{p} a^{\prime}$.
So $a a^{\prime} \equiv{ }_{p} b^{2}\left(b^{\prime}\right)^{2}$

Arithmetic with quadratic residues

$\mathrm{QR} \times \mathrm{QR}:$ Suppose a and a^{\prime} are QRs modulo p.
Since $p \nmid a$ and $p \nmid a^{\prime}$, we have $p \nmid a a^{\prime}$.
So $a a^{\prime}$ is either a QR or a NR mod p.
But we have some b, b^{\prime} such that $b^{2} \equiv_{p} a$ and $\left(b^{\prime}\right)^{2} \equiv_{p} a^{\prime}$.
So $a a^{\prime} \equiv{ }_{p} b^{2}\left(b^{\prime}\right)^{2}=\left(b b^{\prime}\right)^{2}$.

Arithmetic with quadratic residues

$\mathrm{QR} \times \mathrm{QR}$: Suppose a and a^{\prime} are QRs modulo p.
Since $p \nmid a$ and $p \nmid a^{\prime}$, we have $p \nmid a a^{\prime}$.
So $a a^{\prime}$ is either a QR or a NR mod p.
But we have some b, b^{\prime} such that $b^{2} \equiv_{p} a$ and $\left(b^{\prime}\right)^{2} \equiv_{p} a^{\prime}$.
So $a a^{\prime} \equiv_{p} b^{2}\left(b^{\prime}\right)^{2}=\left(b b^{\prime}\right)^{2}$. Thus $a a^{\prime}$ is a QR as well.

Arithmetic with quadratic residues

$\mathrm{QR} \times \mathrm{QR}$: Suppose a and a^{\prime} are QRs modulo p.
Since $p \nmid a$ and $p \nmid a^{\prime}$, we have $p \nmid a a^{\prime}$.
So $a a^{\prime}$ is either a QR or a NR mod p.
But we have some b, b^{\prime} such that $b^{2} \equiv_{p} a$ and $\left(b^{\prime}\right)^{2} \equiv_{p} a^{\prime}$.
So $a a^{\prime} \equiv_{p} b^{2}\left(b^{\prime}\right)^{2}=\left(b b^{\prime}\right)^{2}$. Thus $a a^{\prime}$ is a QR as well.
QR \times NR: Fix a a QR and a^{\prime} a NR.

Arithmetic with quadratic residues

$\mathrm{QR} \times \mathrm{QR}$: Suppose a and a^{\prime} are QRs modulo p.
Since $p \nmid a$ and $p \nmid a^{\prime}$, we have $p \nmid a a^{\prime}$.
So $a a^{\prime}$ is either a QR or a NR mod p.
But we have some b, b^{\prime} such that $b^{2} \equiv_{p} a$ and $\left(b^{\prime}\right)^{2} \equiv_{p} a^{\prime}$.
So $a a^{\prime} \equiv{ }_{p} b^{2}\left(b^{\prime}\right)^{2}=\left(b b^{\prime}\right)^{2}$. Thus $a a^{\prime}$ is a QR as well.
QR \times NR: Fix a a QR and a^{\prime} a NR.
Since $p \nmid a$ and $p \nmid a^{\prime}$, we have $p \nmid a a^{\prime}$.
So $a a^{\prime}$ is either a QR or a NR mod p.

Arithmetic with quadratic residues

$\mathrm{QR} \times \mathrm{QR}:$ Suppose a and a^{\prime} are QRs modulo p.
Since $p \nmid a$ and $p \nmid a^{\prime}$, we have $p \nmid a a^{\prime}$.
So $a a^{\prime}$ is either a QR or a NR mod p.
But we have some b, b^{\prime} such that $b^{2} \equiv_{p} a$ and $\left(b^{\prime}\right)^{2} \equiv_{p} a^{\prime}$.
So $a a^{\prime} \equiv{ }_{p} b^{2}\left(b^{\prime}\right)^{2}=\left(b b^{\prime}\right)^{2}$. Thus $a a^{\prime}$ is a QR as well.
QR \times NR: Fix a a QR and a^{\prime} a NR.
Since $p \nmid a$ and $p \nmid a^{\prime}$, we have $p \nmid a a^{\prime}$.
So $a a^{\prime}$ is either a QR or a NR mod p.
Moreover, we have some b such that $b^{2} \equiv_{p} a$.

Arithmetic with quadratic residues

$\mathrm{QR} \times \mathrm{QR}:$ Suppose a and a^{\prime} are QRs modulo p.
Since $p \nmid a$ and $p \nmid a^{\prime}$, we have $p \nmid a a^{\prime}$.
So $a a^{\prime}$ is either a QR or a NR mod p.
But we have some b, b^{\prime} such that $b^{2} \equiv_{p} a$ and $\left(b^{\prime}\right)^{2} \equiv_{p} a^{\prime}$.
So $a a^{\prime} \equiv_{p} b^{2}\left(b^{\prime}\right)^{2}=\left(b b^{\prime}\right)^{2}$. Thus $a a^{\prime}$ is a QR as well.
$\mathrm{QR} \times$ NR: Fix a a QR and a^{\prime} a NR.
Since $p \nmid a$ and $p \nmid a^{\prime}$, we have $p \nmid a a^{\prime}$.
So $a a^{\prime}$ is either a QR or a NR mod p.
Moreover, we have some b such that $b^{2} \equiv_{p} a$.
Now, if $a a^{\prime}$ is a QR, then there's some c such that $c^{2} \equiv_{p} a a^{\prime}$.

Arithmetic with quadratic residues

$\mathrm{QR} \times \mathrm{QR}:$ Suppose a and a^{\prime} are QRs modulo p.
Since $p \nmid a$ and $p \nmid a^{\prime}$, we have $p \nmid a a^{\prime}$.
So $a a^{\prime}$ is either a QR or a NR mod p.
But we have some b, b^{\prime} such that $b^{2} \equiv_{p} a$ and $\left(b^{\prime}\right)^{2} \equiv_{p} a^{\prime}$.
So $a a^{\prime} \equiv_{p} b^{2}\left(b^{\prime}\right)^{2}=\left(b b^{\prime}\right)^{2}$. Thus $a a^{\prime}$ is a QR as well.
$\mathrm{QR} \times$ NR: Fix a a QR and a^{\prime} a NR.
Since $p \nmid a$ and $p \nmid a^{\prime}$, we have $p \nmid a a^{\prime}$.
So $a a^{\prime}$ is either a QR or a NR mod p.
Moreover, we have some b such that $b^{2} \equiv_{p} a$.
Now, if $a a^{\prime}$ is a QR , then there's some c such that $c^{2} \equiv_{p} a a^{\prime}$. So

$$
c^{2} \equiv{ }_{p} a a^{\prime}
$$

Arithmetic with quadratic residues

$\mathrm{QR} \times \mathrm{QR}:$ Suppose a and a^{\prime} are QRs modulo p.
Since $p \nmid a$ and $p \nmid a^{\prime}$, we have $p \nmid a a^{\prime}$.
So $a a^{\prime}$ is either a QR or a NR mod p.
But we have some b, b^{\prime} such that $b^{2} \equiv_{p} a$ and $\left(b^{\prime}\right)^{2} \equiv_{p} a^{\prime}$.
So $a a^{\prime} \equiv_{p} b^{2}\left(b^{\prime}\right)^{2}=\left(b b^{\prime}\right)^{2}$. Thus $a a^{\prime}$ is a QR as well.
$\mathrm{QR} \times$ NR: Fix a a QR and a^{\prime} a NR.
Since $p \nmid a$ and $p \nmid a^{\prime}$, we have $p \nmid a a^{\prime}$.
So $a a^{\prime}$ is either a QR or a NR mod p.
Moreover, we have some b such that $b^{2} \equiv_{p} a$.
Now, if $a a^{\prime}$ is a QR, then there's some c such that $c^{2} \equiv_{p} a a^{\prime}$. So

$$
c^{2} \equiv_{p} a a^{\prime} \equiv_{p} b^{2} a^{\prime}
$$

Arithmetic with quadratic residues

$\mathrm{QR} \times \mathrm{QR}:$ Suppose a and a^{\prime} are QRs modulo p.
Since $p \nmid a$ and $p \nmid a^{\prime}$, we have $p \nmid a a^{\prime}$.
So $a a^{\prime}$ is either a QR or a NR mod p.
But we have some b, b^{\prime} such that $b^{2} \equiv_{p} a$ and $\left(b^{\prime}\right)^{2} \equiv_{p} a^{\prime}$.
So $a a^{\prime} \equiv_{p} b^{2}\left(b^{\prime}\right)^{2}=\left(b b^{\prime}\right)^{2}$. Thus $a a^{\prime}$ is a QR as well.
$\mathrm{QR} \times$ NR: Fix a a QR and a^{\prime} a NR.
Since $p \nmid a$ and $p \nmid a^{\prime}$, we have $p \nmid a a^{\prime}$.
So $a a^{\prime}$ is either a QR or a NR mod p.
Moreover, we have some b such that $b^{2} \equiv_{p} a$.
Now, if $a a^{\prime}$ is a QR, then there's some c such that $c^{2} \equiv_{p} a a^{\prime}$. So

$$
c^{2} \equiv_{p} a a^{\prime} \equiv_{p} b^{2} a^{\prime}
$$

Now, since $a \not \equiv_{p} 0$, we have $b \not \equiv_{p} 0$ also.

Arithmetic with quadratic residues

$\mathrm{QR} \times \mathrm{QR}:$ Suppose a and a^{\prime} are QRs modulo p.
Since $p \nmid a$ and $p \nmid a^{\prime}$, we have $p \nmid a a^{\prime}$.
So $a a^{\prime}$ is either a QR or a NR mod p.
But we have some b, b^{\prime} such that $b^{2} \equiv_{p} a$ and $\left(b^{\prime}\right)^{2} \equiv_{p} a^{\prime}$.
So $a a^{\prime} \equiv_{p} b^{2}\left(b^{\prime}\right)^{2}=\left(b b^{\prime}\right)^{2}$. Thus $a a^{\prime}$ is a QR as well.
$\mathrm{QR} \times \mathrm{NR}$: Fix a a QR and a^{\prime} a NR.
Since $p \nmid a$ and $p \nmid a^{\prime}$, we have $p \nmid a a^{\prime}$.
So $a a^{\prime}$ is either a QR or a NR mod p.
Moreover, we have some b such that $b^{2} \equiv_{p} a$.
Now, if $a a^{\prime}$ is a QR, then there's some c such that $c^{2} \equiv_{p} a a^{\prime}$. So

$$
c^{2} \equiv_{p} a a^{\prime} \equiv_{p} b^{2} a^{\prime}
$$

Now, since $a \not \equiv_{p} 0$, we have $b \not \equiv_{p} 0$ also. So $\operatorname{gcd}(b, p)=1$, and therefore there's a multiplicative inverse b^{-1} modulo p.

Arithmetic with quadratic residues

$\mathrm{QR} \times \mathrm{QR}:$ Suppose a and a^{\prime} are QRs modulo p.
Since $p \nmid a$ and $p \nmid a^{\prime}$, we have $p \nmid a a^{\prime}$.
So $a a^{\prime}$ is either a QR or a NR mod p.
But we have some b, b^{\prime} such that $b^{2} \equiv_{p} a$ and $\left(b^{\prime}\right)^{2} \equiv_{p} a^{\prime}$.
So $a a^{\prime} \equiv_{p} b^{2}\left(b^{\prime}\right)^{2}=\left(b b^{\prime}\right)^{2}$. Thus $a a^{\prime}$ is a QR as well.
$\mathrm{QR} \times \mathrm{NR}$: Fix a a QR and a^{\prime} a NR.
Since $p \nmid a$ and $p \nmid a^{\prime}$, we have $p \nmid a a^{\prime}$.
So $a a^{\prime}$ is either a QR or a NR mod p.
Moreover, we have some b such that $b^{2} \equiv_{p} a$.
Now, if $a a^{\prime}$ is a QR, then there's some c such that $c^{2} \equiv_{p} a a^{\prime}$. So

$$
c^{2} \equiv_{p} a a^{\prime} \equiv_{p} b^{2} a^{\prime}
$$

Now, since $a \not \equiv_{p} 0$, we have $b \not \equiv_{p} 0$ also. So $\operatorname{gcd}(b, p)=1$, and therefore there's a multiplicative inverse b^{-1} modulo p. So

$$
a^{\prime} \equiv_{p}\left(b^{-1}\right)^{2} \cdot b^{2} \cdot a^{\prime}
$$

Arithmetic with quadratic residues

$\mathrm{QR} \times \mathrm{QR}:$ Suppose a and a^{\prime} are QRs modulo p.
Since $p \nmid a$ and $p \nmid a^{\prime}$, we have $p \nmid a a^{\prime}$.
So $a a^{\prime}$ is either a QR or a NR mod p.
But we have some b, b^{\prime} such that $b^{2} \equiv_{p} a$ and $\left(b^{\prime}\right)^{2} \equiv_{p} a^{\prime}$.
So $a a^{\prime} \equiv_{p} b^{2}\left(b^{\prime}\right)^{2}=\left(b b^{\prime}\right)^{2}$. Thus $a a^{\prime}$ is a QR as well.
$\mathrm{QR} \times \mathrm{NR}$: Fix a a QR and a^{\prime} a NR.
Since $p \nmid a$ and $p \nmid a^{\prime}$, we have $p \nmid a a^{\prime}$.
So $a a^{\prime}$ is either a QR or a NR mod p.
Moreover, we have some b such that $b^{2} \equiv_{p} a$.
Now, if $a a^{\prime}$ is a QR, then there's some c such that $c^{2} \equiv_{p} a a^{\prime}$. So

$$
c^{2} \equiv_{p} a a^{\prime} \equiv_{p} b^{2} a^{\prime}
$$

Now, since $a \not \equiv_{p} 0$, we have $b \not \equiv_{p} 0$ also. So $\operatorname{gcd}(b, p)=1$, and therefore there's a multiplicative inverse b^{-1} modulo p. So

$$
a^{\prime} \equiv_{p}\left(b^{-1}\right)^{2} \cdot b^{2} \cdot a^{\prime} \equiv_{p}\left(b^{-1}\right)^{2} c^{2}
$$

Arithmetic with quadratic residues

$\mathrm{QR} \times \mathrm{QR}:$ Suppose a and a^{\prime} are QRs modulo p.
Since $p \nmid a$ and $p \nmid a^{\prime}$, we have $p \nmid a a^{\prime}$.
So $a a^{\prime}$ is either a QR or a NR mod p.
But we have some b, b^{\prime} such that $b^{2} \equiv_{p} a$ and $\left(b^{\prime}\right)^{2} \equiv_{p} a^{\prime}$.
So $a a^{\prime} \equiv_{p} b^{2}\left(b^{\prime}\right)^{2}=\left(b b^{\prime}\right)^{2}$. Thus $a a^{\prime}$ is a QR as well.
$\mathrm{QR} \times \mathrm{NR}$: Fix a a QR and a^{\prime} a NR.
Since $p \nmid a$ and $p \nmid a^{\prime}$, we have $p \nmid a a^{\prime}$.
So $a a^{\prime}$ is either a QR or a NR mod p.
Moreover, we have some b such that $b^{2} \equiv_{p} a$.
Now, if $a a^{\prime}$ is a QR, then there's some c such that $c^{2} \equiv_{p} a a^{\prime}$. So

$$
c^{2} \equiv_{p} a a^{\prime} \equiv_{p} b^{2} a^{\prime}
$$

Now, since $a \not \equiv_{p} 0$, we have $b \not \equiv_{p} 0$ also. So $\operatorname{gcd}(b, p)=1$, and therefore there's a multiplicative inverse b^{-1} modulo p. So

$$
a^{\prime} \equiv_{p}\left(b^{-1}\right)^{2} \cdot b^{2} \cdot a^{\prime} \equiv_{p}\left(b^{-1}\right)^{2} c^{2} \equiv_{p}\left(b^{-1} c\right)^{2}
$$

Arithmetic with quadratic residues

$\mathrm{QR} \times \mathrm{QR}:$ Suppose a and a^{\prime} are QRs modulo p.
Since $p \nmid a$ and $p \nmid a^{\prime}$, we have $p \nmid a a^{\prime}$.
So $a a^{\prime}$ is either a QR or a NR mod p.
But we have some b, b^{\prime} such that $b^{2} \equiv_{p} a$ and $\left(b^{\prime}\right)^{2} \equiv_{p} a^{\prime}$.
So $a a^{\prime} \equiv_{p} b^{2}\left(b^{\prime}\right)^{2}=\left(b b^{\prime}\right)^{2}$. Thus $a a^{\prime}$ is a QR as well.
$\mathrm{QR} \times \mathrm{NR}$: Fix a a QR and a^{\prime} a NR.
Since $p \nmid a$ and $p \nmid a^{\prime}$, we have $p \nmid a a^{\prime}$.
So $a a^{\prime}$ is either a QR or a NR mod p.
Moreover, we have some b such that $b^{2} \equiv_{p} a$.
Now, if $a a^{\prime}$ is a QR, then there's some c such that $c^{2} \equiv_{p} a a^{\prime}$. So

$$
c^{2} \equiv_{p} a a^{\prime} \equiv_{p} b^{2} a^{\prime}
$$

Now, since $a \not \equiv_{p} 0$, we have $b \not \equiv_{p} 0$ also. So $\operatorname{gcd}(b, p)=1$, and therefore there's a multiplicative inverse b^{-1} modulo p. So

$$
a^{\prime} \equiv_{p}\left(b^{-1}\right)^{2} \cdot b^{2} \cdot a^{\prime} \equiv_{p}\left(b^{-1}\right)^{2} c^{2} \equiv_{p}\left(b^{-1} c\right)^{2}
$$

which is a contradiction.

Arithmetic with quadratic residues

QR \times QR: Suppose a and a^{\prime} are QRs modulo p.
Since $p \nmid a$ and $p \nmid a^{\prime}$, we have $p \nmid a a^{\prime}$.
So $a a^{\prime}$ is either a QR or a NR mod p.
But we have some b, b^{\prime} such that $b^{2} \equiv_{p} a$ and $\left(b^{\prime}\right)^{2} \equiv_{p} a^{\prime}$.
So $a a^{\prime} \equiv_{p} b^{2}\left(b^{\prime}\right)^{2}=\left(b b^{\prime}\right)^{2}$. Thus $a a^{\prime}$ is a QR as well.
$\mathrm{QR} \times \mathrm{NR}$: Fix a a QR and a^{\prime} a NR.
Since $p \nmid a$ and $p \nmid a^{\prime}$, we have $p \nmid a a^{\prime}$.
So $a a^{\prime}$ is either a QR or a NR mod p.
Moreover, we have some b such that $b^{2} \equiv_{p} a$.
Now, if $a a^{\prime}$ is a QR, then there's some c such that $c^{2} \equiv_{p} a a^{\prime}$. So

$$
c^{2} \equiv_{p} a a^{\prime} \equiv_{p} b^{2} a^{\prime}
$$

Now, since $a \not \equiv_{p} 0$, we have $b \not \equiv_{p} 0$ also. So $\operatorname{gcd}(b, p)=1$, and therefore there's a multiplicative inverse b^{-1} modulo p. So

$$
a^{\prime} \equiv_{p}\left(b^{-1}\right)^{2} \cdot b^{2} \cdot a^{\prime} \equiv_{p}\left(b^{-1}\right)^{2} c^{2} \equiv_{p}\left(b^{-1} c\right)^{2}
$$

which is a contradiction. So $a a^{\prime}$ is a NR.

Arithmetic with quadratic residues

NR \times NR: Fix a a NR.

Arithmetic with quadratic residues

NR \times NR: Fix a a NR.
Consider

$$
a, 2 a, \ldots,(p-1) a \quad(\bmod p) .
$$

Arithmetic with quadratic residues

NR \times NR: Fix a a NR.
Consider

$$
a, 2 a, \ldots,(p-1) a \quad(\bmod p)
$$

Since $p \nmid a$, we have $\operatorname{gcd}(a, p)=1$

Arithmetic with quadratic residues

NR \times NR: Fix a a NR.
Consider

$$
a, 2 a, \ldots,(p-1) a \quad(\bmod p)
$$

Since $p \nmid a$, we have $\operatorname{gcd}(a, p)=1$, so as we showed in proving Fermat's Little Theorem, this list is just a rearrangement of

$$
1,2, \ldots,(p-1) \quad(\bmod p)
$$

Arithmetic with quadratic residues

NR \times NR: Fix a a NR.
Consider

$$
a, 2 a, \ldots,(p-1) a \quad(\bmod p)
$$

Since $p \nmid a$, we have $\operatorname{gcd}(a, p)=1$, so as we showed in proving Fermat's Little Theorem, this list is just a rearrangement of

$$
1,2, \ldots,(p-1) \quad(\bmod p)
$$

In particular, this list has the $(p-1) / 2$ QRs and the $(p-1) / 2$ NRs!

Arithmetic with quadratic residues

NR \times NR: Fix a a NR.
Consider

$$
a, 2 a, \ldots,(p-1) a \quad(\bmod p)
$$

Since $p \nmid a$, we have $\operatorname{gcd}(a, p)=1$, so as we showed in proving Fermat's Little Theorem, this list is just a rearrangement of

$$
1,2, \ldots,(p-1) \quad(\bmod p)
$$

In particular, this list has the $(p-1) / 2$ QRs and the $(p-1) / 2$ NRs! But we showed that $\mathrm{QR} \times \mathrm{NR}=\mathrm{NR}$.

Arithmetic with quadratic residues

NR \times NR: Fix a a NR.
Consider

$$
a, 2 a, \ldots,(p-1) a \quad(\bmod p)
$$

Since $p \nmid a$, we have $\operatorname{gcd}(a, p)=1$, so as we showed in proving Fermat's Little Theorem, this list is just a rearrangement of

$$
1,2, \ldots,(p-1) \quad(\bmod p)
$$

In particular, this list has the $(p-1) / 2$ QRs and the $(p-1) / 2$ NRs! But we showed that QR $\times N R=N R$. So $\{1,2, \ldots, p-1\} \rightarrow\{1,2, \ldots, p-1\} \quad$ defined by $x \mapsto a x(\bmod p)$ sends the $(p-1) / 2$ QRs to (distinct) NRs.

Arithmetic with quadratic residues

NR \times NR: Fix a a NR.
Consider

$$
a, 2 a, \ldots,(p-1) a \quad(\bmod p)
$$

Since $p \nmid a$, we have $\operatorname{gcd}(a, p)=1$, so as we showed in proving Fermat's Little Theorem, this list is just a rearrangement of

$$
1,2, \ldots,(p-1) \quad(\bmod p)
$$

In particular, this list has the $(p-1) / 2 \mathrm{QRs}$ and the $(p-1) / 2$ NRs! But we showed that QR $\times N R=N R$. So $\{1,2, \ldots, p-1\} \rightarrow\{1,2, \ldots, p-1\} \quad$ defined by $\quad x \mapsto a x(\bmod p)$ sends the $(p-1) / 2$ QRs to (distinct) NRs. Therefore, it must send the $(p-1) / 2$ NRs all to QRs.

Arithmetic with quadratic residues

NR \times NR: Fix a a NR.
Consider

$$
a, 2 a, \ldots,(p-1) a \quad(\bmod p)
$$

Since $p \nmid a$, we have $\operatorname{gcd}(a, p)=1$, so as we showed in proving Fermat's Little Theorem, this list is just a rearrangement of

$$
1,2, \ldots,(p-1) \quad(\bmod p)
$$

In particular, this list has the $(p-1) / 2 \mathrm{QRs}$ and the $(p-1) / 2$ NRs! But we showed that QR $\times N R=N R$. So $\{1,2, \ldots, p-1\} \rightarrow\{1,2, \ldots, p-1\} \quad$ defined by $\quad x \mapsto a x(\bmod p)$ sends the $(p-1) / 2$ QRs to (distinct) NRs. Therefore, it must send the $(p-1) / 2$ NRs all to QRs.
In other words, $\mathrm{NR} \times \mathrm{NR}=\mathrm{QR}$.

Arithmetic with quadratic residues: Legendre symbol
We have

$$
Q R \times Q R=Q R \quad N R \times Q R=Q R \quad N R \times N R=Q R
$$

Arithmetic with quadratic residues: Legendre symbol
We have

$$
\mathrm{QR} \times \mathrm{QR}=\mathrm{QR} \quad \mathrm{NR} \times \mathrm{QR}=\mathrm{QR} \quad \mathrm{NR} \times \mathrm{NR}=\mathrm{QR} .
$$

Compare to

$$
1 \times 1=1 \quad 1 \times(-1)=-1 \quad(-1) \times(-1)=1
$$

Arithmetic with quadratic residues: Legendre symbol

We have

$$
Q R \times Q R=Q R \quad N R \times Q R=Q R \quad N R \times N R=Q R
$$

Compare to

$$
1 \times 1=1 \quad 1 \times(-1)=-1 \quad(-1) \times(-1)=1
$$

The Legendre symbol of a modulo p is

$$
\left(\frac{a}{p}\right)= \begin{cases}1 & \text { if } a \text { is a QR, } \\ -1 & \text { if } a \text { is a NR } \\ 0 & \text { if } a \text { is a multiple of } p\end{cases}
$$

Arithmetic with quadratic residues: Legendre symbol

We have

$$
\mathrm{QR} \times \mathrm{QR}=\mathrm{QR} \quad \mathrm{NR} \times \mathrm{QR}=\mathrm{QR} \quad \mathrm{NR} \times \mathrm{NR}=\mathrm{QR} .
$$

Compare to

$$
1 \times 1=1 \quad 1 \times(-1)=-1 \quad(-1) \times(-1)=1
$$

The Legendre symbol of a modulo p is

$$
\left(\frac{a}{p}\right)= \begin{cases}1 & \text { if } a \text { is a QR, } \\ -1 & \text { if } a \text { is a NR } \\ 0 & \text { if } a \text { is a multiple of } p\end{cases}
$$

Theorem (Quadratic Residue Multiplication Rule)
Let p be a prime. Then

$$
\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)=\left(\frac{a b}{p}\right) .
$$

Spotting small QRs

If $p=2$, then the possible residues are 0 and 1 .

Spotting small QRs

If $p=2$, then the possible residues are 0 and 1 . In particular, 1 is a QR .

Spotting small QRs

If $p=2$, then the possible residues are 0 and 1 . In particular, 1 is a QR. (Super easy case.)

Spotting small QRs

If $p=2$, then the possible residues are 0 and 1 . In particular, 1 is a QR. (Super easy case.)
Now, let p be an odd prime and fix $a \not \equiv_{p} 0$.

Spotting small QRs

If $p=2$, then the possible residues are 0 and 1 . In particular, 1 is a QR. (Super easy case.)
Now, let p be an odd prime and fix $a \not \equiv p 0$. Consider

$$
A=a^{(p-1) / 2} \quad(\text { reduced modulo } p)
$$

Spotting small QRs

If $p=2$, then the possible residues are 0 and 1 . In particular, 1 is a QR. (Super easy case.)
Now, let p be an odd prime and fix $a \not \equiv p 0$. Consider

$$
A=a^{(p-1) / 2} \quad(\text { reduced modulo } p)
$$

Then $A^{2}=a^{p-1}$

Spotting small QRs

If $p=2$, then the possible residues are 0 and 1 . In particular, 1 is a QR. (Super easy case.)
Now, let p be an odd prime and fix $a \not \equiv p 0$. Consider

$$
A=a^{(p-1) / 2} \quad(\text { reduced modulo } p)
$$

Then $A^{2}=a^{p-1} \equiv{ }_{p} 1$.

Spotting small QRs

If $p=2$, then the possible residues are 0 and 1 .
In particular, 1 is a QR. (Super easy case.)
Now, let p be an odd prime and fix $a \not \equiv p 0$. Consider

$$
A=a^{(p-1) / 2} \quad(\text { reduced modulo } p)
$$

Then $A^{2}=a^{p-1} \equiv{ }_{p}$ 1. So

$$
p \mid A^{2}-1
$$

Spotting small QRs

If $p=2$, then the possible residues are 0 and 1 . In particular, 1 is a QR. (Super easy case.)
Now, let p be an odd prime and fix $a \not \equiv p 0$. Consider

$$
A=a^{(p-1) / 2} \quad(\text { reduced modulo } p)
$$

Then $A^{2}=a^{p-1} \equiv{ }_{p}$ 1. So

$$
p \mid A^{2}-1=(A+1)(A-1)
$$

Spotting small QRs

If $p=2$, then the possible residues are 0 and 1 .
In particular, 1 is a QR. (Super easy case.)
Now, let p be an odd prime and fix $a \not \equiv p 0$. Consider

$$
A=a^{(p-1) / 2} \quad(\text { reduced modulo } p)
$$

Then $A^{2}=a^{p-1} \equiv{ }_{p}$ 1. So

$$
p \mid A^{2}-1=(A+1)(A-1) . \quad \text { So } p \mid A+1 \text { or } p \mid A-1
$$

Spotting small QRs

If $p=2$, then the possible residues are 0 and 1 .
In particular, 1 is a QR. (Super easy case.)
Now, let p be an odd prime and fix $a \not \equiv p 0$. Consider

$$
A=a^{(p-1) / 2} \quad(\text { reduced modulo } p)
$$

Then $A^{2}=a^{p-1} \equiv{ }_{p}$ 1. So

$$
p \mid A^{2}-1=(A+1)(A-1) . \quad \text { So } p \mid A+1 \text { or } p \mid A-1
$$

But $1 \leqslant A \leqslant p-1$.

Spotting small QRs

If $p=2$, then the possible residues are 0 and 1 .
In particular, 1 is a QR. (Super easy case.)
Now, let p be an odd prime and fix $a \not \equiv p 0$. Consider

$$
A=a^{(p-1) / 2} \quad(\text { reduced modulo } p)
$$

Then $A^{2}=a^{p-1} \equiv{ }_{p}$ 1. So

$$
p \mid A^{2}-1=(A+1)(A-1) . \quad \text { So } p \mid A+1 \text { or } p \mid A-1
$$

But $1 \leqslant A \leqslant p-1$. So $A=1$ or $p-1$ (i.e. $A \equiv_{p} \pm 1$).

Spotting small QRs

If $p=2$, then the possible residues are 0 and 1 .
In particular, 1 is a QR. (Super easy case.)
Now, let p be an odd prime and fix $a \not \equiv p 0$. Consider

$$
A=a^{(p-1) / 2} \quad(\text { reduced modulo } p)
$$

Then $A^{2}=a^{p-1} \equiv{ }_{p}$ 1. So

$$
p \mid A^{2}-1=(A+1)(A-1) . \quad \text { So } p \mid A+1 \text { or } p \mid A-1
$$

But $1 \leqslant A \leqslant p-1$. So $A=1$ or $p-1$ (i.e. $A \equiv{ }_{p} \pm 1$). Which one?

Spotting small QRs

If $p=2$, then the possible residues are 0 and 1 .
In particular, 1 is a QR. (Super easy case.)
Now, let p be an odd prime and fix $a \not \equiv p 0$. Consider

$$
A=a^{(p-1) / 2} \quad(\text { reduced modulo } p)
$$

Then $A^{2}=a^{p-1} \equiv{ }_{p}$ 1. So

$$
p \mid A^{2}-1=(A+1)(A-1) . \quad \text { So } p \mid A+1 \text { or } p \mid A-1
$$

But $1 \leqslant A \leqslant p-1$. So $A=1$ or $p-1$ (i.e. $A \equiv_{p} \pm 1$). Which one? Theorem (Euler's Criterion)
If p is an odd prime then

$$
a^{(p-1) / 2} \equiv{ }_{p}\left(\frac{a}{p}\right)
$$

Spotting small QRs

If $p=2$, then the possible residues are 0 and 1 .
In particular, 1 is a QR. (Super easy case.)
Now, let p be an odd prime and fix $a \not \equiv p 0$. Consider

$$
A=a^{(p-1) / 2} \quad(\text { reduced modulo } p)
$$

Then $A^{2}=a^{p-1} \equiv{ }_{p}$ 1. So

$$
p \mid A^{2}-1=(A+1)(A-1) . \quad \text { So } p \mid A+1 \text { or } p \mid A-1
$$

But $1 \leqslant A \leqslant p-1$. So $A=1$ or $p-1$ (i.e. $A \equiv_{p} \pm 1$). Which one? Theorem (Euler's Criterion)
If p is an odd prime then

$$
a^{(p-1) / 2} \equiv_{p}\left(\frac{a}{p}\right)
$$

Proof: First suppose $\left(\frac{a}{p}\right) \equiv{ }_{p} 1$.

Spotting small QRs

If $p=2$, then the possible residues are 0 and 1 .
In particular, 1 is a QR. (Super easy case.)
Now, let p be an odd prime and fix $a \not \equiv p 0$. Consider

$$
A=a^{(p-1) / 2} \quad(\text { reduced modulo } p)
$$

Then $A^{2}=a^{p-1} \equiv{ }_{p}$ 1. So

$$
p \mid A^{2}-1=(A+1)(A-1) . \quad \text { So } p \mid A+1 \text { or } p \mid A-1
$$

But $1 \leqslant A \leqslant p-1$. So $A=1$ or $p-1$ (i.e. $A \equiv_{p} \pm 1$). Which one? Theorem (Euler's Criterion)
If p is an odd prime then

$$
a^{(p-1) / 2} \equiv_{p}\left(\frac{a}{p}\right)
$$

Proof: First suppose $\left(\frac{a}{p}\right) \equiv_{p} 1$. Then there is some $b \not \equiv_{p} 0$ such that $b^{2} \equiv_{p} a$.

Spotting small QRs

If $p=2$, then the possible residues are 0 and 1 .
In particular, 1 is a QR. (Super easy case.)
Now, let p be an odd prime and fix $a \not \equiv p 0$. Consider

$$
A=a^{(p-1) / 2} \quad(\text { reduced modulo } p)
$$

Then $A^{2}=a^{p-1} \equiv{ }_{p}$ 1. So

$$
p \mid A^{2}-1=(A+1)(A-1) . \quad \text { So } p \mid A+1 \text { or } p \mid A-1
$$

But $1 \leqslant A \leqslant p-1$. So $A=1$ or $p-1$ (i.e. $A \equiv_{p} \pm 1$). Which one? Theorem (Euler's Criterion)
If p is an odd prime then

$$
a^{(p-1) / 2} \equiv_{p}\left(\frac{a}{p}\right)
$$

Proof: First suppose $\left(\frac{a}{p}\right) \equiv_{p} 1$. Then there is some $b \not \equiv_{p} 0$ such that $b^{2} \equiv_{p} a$. So

$$
a^{(p-1) / 2} \equiv_{p}\left(b^{2}\right)^{(p-1) / 2}
$$

Spotting small QRs

If $p=2$, then the possible residues are 0 and 1 .
In particular, 1 is a QR. (Super easy case.)
Now, let p be an odd prime and fix $a \not \equiv p 0$. Consider

$$
A=a^{(p-1) / 2} \quad(\text { reduced modulo } p)
$$

Then $A^{2}=a^{p-1} \equiv{ }_{p}$ 1. So

$$
p \mid A^{2}-1=(A+1)(A-1) . \quad \text { So } p \mid A+1 \text { or } p \mid A-1
$$

But $1 \leqslant A \leqslant p-1$. So $A=1$ or $p-1$ (i.e. $A \equiv_{p} \pm 1$). Which one? Theorem (Euler's Criterion)
If p is an odd prime then

$$
a^{(p-1) / 2} \equiv_{p}\left(\frac{a}{p}\right)
$$

Proof: First suppose $\left(\frac{a}{p}\right) \equiv_{p} 1$. Then there is some $b \not \equiv_{p} 0$ such that $b^{2} \equiv_{p} a$. So

$$
a^{(p-1) / 2} \equiv_{p}\left(b^{2}\right)^{(p-1) / 2} \equiv_{p} b^{p-1}
$$

Spotting small QRs

If $p=2$, then the possible residues are 0 and 1 .
In particular, 1 is a QR. (Super easy case.)
Now, let p be an odd prime and fix $a \not \equiv p 0$. Consider

$$
A=a^{(p-1) / 2} \quad(\text { reduced modulo } p)
$$

Then $A^{2}=a^{p-1} \equiv{ }_{p}$ 1. So

$$
p \mid A^{2}-1=(A+1)(A-1) . \quad \text { So } p \mid A+1 \text { or } p \mid A-1
$$

But $1 \leqslant A \leqslant p-1$. So $A=1$ or $p-1$ (i.e. $A \equiv_{p} \pm 1$). Which one? Theorem (Euler's Criterion)
If p is an odd prime then

$$
a^{(p-1) / 2} \equiv_{p}\left(\frac{a}{p}\right)
$$

Proof: First suppose $\left(\frac{a}{p}\right) \equiv_{p} 1$. Then there is some $b \not \equiv_{p} 0$ such that $b^{2} \equiv_{p} a$. So

$$
a^{(p-1) / 2} \equiv_{p}\left(b^{2}\right)^{(p-1) / 2} \equiv_{p} b^{p-1} \equiv 1
$$

Spotting small QRs

If $p=2$, then the possible residues are 0 and 1 .
In particular, 1 is a QR. (Super easy case.)
Now, let p be an odd prime and fix $a \not \equiv p 0$. Consider

$$
A=a^{(p-1) / 2} \quad(\text { reduced modulo } p)
$$

Then $A^{2}=a^{p-1} \equiv{ }_{p}$ 1. So

$$
p \mid A^{2}-1=(A+1)(A-1) . \quad \text { So } p \mid A+1 \text { or } p \mid A-1
$$

But $1 \leqslant A \leqslant p-1$. So $A=1$ or $p-1$ (i.e. $A \equiv_{p} \pm 1$). Which one? Theorem (Euler's Criterion)
If p is an odd prime then

$$
a^{(p-1) / 2} \equiv_{p}\left(\frac{a}{p}\right)
$$

Proof: First suppose $\left(\frac{a}{p}\right) \equiv_{p} 1$. Then there is some $b \not \equiv_{p} 0$ such that $b^{2} \equiv_{p} a$. So

$$
a^{(p-1) / 2} \equiv_{p}\left(b^{2}\right)^{(p-1) / 2} \equiv_{p} b^{p-1} \equiv 1=\left(\frac{a}{p}\right) .
$$

Spotting small QRs

$$
A=a^{(p-1) / 2} \quad(\text { reduced modulo } p)
$$

Theorem (Euler's Criterion)
If p is an odd prime then

$$
a^{(p-1) / 2} \equiv_{p}\left(\frac{a}{p}\right) .
$$

Proof: First suppose $\left(\frac{a}{p}\right) \equiv_{p} 1$. Then there is some $b \not \equiv_{p} 0$ such that $b^{2} \equiv_{p} a$. So

$$
a^{(p-1) / 2} \equiv_{p}\left(b^{2}\right)^{(p-1) / 2} \equiv_{p} b^{p-1} \equiv 1=\left(\frac{a}{p}\right) .
$$

Now consider the equation $x^{N}-1 \equiv_{p} 0$ for $N=(p-1) / 2$.

Spotting small QRs

$$
A=a^{(p-1) / 2} \quad(\text { reduced modulo } p)
$$

Theorem (Euler's Criterion)
If p is an odd prime then

$$
a^{(p-1) / 2} \equiv_{p}\left(\frac{a}{p}\right) .
$$

Proof: First suppose $\left(\frac{a}{p}\right) \equiv_{p} 1$. Then there is some $b \not \equiv_{p} 0$ such that $b^{2} \equiv_{p} a$. So

$$
a^{(p-1) / 2} \equiv_{p}\left(b^{2}\right)^{(p-1) / 2} \equiv_{p} b^{p-1} \equiv 1=\left(\frac{a}{p}\right) .
$$

Now consider the equation $x^{N}-1 \equiv_{p} 0$ for $N=(p-1) / 2$. Since p is prime, there are at most $(p-1) / 2$ solutions.

Spotting small QRs

$$
A=a^{(p-1) / 2} \quad(\text { reduced modulo } p)
$$

Theorem (Euler's Criterion)
If p is an odd prime then

$$
a^{(p-1) / 2} \equiv_{p}\left(\frac{a}{p}\right) .
$$

Proof: First suppose $\left(\frac{a}{p}\right) \equiv_{p} 1$. Then there is some $b \not \equiv_{p} 0$ such that $b^{2} \equiv_{p} a$. So

$$
a^{(p-1) / 2} \equiv_{p}\left(b^{2}\right)^{(p-1) / 2} \equiv_{p} b^{p-1} \equiv 1=\left(\frac{a}{p}\right) .
$$

Now consider the equation $x^{N}-1 \equiv_{p} 0$ for $N=(p-1) / 2$. Since p is prime, there are at most $(p-1) / 2$ solutions. Also, every one of the $(p-1) / 2$ quadratic residues are solutions.

Spotting small QRs

$$
A=a^{(p-1) / 2} \quad(\text { reduced modulo } p)
$$

Theorem (Euler's Criterion)
If p is an odd prime then

$$
a^{(p-1) / 2} \equiv_{p}\left(\frac{a}{p}\right) .
$$

Proof: First suppose $\left(\frac{a}{p}\right) \equiv_{p} 1$. Then there is some $b \not \equiv_{p} 0$ such that $b^{2} \equiv_{p} a$. So

$$
a^{(p-1) / 2} \equiv_{p}\left(b^{2}\right)^{(p-1) / 2} \equiv_{p} b^{p-1} \equiv 1=\left(\frac{a}{p}\right) .
$$

Now consider the equation $x^{N}-1 \equiv_{p} 0$ for $N=(p-1) / 2$. Since p is prime, there are at most $(p-1) / 2$ solutions. Also, every one of the $(p-1) / 2$ quadratic residues are solutions. So that's it! (Every non-residue is not a solution.)

Spotting small QRs

$$
A=a^{(p-1) / 2} \quad(\text { reduced modulo } p)
$$

Theorem (Euler's Criterion)

If p is an odd prime then

$$
a^{(p-1) / 2} \equiv_{p}\left(\frac{a}{p}\right) .
$$

Proof: First suppose $\left(\frac{a}{p}\right) \equiv_{p} 1$. Then there is some $b \not \equiv_{p} 0$ such that $b^{2} \equiv_{p} a$. So

$$
a^{(p-1) / 2} \equiv_{p}\left(b^{2}\right)^{(p-1) / 2} \equiv_{p} b^{p-1} \equiv 1=\left(\frac{a}{p}\right) .
$$

Now consider the equation $x^{N}-1 \equiv_{p} 0$ for $N=(p-1) / 2$. Since p is prime, there are at most $(p-1) / 2$ solutions. Also, every one of the $(p-1) / 2$ quadratic residues are solutions. So that's it! (Every non-residue is not a solution.) $\left\{\right.$ solns to $\left.x^{(p-1) / 2}-1 \equiv_{p} 0\right\}=\{$ quadratic residues modulo $p\}$

Spotting small QRs

$$
A=a^{(p-1) / 2} \quad(\text { reduced modulo } p)
$$

Theorem (Euler's Criterion)
If p is an odd prime then

$$
a^{(p-1) / 2} \equiv{ }_{p}\left(\frac{a}{p}\right)
$$

Proof: (continued) We have $\left\{\right.$ solns to $\left.x^{(p-1) / 2}-1 \equiv_{p} 0\right\}=\{$ quadratic residues modulo $p\}$.
Now let $\left(\frac{a}{p}\right)=-1$ (i.e. a is a non-res).

Spotting small QRs

$$
A=a^{(p-1) / 2} \quad(\text { reduced modulo } p)
$$

Theorem (Euler's Criterion)
If p is an odd prime then

$$
a^{(p-1) / 2} \equiv{ }_{p}\left(\frac{a}{p}\right)
$$

Proof: (continued) We have $\left\{\right.$ solns to $\left.x^{(p-1) / 2}-1 \equiv_{p} 0\right\}=\{$ quadratic residues modulo $p\}$.
Now let $\left(\frac{a}{p}\right)=-1$ (i.e. a is a non-res). We saw before that

$$
p \mid a^{(p-1) / 2}+1 \quad \text { or } \quad p \mid a^{(p-1) / 2}-1
$$

Spotting small QRs

$$
A=a^{(p-1) / 2} \quad(\text { reduced modulo } p)
$$

Theorem (Euler's Criterion)
If p is an odd prime then

$$
a^{(p-1) / 2} \equiv{ }_{p}\left(\frac{a}{p}\right)
$$

Proof: (continued) We have $\left\{\right.$ solns to $\left.x^{(p-1) / 2}-1 \equiv_{p} 0\right\}=\{$ quadratic residues modulo $p\}$.
Now let $\left(\frac{a}{p}\right)=-1$ (i.e. a is a non-res). We saw before that

$$
p \mid a^{(p-1) / 2}+1 \quad \text { or } \quad p \mid a^{(p-1) / 2}-1
$$

Spotting small QRs

$$
A=a^{(p-1) / 2} \quad(\text { reduced modulo } p)
$$

Theorem (Euler's Criterion)
If p is an odd prime then

$$
a^{(p-1) / 2} \equiv{ }_{p}\left(\frac{a}{p}\right)
$$

Proof: (continued) We have $\left\{\right.$ solns to $\left.x^{(p-1) / 2}-1 \equiv_{p} 0\right\}=\{$ quadratic residues modulo $p\}$.
Now let $\left(\frac{a}{p}\right)=-1$ (i.e. a is a non-res). We saw before that

$$
p \mid a^{(p-1) / 2}+1 \quad \text { or } \quad p \mid a^{(p-1) / 2}-1
$$

But $p \nmid a^{(p-1) / 2}-1$.

Spotting small QRs

$$
A=a^{(p-1) / 2} \quad(\text { reduced modulo } p)
$$

Theorem (Euler's Criterion)
If p is an odd prime then

$$
a^{(p-1) / 2} \equiv{ }_{p}\left(\frac{a}{p}\right)
$$

Proof: (continued) We have $\left\{\right.$ solns to $\left.x^{(p-1) / 2}-1 \equiv_{p} 0\right\}=\{$ quadratic residues modulo $p\}$.
Now let $\left(\frac{a}{p}\right)=-1$ (i.e. a is a non-res). We saw before that

$$
p \mid a^{(p-1) / 2}+1 \quad \text { or } \quad p \mid a^{(p-1) / 2}-1
$$

But $p \nmid a^{(p-1) / 2}-1$. So $p \mid a^{(p-1) / 2}+1$

Spotting small QRs

$$
A=a^{(p-1) / 2} \quad(\text { reduced modulo } p)
$$

Theorem (Euler's Criterion)
If p is an odd prime then

$$
a^{(p-1) / 2} \equiv{ }_{p}\left(\frac{a}{p}\right)
$$

Proof: (continued) We have $\left\{\right.$ solns to $\left.x^{(p-1) / 2}-1 \equiv_{p} 0\right\}=\{$ quadratic residues modulo $p\}$.
Now let $\left(\frac{a}{p}\right)=-1$ (i.e. a is a non-res). We saw before that

$$
p \mid a^{(p-1) / 2}+1 \quad \text { or } \quad p \mid a^{(p-1) / 2}-1
$$

But $p \nmid a^{(p-1) / 2}-1$. So $p \mid a^{(p-1) / 2}+1$, i.e.

$$
a^{(p-1) / 2} \equiv{ }_{p}-1
$$

Spotting small QRs

$$
A=a^{(p-1) / 2} \quad(\text { reduced modulo } p)
$$

Theorem (Euler's Criterion)
If p is an odd prime then

$$
a^{(p-1) / 2} \equiv{ }_{p}\left(\frac{a}{p}\right)
$$

Proof: (continued) We have $\left\{\right.$ solns to $\left.x^{(p-1) / 2}-1 \equiv_{p} 0\right\}=\{$ quadratic residues modulo $p\}$.
Now let $\left(\frac{a}{p}\right)=-1$ (i.e. a is a non-res). We saw before that

$$
p \mid a^{(p-1) / 2}+1 \quad \text { or } \quad p \mid a^{(p-1) / 2}-1
$$

But $p \nmid a^{(p-1) / 2}-1$. So $p \mid a^{(p-1) / 2}+1$, i.e.

$$
a^{(p-1) / 2} \equiv_{p}-1=\left(\frac{a}{p}\right)
$$

Theorem
If p is an odd prime then

$$
a^{(p-1) / 2} \equiv{ }_{p}\left(\frac{a}{p}\right)
$$

Let

$$
A=a^{(p-1) / 2} \quad(\text { reduced modulo } p)
$$

Example:
Recall, modulo 13, the QRs are 1, 3, 4, 9, 10, and 12.

a	1	2	3	4	5	6	7	8	9	10	11	12
$\left(\frac{a}{13}\right)$	1	-1	1	1	-1	-1	-1	-1	1	1	-1	1
A	1	12	1	1	12	12	12	12	1	1	12	1

Theorem
If p is an odd prime then

$$
a^{(p-1) / 2} \equiv_{p}\left(\frac{a}{p}\right)
$$

Corollary (Quadratic reciprocity)
Let p be an odd prime. Then

$$
\left(\frac{-1}{p}\right)= \begin{cases}1 & \text { if } p \equiv_{4} 1 \\ -1 & \text { if } p \equiv_{4}-1\end{cases}
$$

Theorem
If p is an odd prime then

$$
a^{(p-1) / 2} \equiv_{p}\left(\frac{a}{p}\right)
$$

Corollary (Quadratic reciprocity)
Let p be an odd prime. Then

$$
\left(\frac{-1}{p}\right)= \begin{cases}1 & \text { if } p \equiv_{4} 1 \\ -1 & \text { if } p \equiv \equiv_{4}-1\end{cases}
$$

Proof.
Compute $(-1)^{(p-1) / 2}(\bmod p)$.

When is 2 a quadratic residue?
(Read Chapter 21)

When is 2 a quadratic residue?
(Read Chapter 21)
Let p be an odd prime, and let $P=\frac{p-1}{2}$.

When is 2 a quadratic residue?

(Read Chapter 21)

Let p be an odd prime, and let $P=\frac{p-1}{2}$.
Consider

$$
2 \cdot 4 \cdot 6 \cdots(p-1)
$$

When is 2 a quadratic residue?

(Read Chapter 21)

Let p be an odd prime, and let $P=\frac{p-1}{2}$.
Consider

$$
2 \cdot 4 \cdot 6 \cdots(p-1)=2^{\frac{p-1}{2}}\left(1 \cdot 2 \cdot 3 \cdots \frac{p-1}{2}\right)
$$

When is 2 a quadratic residue?

(Read Chapter 21)

Let p be an odd prime, and let $P=\frac{p-1}{2}$.
Consider

$$
2 \cdot 4 \cdot 6 \cdots(p-1)=2^{\frac{p-1}{2}}\left(1 \cdot 2 \cdot 3 \cdots \frac{p-1}{2}\right)=2^{P} P!.
$$

On the other hand, consider the residues of $2,4,6, \ldots, p-1$ between $-P$ and P :

When is 2 a quadratic residue?

(Read Chapter 21)

Let p be an odd prime, and let $P=\frac{p-1}{2}$.
Consider

$$
2 \cdot 4 \cdot 6 \cdots(p-1)=2^{\frac{p-1}{2}}\left(1 \cdot 2 \cdot 3 \cdots \frac{p-1}{2}\right)=2^{P} P!.
$$

On the other hand, consider the residues of $2,4,6, \ldots, p-1$ between $-P$ and P :
Ex: if $p=7$

When is 2 a quadratic residue?

(Read Chapter 21)

Let p be an odd prime, and let $P=\frac{p-1}{2}$.
Consider

$$
2 \cdot 4 \cdot 6 \cdots(p-1)=2^{\frac{p-1}{2}}\left(1 \cdot 2 \cdot 3 \cdots \frac{p-1}{2}\right)=2^{P} P!.
$$

On the other hand, consider the residues of $2,4,6, \ldots, p-1$ between $-P$ and P :
Ex: if $p=7$, then $P=3$

When is 2 a quadratic residue?

(Read Chapter 21)

Let p be an odd prime, and let $P=\frac{p-1}{2}$.
Consider

$$
2 \cdot 4 \cdot 6 \cdots(p-1)=2^{\frac{p-1}{2}}\left(1 \cdot 2 \cdot 3 \cdots \frac{p-1}{2}\right)=2^{P} P!.
$$

On the other hand, consider the residues of $2,4,6, \ldots, p-1$ between $-P$ and P :
Ex: if $p=7$, then $P=3$, and

$$
\{2,4,6\} \equiv_{7}\{2,-3,-1\}
$$

When is 2 a quadratic residue?

(Read Chapter 21)

Let p be an odd prime, and let $P=\frac{p-1}{2}$.
Consider

$$
2 \cdot 4 \cdot 6 \cdots(p-1)=2^{\frac{p-1}{2}}\left(1 \cdot 2 \cdot 3 \cdots \frac{p-1}{2}\right)=2^{P} P!.
$$

On the other hand, consider the residues of $2,4,6, \ldots, p-1$ between $-P$ and P :
Ex: if $p=7$, then $P=3$, and

$$
\{2,4,6\} \equiv_{7}\{2,-3,-1\}=\{2\} \sqcup\{-1,-3\} .
$$

When is 2 a quadratic residue?

(Read Chapter 21)

Let p be an odd prime, and let $P=\frac{p-1}{2}$.
Consider

$$
2 \cdot 4 \cdot 6 \cdots(p-1)=2^{\frac{p-1}{2}}\left(1 \cdot 2 \cdot 3 \cdots \frac{p-1}{2}\right)=2^{P} P!.
$$

On the other hand, consider the residues of $2,4,6, \ldots, p-1$ between $-P$ and P :
Ex: if $p=7$, then $P=3$, and

$$
\{2,4,6\} \equiv_{7}\{2,-3,-1\}=\{2\} \sqcup\{-1,-3\} .
$$

Ex: if $p=13$

When is 2 a quadratic residue?

(Read Chapter 21)

Let p be an odd prime, and let $P=\frac{p-1}{2}$.
Consider

$$
2 \cdot 4 \cdot 6 \cdots(p-1)=2^{\frac{p-1}{2}}\left(1 \cdot 2 \cdot 3 \cdots \frac{p-1}{2}\right)=2^{P} P!.
$$

On the other hand, consider the residues of $2,4,6, \ldots, p-1$ between $-P$ and P :
Ex: if $p=7$, then $P=3$, and

$$
\{2,4,6\} \equiv_{7}\{2,-3,-1\}=\{2\} \sqcup\{-1,-3\} .
$$

Ex: if $p=13$, then $P=6$

When is 2 a quadratic residue?

(Read Chapter 21)

Let p be an odd prime, and let $P=\frac{p-1}{2}$.
Consider

$$
2 \cdot 4 \cdot 6 \cdots(p-1)=2^{\frac{p-1}{2}}\left(1 \cdot 2 \cdot 3 \cdots \frac{p-1}{2}\right)=2^{P} P!.
$$

On the other hand, consider the residues of $2,4,6, \ldots, p-1$ between $-P$ and P :
Ex: if $p=7$, then $P=3$, and

$$
\{2,4,6\} \equiv_{7}\{2,-3,-1\}=\{2\} \sqcup\{-1,-3\}
$$

Ex: if $p=13$, then $P=6$, and
$\{2,4,6,8,10,12\}$

When is 2 a quadratic residue?

(Read Chapter 21)

Let p be an odd prime, and let $P=\frac{p-1}{2}$.
Consider

$$
2 \cdot 4 \cdot 6 \cdots(p-1)=2^{\frac{p-1}{2}}\left(1 \cdot 2 \cdot 3 \cdots \frac{p-1}{2}\right)=2^{P} P!.
$$

On the other hand, consider the residues of $2,4,6, \ldots, p-1$ between $-P$ and P :
Ex: if $p=7$, then $P=3$, and

$$
\{2,4,6\} \equiv_{7}\{2,-3,-1\}=\{2\} \sqcup\{-1,-3\}
$$

Ex: if $p=13$, then $P=6$, and
$\{2,4,6,8,10,12\} \equiv{ }_{13}\{2,4,6,-5,-3,-1\}$

When is 2 a quadratic residue?

(Read Chapter 21)

Let p be an odd prime, and let $P=\frac{p-1}{2}$.
Consider

$$
2 \cdot 4 \cdot 6 \cdots(p-1)=2^{\frac{p-1}{2}}\left(1 \cdot 2 \cdot 3 \cdots \frac{p-1}{2}\right)=2^{P} P!.
$$

On the other hand, consider the residues of $2,4,6, \ldots, p-1$ between $-P$ and P :
Ex: if $p=7$, then $P=3$, and

$$
\{2,4,6\} \equiv_{7}\{2,-3,-1\}=\{2\} \sqcup\{-1,-3\}
$$

Ex: if $p=13$, then $P=6$, and
$\{2,4,6,8,10,12\} \equiv_{13}\{2,4,6,-5,-3,-1\}=\{2,4,6\} \sqcup\{-1,-3,-5\}$.

When is 2 a quadratic residue?

(Read Chapter 21)

Let p be an odd prime, and let $P=\frac{p-1}{2}$.
Consider

$$
2 \cdot 4 \cdot 6 \cdots(p-1)=2^{\frac{p-1}{2}}\left(1 \cdot 2 \cdot 3 \cdots \frac{p-1}{2}\right)=2^{P} P!.
$$

On the other hand, consider the residues of $2,4,6, \ldots, p-1$ between $-P$ and P :
Ex: if $p=7$, then $P=3$, and

$$
\{2,4,6\} \equiv_{7}\{2,-3,-1\}=\{2\} \sqcup\{-1,-3\}
$$

Ex: if $p=13$, then $P=6$, and
$\{2,4,6,8,10,12\} \equiv_{13}\{2,4,6,-5,-3,-1\}=\{2,4,6\} \sqcup\{-1,-3,-5\}$.
In general

$$
\{2,4, \ldots, p-1\}
$$

When is 2 a quadratic residue?

(Read Chapter 21)

Let p be an odd prime, and let $P=\frac{p-1}{2}$.
Consider

$$
2 \cdot 4 \cdot 6 \cdots(p-1)=2^{\frac{p-1}{2}}\left(1 \cdot 2 \cdot 3 \cdots \frac{p-1}{2}\right)=2^{P} P!.
$$

On the other hand, consider the residues of $2,4,6, \ldots, p-1$ between $-P$ and P :
Ex: if $p=7$, then $P=3$, and

$$
\{2,4,6\} \equiv_{7}\{2,-3,-1\}=\{2\} \sqcup\{-1,-3\}
$$

Ex: if $p=13$, then $P=6$, and
$\{2,4,6,8,10,12\} \equiv_{13}\{2,4,6,-5,-3,-1\}=\{2,4,6\} \sqcup\{-1,-3,-5\}$.
In general

$$
\{2,4, \ldots, p-1\} \equiv_{p}\{2,4, \ldots, P\} \sqcup\{-1,-3, \ldots,-(P-1)\}
$$

When is 2 a quadratic residue?

(Read Chapter 21)

Let p be an odd prime, and let $P=\frac{p-1}{2}$.
Consider

$$
2 \cdot 4 \cdot 6 \cdots(p-1)=2^{\frac{p-1}{2}}\left(1 \cdot 2 \cdot 3 \cdots \frac{p-1}{2}\right)=2^{P} P!.
$$

On the other hand, consider the residues of $2,4,6, \ldots, p-1$ between $-P$ and P :
Ex: if $p=7$, then $P=3$, and

$$
\{2,4,6\} \equiv_{7}\{2,-3,-1\}=\{2\} \sqcup\{-1,-3\}
$$

Ex: if $p=13$, then $P=6$, and
$\{2,4,6,8,10,12\} \equiv_{13}\{2,4,6,-5,-3,-1\}=\{2,4,6\} \sqcup\{-1,-3,-5\}$.
In general

$$
\{2,4, \ldots, p-1\} \equiv_{p}\{2,4, \ldots, P\} \sqcup\{-1,-3, \ldots,-(P-1)\}
$$

So
$2 \cdot 4 \cdots(p-1)$

When is 2 a quadratic residue?

(Read Chapter 21)
Let p be an odd prime, and let $P=\frac{p-1}{2}$.
Consider

$$
2 \cdot 4 \cdot 6 \cdots(p-1)=2^{\frac{p-1}{2}}\left(1 \cdot 2 \cdot 3 \cdots \frac{p-1}{2}\right)=2^{P} P!.
$$

On the other hand, consider the residues of $2,4,6, \ldots, p-1$ between $-P$ and P :
Ex: if $p=7$, then $P=3$, and

$$
\{2,4,6\} \equiv_{7}\{2,-3,-1\}=\{2\} \sqcup\{-1,-3\}
$$

Ex: if $p=13$, then $P=6$, and
$\{2,4,6,8,10,12\} \equiv_{13}\{2,4,6,-5,-3,-1\}=\{2,4,6\} \sqcup\{-1,-3,-5\}$.
In general

$$
\{2,4, \ldots, p-1\} \equiv_{p}\{2,4, \ldots, P\} \sqcup\{-1,-3, \ldots,-(P-1)\}
$$

So
$2 \cdot 4 \cdots(p-1) \equiv_{p}(-1)^{N} P!, \quad$ where $N=|\{-1,-3, \ldots,-(P-1)\}|$.

When is 2 a quadratic residue?

(Read Chapter 21)
Let p be an odd prime, and let $P=\frac{p-1}{2}$.
Consider

$$
2 \cdot 4 \cdot 6 \cdots(p-1)=2^{\frac{p-1}{2}}\left(1 \cdot 2 \cdot 3 \cdots \frac{p-1}{2}\right)=2^{P} P!.
$$

On the other hand, consider the residues of $2,4,6, \ldots, p-1$ between $-P$ and P :
Ex: if $p=7$, then $P=3$, and

$$
\{2,4,6\} \equiv_{7}\{2,-3,-1\}=\{2\} \sqcup\{-1,-3\}
$$

Ex: if $p=13$, then $P=6$, and
$\{2,4,6,8,10,12\} \equiv_{13}\{2,4,6,-5,-3,-1\}=\{2,4,6\} \sqcup\{-1,-3,-5\}$.
In general

$$
\{2,4, \ldots, p-1\} \equiv_{p}\{2,4, \ldots, P\} \sqcup\{-1,-3, \ldots,-(P-1)\}
$$

So
$2 \cdot 4 \cdots(p-1) \equiv_{p}(-1)^{N} P!$, where $N=|\{-1,-3, \ldots,-(P-1)\}|$.
So since $\operatorname{gcd}(P!, p)=1$, we have $(-1)^{N} \equiv{ }_{p} 2^{P}$.

When is 2 a quadratic residue?
(Read Chapter 21)

Let p be an odd prime, and let $P=\frac{p-1}{2}$.

When is 2 a quadratic residue?

(Read Chapter 21)

Let p be an odd prime, and let $P=\frac{p-1}{2}$.
We have

$$
(-1)^{N} \equiv \equiv_{p} 2^{P} \quad \text { where } N=|\{-1,-3, \ldots,-(P-1)\}| .
$$

Theorem (Quadratic reciprocity, part 2)
Let p be an odd prime. Then

$$
\left(\frac{2}{p}\right)= \begin{cases}1 & \text { if } p \equiv_{8} \pm 1 \\ -1 & \text { if } p \equiv_{8} \pm 3\end{cases}
$$

When is 2 a quadratic residue?

(Read Chapter 21)

Let p be an odd prime, and let $P=\frac{p-1}{2}$.
We have

$$
(-1)^{N} \equiv \equiv_{p} 2^{P} \quad \text { where } N=|\{-1,-3, \ldots,-(P-1)\}| .
$$

Theorem (Quadratic reciprocity, part 2)
Let p be an odd prime. Then

$$
\left(\frac{2}{p}\right)= \begin{cases}1 & \text { if } p \equiv_{8} \pm 1 \\ -1 & \text { if } p \equiv_{8} \pm 3\end{cases}
$$

Proof.
Compute $N \ldots$

