Public key cryptography

For Person A to receive messages...

Step 1: Make a cypher, turning letters into numbers.

\overline{A}	B	C	D	E	F	G	H	I	J	K	L	M
11	12	13	14	15	16	17	18	19	20	21	22	23

For example, "TO BE OR NOT TO BE" becomes

30251215252824253030251215:

T	О	B	E	О	R	N	О	T	T	О	B	E
30	25	12	15	25	28	24	25	30	30	25	12	15

(Use a larger key to include spaces and punctuation, etc.)

For Person A to receive messages...

Step 1: Make a cypher, turning letters into numbers.

Step 2: Choose two large primes p and q, and let n = pq.

[Generally, chosen randomly, but within a couple of digits in length of each other.]

Ex: Let p = 12553, q = 13007. So n = 163276871.

Step 3: Compute $\phi(pq)=(p-1)(q-1)$, and pick a number k relatively prime to $\phi(pq)$.

[Specifically, pick k randomly between 10 and $\operatorname{lcm}(p-1,q-1)$.]

Ex: $\phi(n) = 12552 * 13006 = 163251312$. Pick k = 79921.

Step 4: Publish the cypher, n, and k publicly; keep p, q, and $\phi(pq)$ secret.

Published: n = 163276871, k = 79921, and cypher

A	B	C	D	E	F	G	H	I	J	K	L	M
11	12	13	14	15	16	17	18	19	20	21	22	23
N	0	P	Q	R	S	T	U	V	W	X	Y	Z
24	25	26	27	28	29	30	31	32	33	34	35	36

For Person B to send messages...

Step 1: Using the provided cypher, turn letters into numbers, and break into small-ish pieces (fewer digits than n).

Ex: TO BE OR NOT TO BE $\rightarrow 30251215252824253030251215$

$$a_1 = 30251215$$
, $a_2 = 25282425$, $a_3 = 30302512$, $a_4 = 15$.

Step 2: Compute $a_i^k \pmod{n}$ for each piece. Ex:

$$30251215^{79921} \equiv_{163276871} 149419241$$

 $25282425^{79921} \equiv_{163276871} 62721998$
 $30302512^{79921} \equiv_{163276871} 118084566$
 $15^{79921} \equiv_{163276871} 40481382$

Step 3: Send the results.

Back to Person A: You know $n=163276871,\ k=79921,$ and the cypher. You also know p=12553 and q=13007, so that $\phi(n)=163251312.$ So now, given that

$$\begin{array}{c} a_1^k \equiv_n 149419241, \quad a_2^k \equiv_n 62721998, \\ a_3^k \equiv_n 118084566, \quad \text{and} \quad a_4^k \equiv_n 40481382, \end{array}$$

you can use the methods from last time to solve for a_1,a_2,a_3 , and $a_4!$ Namely, you use the Euclidean algorithm to compute

$$1 = 145604785 \cdot k - 71282 \cdot \phi(n).$$

Then, you know if $a^k\equiv_n b$, then $a\equiv_n b^u$, where u=145604785. So, using the method of successive squaring, you are able to compute

$$a_1 \equiv 149419241^{145604785} \equiv 30251215 \pmod{163276871},$$

 $a_2 \equiv 62721998^{145604785} \equiv 25282425 \pmod{163276871},$
 $a_3 \equiv 118084566^{145604785} \equiv 30302512 \pmod{163276871},$
 $a_4 \equiv 40481382^{145604785} \equiv 15 \pmod{163276871},$

as desired.

RSA public key cryptosystem, after Ron Rivest, Adi Shamir, and Leonard Adleman.