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What values appear as b> (mod n)?

i.e. what values a have square roots modulo n?

For now, sticking to prime modulus p:
Since
(p—b)* =, (=0)* =",
we only need look at
b2 forb=1, 2,...,17;1.
2
Let b be a integer that’s not a multiple of p. Then if b is congruent
to a square modulo p, we call it a quadratic residue (QR) modulo
p. Otherwise, it's a (quadratic) nonresidue (NR) modulo p.

Ex: Modulo 13, the QRs are 1, 3, 4, 9, 10, and 12, a.k.a. +1, +3,
and +4.

Theorem. Let p be an odd prime. Then there are exactly

(p — 1)/2 quadratic residues modulo p and exactly (p — 1)/2
nonresidues modulo p. (Namely, there are as many residues as
possible, which is half.)
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QR x QR: Suppose a and a’ are QRs modulo p.
Since pta and ptad’, we have p{ad’.
So ad’ is either a QR or a NR mod p.

But we have some b, b’ such that b> =, a and (V)% =, d’.
So aa’ =, b?(V')? = (bb')%. Thus ad’ is a QR as well.

QR x NR: Fix a a QR and @’ a NR.

Since pfa and pta’, we have p 1 ad’.

So ad’ is either a QR or a NR mod p.
Moreover, we have some b such that b2 =, a.

Now, if aa’ is a QR, then there’'s some ¢ such that ¢2 =, aa’. So
2 =, aa’ =, b2d.

Now, since a #, 0, we have b #, 0 also. So ged(b,p) = 1, and

therefore there's a multiplicative inverse b~! modulo p. So

CL, =, (b_1)2 . b2 . CL, =, (b—1)2C2 =, (6_16)2,

which is a contradiction. So aa’ is a NR.
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NR x NR: Fix a a NR.
Consider

a, 2a, ..., (p—1)a (mod p).

Since p f a, we have ged(a,p) = 1, so as we showed in proving
Fermat's Little Theorem, this list is just a rearrangement of

1,2 ..., (p—1) (mod p).
In particular, this list has the (p — 1)/2 QRs and the (p — 1)/2
NRs! But we showed that QR x NR = NR. So

{1,2,....p—1} > {1,2,...,p—1} defined by 2 — az (mod p)

sends the (p — 1)/2 QRs to (distinct) NRs. Therefore, it must send
the (p — 1)/2 NRs all to QRs.

In other words, NR x NR = QR.
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Arithmetic with quadratic residues: Legendre symbol

We have
QR x QR=QR NR x QR=QR NR x NR = QR.
Compare to
1x1=1 I1x(-1)=-1 (=1) x (=1) = 1.

The Legendre symbol of a modulo p is

1 if ais a QR,

a
() =< -1 ifaisaNR,
b

0 if a is a multiple of p.

Theorem (Quadratic Residue Multiplication Rule)
Let p be a prime. Then

()G =)
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In particular, 1 is a QR. (Super easy case.)
Now, let p be an odd prime and fix a #, 0. Consider
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Spotting small QRs
If p =2, then the possible residues are 0 and 1.
In particular, 1 is a QR. (Super easy case.)

Now, let p be an odd prime and fix a #, 0. Consider
A=a® V2 (reduced modulo p).
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A=a®D2  (reduced modulo p).

Theorem (Euler’s Criterion)
If p is an odd prime then
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Proof: (continued) We have

{solns to 2:P"V/2 1 =, 0} = {quadratic residues modulo p}.
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Theorem
If p is an odd prime then

_ a
QD2 = (p) .

A=aP V2 (reduced modulo p).

Let

Example:

Recall, modulo 13, the QRs are 1, 3, 4, 9, 10, and 12.

o |1 213/4al 56| 7|8 9/10]11]12
a
(7)1_111_1_1_1_111_11
13

A |l1l12]1l1]2)12l1212]1]112]1




Theorem
If p is an odd prime then

_ a
Q02 = (p) '

Corollary (Quadratic reciprocity)
Let p be an odd prime. Then

(—1)_ 1 ifp=41,
p/) |- ifp=4 —1.



Theorem
If p is an odd prime then

_ a
Q02 = (p) '

Corollary (Quadratic reciprocity)
Let p be an odd prime. Then

<—1> 1 ifp=at,
p ) |-1 ifp=4-1.
Proof.

Compute (—1)P=1/2 (mod p).
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Let p be an odd prime, and let P = %.
Consider

_ 1
2.4.6---(p—1)=2"% (1-2.3.--792> = oPp1,

On the other hand, consider the residues of 2,4,6,...,p—1
between —P and P:
Ex: if p=7, then P =3, and

{25476} =7 {27 -3, _1} = {2} o {_17 _3}
Ex: if p =13, then P = 6, and
{2, 4,6,8,10, 12} =13 {2, 4,6,—5, -3, —1} = {2, 4, 6} ] {—1, -3, —5}.

In general
{2,4,...,p—1}=,{2,4,..., P} u{-1,-3,...,—(P—-1)}.
So
2-4---(p—1)=, (~D)VP!, where N = [{-1,-3,...,—(P —1)}|.

So since ged(P!,p) = 1, we have (—1) =, 2F.
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1

Let p be an odd prime, and let P = .

We have
(—1)N =, 2" where N = [{~1,-3,...,—(P - 1)}|.

Theorem (Quadratic reciprocity, part 2)
Let p be an odd prime. Then

(2)_ 1 ifp=g +1,
p) | =1 ifp=g+3.
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Let p be an odd prime, and let P = %1

We have
(—1)N =, 2" where N = [{~1,-3,...,—(P - 1)}|.

Theorem (Quadratic reciprocity, part 2)
Let p be an odd prime. Then

(2) 1 ifp =g,
p) | =1 ifp=g+3.
Proof.

Compute N... |



