Notation: for a fixed n, let \overline{a} be the least residue of $a \pmod n$, i.e. the unique number between 0 and n-1 congruent to a.

Last time: Method of successive squaring

Given x, k, and big n, compute $x^k \pmod{n}$ as follows.

1. If gcd(x, n) = 1, first reduce $k \equiv \bar{k} \pmod{\phi(n)}$, so that by Euler's formula

$$x^k \equiv x^{\overline{k}} \pmod{n}.$$
(since $x^k = x^{m\phi(n)+\overline{k}} = (x^{\phi(n)})^m x^{\overline{k}} \equiv_n 1^m \cdot x^{\overline{k}}$).

2. Decompose \bar{k} (or k if $gcd(x, n) \neq 1$) into powers of 2:

$$\bar{k} = 2^{a_1} + 2^{a_2} + \dots + 2^{a_\ell}.$$

3. Use successive squaring (square, reduce, square, reduce, ...) to compile a table of data for $x^{2^a} \pmod{n}$, for as many a as you need.

$$(x = x^1), (x^1)^2 = x^2, (x^2)^2 = x^4, (x^4)^2 = x^8, (x^8)^2 = x^{16}, \dots)$$

4. Use your table and your decomposition to compute $x^k \pmod{n}$:

$$x^k \equiv \overline{x^{2^{a_1}}} \cdot \overline{x^{2^{a_2}}} \cdots \overline{x^{2^{a_\ell}}} \pmod{n}.$$

Goal: Reverse the process. Namely, given k, b, and big n, solve $x^k \equiv b \pmod n$ for x.

Process: Assume $gcd(b, n) = 1 = gcd(k, \phi(n))$.

- 1. Compute $\phi(n)$: If $n=p_1^{r_1}\cdots p_\ell^{r_\ell}$, then $\phi(n)=p_1^{r_1-1}(p_1-1)\cdots p_\ell^{r_\ell-1}(p_\ell-1).$
- 2. Find pos. integers u and v satisfying $ku-\phi(n)v=1$, so that $ku\equiv 1\pmod{\phi(n)}$, i.e. $u=k^{-1}\pmod{\phi(n)}$.
- 3. Compute $b^u \pmod{n}$ by the method of successive squaring.

Then setting $x = \overline{b^u}$, we have

$$x^k = (\overline{b^u})^k \equiv_n b^{uk} \equiv_n b^{1+v\phi(n)} = b \cdot (b^{\phi(n)})^v \equiv_n b,$$

as desired.

Example: Find a solution to $x^{131} \equiv 758 \pmod{1073}$. We have $\gcd(x, 1073)|\gcd(758, 1073) = 1 \checkmark$

1. Compute $\phi(n)$: Factor n to get $1073 = 29 \cdot 37$. So $\phi(1073) = (29-1)(37-1) = 1008$.

2. Find pos. integers u and v satisfying $ku - \phi(n)v = 1$, so that $ku \equiv 1 \pmod{\phi(n)}$, i.e. $u = k^{-1} \pmod{\phi(n)}$: Using the Eulidean algorithm, we get

$$1008 = 131 * 7 + 91$$

$$131 = 91 * 1 + 40$$

$$91 = 40 * 2 + 11$$

$$40 = 11 * 3 + 7$$

$$11 = 7 * 1 + 4$$

$$7 = 4 * 1 + 3$$

$$4 = 3 * 1 + 1$$
so that
$$1 = 4 + (-1)3 = 4 + (-1)(7 + (-1)4)$$

$$= 2 * 4 + (-1)7$$

$$= 2(11 + (-1)7) + (-1)7$$

$$= \cdots = (-277) * 131 + 36 * 1008.$$

Another solution:

$$1 = (-277 + 1008) * 131 + (36 - 131) * 1008 = 731 * 131 - 95 * 1008.$$

Example: Find a solution to $x^{131} \equiv 758 \pmod{1073}$. We have $\gcd(x, 1073) | \gcd(758, 1073) = 1 \checkmark$

- 1. Compute $\phi(n)$: Factor n to get $1073 = 29 \cdot 37$. So $\phi(1073) = (29-1)(37-1) = 1008.$
- 2. Find pos. integers u and v satisfying $ku-\phi(n)v=1$, so that $ku\equiv 1\pmod{\phi(n)}$, i.e. $u=k^{-1}\pmod{\phi(n)}$: 1=731*131-95*1008
- 3. Compute $b^u \pmod{n}$ by the method of successive squaring: We have $731 = 2^9 + 2^7 + 2^6 + 2^4 + 2^3 + 2^1 + 1$. So using

a	$\overline{758^{2^{a-1}}}^2$	$\overline{758^{2^a}}$	we have
1	574564	509	
2	259081	488	$758^{731} \equiv_{1073} 758^{2^9} * 758^{2^7} * 758^{2^6}$
3	238144	1011	$*758^{2^4}*758^{2^3}*758^2*758$
4	1022121	625	
5	390625	53	$\equiv_{1073} (1011 * 712 * 663)$
6	2809	663	*(625*1011)*(509*758)
7	439569	712	$\equiv_{1073} 749 * 951 * 615$
8	506944	488	
9	238144	1011	$\equiv_{1073} 905.$

Example: Find a solution to $x^{131} \equiv 758 \pmod{1073}$. We have $\gcd(x, 1073) | \gcd(758, 1073) = 1 \checkmark$

1. Compute $\phi(n)$: Factor n to get $1073 = 29 \cdot 37$. So

$$\phi(1073) = (29 - 1)(37 - 1) = 1008.$$

- 2. Find pos. integers u and v satisfying $ku-\phi(n)v=1$, so that $ku\equiv 1\pmod{\phi(n)}, \qquad \text{i.e. } u=k^{-1}\pmod{\phi(n)} \text{:}$ 1=731*131-95*1008
- 3. Compute $b^u \pmod{n}$ by the method of successive squaring:

$$758^{731} \equiv_{1073} 905.$$

Then setting x = 905, we have

$$905^{131} \equiv_{1073} (758^{731})^{131} = 758^{731*131} = 758^{1+95*1008}$$
$$= 758 \cdot (758^{1008})^{95} \equiv_{1073} 758,$$

as desired. So x = 905 is a solution to $x^{131} \equiv 758 \pmod{1073}$.

Goal: Reverse the process. Namely, given k, b, and big n, solve $x^k \equiv b \pmod{n}$ for x.

Process: Assume $gcd(b, n) = 1 = gcd(k, \phi(n))$.

1. Compute $\phi(n)$: If $n=p_1^{r_1}\cdots p_\ell^{r_\ell}$, then

$$\phi(n) = p_1^{r_1 - 1}(p_1 - 1) \cdots p_{\ell}^{r_{\ell} - 1}(p_{\ell} - 1).$$

(By prime factorization, which is "slow"!!)

- 2. Find pos. integers u and v satisfying $ku-\phi(n)v=1$, so that $ku\equiv 1\pmod{\phi(n)}, \qquad \text{i.e. } u=k^{-1}\pmod{\phi(n)}.$ (By Euclidean algorithm, which is "fast".)
- 3. Compute $b^u \pmod n$ by the method of successive squaring. (By method of successive squaring, which is "fast".)

Then setting $x = \overline{b^u}$, we have

$$x^k = (\overline{b^u})^k \equiv_n b^{uk} \equiv_n b^{1+v\phi(n)} = b \cdot (b^{\phi(n)})^v \equiv_n b,$$

as desired.

How computationally difficult for large n?

Punchline: If you know the prime factorization of n, this computation is fast ("polynomial time"); if you don't, this computation is slow (for now—see "P versus NP").