Notation: for a fixed n, let \overline{a} be the least residue of $a\pmod n$, i.e. the unique number between 0 and n-1 congruent to a.

Last time: Method of successive squaring

Given x, k, and big n, compute $x^k \pmod{n}$ as follows.

1. If $\gcd(x,n)=1$, first reduce $k\equiv \bar{k}\pmod{\phi(n)}$, so that by Euler's formula

$$x^{k} \equiv x^{\overline{k}} \pmod{n}.$$
(since $x^{k} = x^{m\phi(n)+\overline{k}} = (x^{\phi(n)})^{m} x^{\overline{k}} \equiv_{n} 1^{m} \cdot x^{\overline{k}}$).

2. Decompose \bar{k} (or k if $gcd(x, n) \neq 1$) into powers of 2:

$$\bar{k} = 2^{a_1} + 2^{a_2} + \dots + 2^{a_\ell}.$$

3. Use successive squaring (square, reduce, square, reduce, ...) to compile a table of data for $x^{2^a} \pmod{n}$, for as many a as you need.

$$(x = x^1), (x^1)^2 = x^2, (x^2)^2 = x^4, (x^4)^2 = x^8, (x^8)^2 = x^{16} \dots)$$

4. Use your table and your decomposition to compute $x^k \pmod{n}$:

$$x^k \equiv \overline{x^{2^{a_1}}} \cdot \overline{x^{2^{a_2}}} \cdots \overline{x^{2^{a_\ell}}} \pmod{n}.$$

Process: Assume $gcd(b, n) = 1 = gcd(k, \phi(n))$.

Process: Assume $gcd(b, n) = 1 = gcd(k, \phi(n))$.

1. Compute $\phi(n)$: If $n=p_1^{r_1}\cdots p_\ell^{r_\ell}$, then

$$\phi(n) = p_1^{r_1 - 1}(p_1 - 1) \cdots p_\ell^{r_\ell - 1}(p_\ell - 1).$$

Process: Assume $gcd(b, n) = 1 = gcd(k, \phi(n))$.

- 1. Compute $\phi(n)$: If $n = p_1^{r_1} \cdots p_\ell^{r_\ell}$, then $\phi(n) = p_1^{r_1 1}(p_1 1) \cdots p_\ell^{r_\ell 1}(p_\ell 1).$
- 2. Find pos. integers u and v satisfying $ku \phi(n)v = 1$, so that $ku \equiv 1 \pmod{\phi(n)}$, i.e. $u = k^{-1} \pmod{\phi(n)}$.

Process: Assume $gcd(b, n) = 1 = gcd(k, \phi(n))$.

- 1. Compute $\phi(n)$: If $n=p_1^{r_1}\cdots p_\ell^{r_\ell}$, then $\phi(n)=p_1^{r_1-1}(p_1-1)\cdots p_\ell^{r_\ell-1}(p_\ell-1).$
- 2. Find pos. integers u and v satisfying $ku \phi(n)v = 1$, so that $ku \equiv 1 \pmod{\phi(n)}$, i.e. $u = k^{-1} \pmod{\phi(n)}$.
- 3. Compute $b^u \pmod{n}$ by the method of successive squaring.

Process: Assume $gcd(b, n) = 1 = gcd(k, \phi(n))$.

- 1. Compute $\phi(n)$: If $n=p_1^{r_1}\cdots p_\ell^{r_\ell}$, then $\phi(n)=p_1^{r_1-1}(p_1-1)\cdots p_\ell^{r_\ell-1}(p_\ell-1).$
- 2. Find pos. integers u and v satisfying $ku \phi(n)v = 1$, so that $ku \equiv 1 \pmod{\phi(n)}$, i.e. $u = k^{-1} \pmod{\phi(n)}$.
- 3. Compute $b^u \pmod{n}$ by the method of successive squaring.

Then setting $x = \overline{b^u}$, we have $x^k = (\overline{b^u})^k$

Process: Assume $gcd(b, n) = 1 = gcd(k, \phi(n))$.

- 1. Compute $\phi(n)$: If $n=p_1^{r_1}\cdots p_\ell^{r_\ell}$, then $\phi(n)=p_1^{r_1-1}(p_1-1)\cdots p_\ell^{r_\ell-1}(p_\ell-1).$
- 2. Find pos. integers u and v satisfying $ku-\phi(n)v=1$, so that $ku\equiv 1\ (\mathrm{mod}\ \phi(n)), \qquad \text{i.e.}\ u=k^{-1}\ (\mathrm{mod}\ \phi(n)).$
- 3. Compute $b^u \pmod{n}$ by the method of successive squaring.

Then setting $x = \overline{b^u}$, we have $x^k = (\overline{b^u})^k \equiv_{r} b^{uk}$

Process: Assume $gcd(b, n) = 1 = gcd(k, \phi(n))$.

- 1. Compute $\phi(n)$: If $n=p_1^{r_1}\cdots p_\ell^{r_\ell}$, then $\phi(n)=p_1^{r_1-1}(p_1-1)\cdots p_\ell^{r_\ell-1}(p_\ell-1).$
- 2. Find pos. integers u and v satisfying $ku-\phi(n)v=1$, so that $ku\equiv 1\pmod{\phi(n)}, \qquad \text{i.e. } u=k^{-1}\pmod{\phi(n)}.$
- 3. Compute $b^u \pmod{n}$ by the method of successive squaring.

Then setting $x=\overline{b^u}$, we have $x^k=(\overline{b^u})^k\equiv_n b^{uk}\equiv_n b^{1+v\phi(n)}$

Process: Assume $gcd(b, n) = 1 = gcd(k, \phi(n))$.

- 1. Compute $\phi(n)$: If $n=p_1^{r_1}\cdots p_\ell^{r_\ell}$, then $\phi(n)=p_1^{r_1-1}(p_1-1)\cdots p_\ell^{r_\ell-1}(p_\ell-1).$
- 2. Find pos. integers u and v satisfying $ku-\phi(n)v=1$, so that $ku\equiv 1\pmod{\phi(n)}, \qquad \text{i.e. } u=k^{-1}\pmod{\phi(n)}.$
- 3. Compute $b^u \pmod{n}$ by the method of successive squaring.

Then setting $x=\overline{b^u}$, we have $x^k=(\overline{b^u})^k\equiv_n b^{uk}\equiv_n b^{1+v\phi(n)}=b\cdot(b^{\phi(n)})^v$

Process: Assume $gcd(b, n) = 1 = gcd(k, \phi(n))$.

- 1. Compute $\phi(n)$: If $n = p_1^{r_1} \cdots p_\ell^{r_\ell}$, then $\phi(n) = p_1^{r_1-1}(p_1-1) \cdots p_\ell^{r_\ell-1}(p_\ell-1).$
- 2. Find pos. integers u and v satisfying $ku \phi(n)v = 1$, so that $ku \equiv 1 \pmod{\phi(n)}$, i.e. $u = k^{-1} \pmod{\phi(n)}$.
- 3. Compute $b^u \pmod{n}$ by the method of successive squaring.

Then setting $x=\overline{b^u}$, we have $x^k=(\overline{b^u})^k\equiv_n b^{uk}\equiv_n b^{1+v\phi(n)}=b\cdot(b^{\phi(n)})^v\equiv_n b,$ as desired.

Example: Find a solution to $x^{131} \equiv 758 \pmod{1073}$. We have $\gcd(x, 1073) | \gcd(758, 1073) = 1 \checkmark$

We have $gcd(x, 1073)|gcd(758, 1073) = 1 \checkmark$

1. Compute
$$\phi(n)$$
:

We have $\gcd(x, 1073) | \gcd(758, 1073) = 1 \checkmark$

1. Compute $\phi(n)$: Factor n to get $1073 = 29 \cdot 37$.

We have $gcd(x, 1073) | gcd(758, 1073) = 1 \checkmark$

1. Compute $\phi(n)$: Factor n to get $1073 = 29 \cdot 37$. So

1. Compute
$$\phi(n)$$
: Factor n to get $1073 = 29 \cdot 37$. So $\phi(1073) = (29 - 1)(37 - 1) = 1008$.

Example: Find a solution to $x^{131} \equiv 758 \pmod{1073}$. We have gcd(x, 1073)|gcd(758, 1073) = 1

1. Compute $\phi(n)$: Factor n to get $1073 = 29 \cdot 37$. So

- $\phi(1073) = (29 1)(37 1) = 1008.$
 - 2. Find pos. integers u and v satisfying $ku \phi(n)v = 1$, so that

 $ku \equiv 1 \pmod{\phi(n)}$, i.e. $u = k^{-1} \pmod{\phi(n)}$:

```
We have gcd(x, 1073)|gcd(758, 1073) = 1
 1. Compute \phi(n): Factor n to get 1073 = 29 \cdot 37. So
```

 $\phi(1073) = (29 - 1)(37 - 1) = 1008.$ 2. Find pos. integers u and v satisfying $ku - \phi(n)v = 1$, so that $ku \equiv 1 \pmod{\phi(n)}$, i.e. $u = k^{-1} \pmod{\phi(n)}$:

Example: Find a solution to $x^{131} \equiv 758 \pmod{1073}$.

Using the Eulidean algorithm, we get

Using the Eulidean algorithm, we get
$$1008 = 131*7 + 91$$
 so that
$$131 = 91*1 + 40$$

$$131 = 91 * 1 + 40$$

$$91 = 40 * 2 + 11$$

$$40 = 11 * 3 + 7$$

$$1 = 4 + (-1)3 = 4 + (-1)(7 + (-1)4)$$

$$= 2 * 4 + (-1)7$$

$$131 = 91 * 1 + 40$$

$$91 = 40 * 2 + 11$$

$$40 = 11 * 3 + 7$$

$$1 = 2 * 4 + (-1)7 + (-1)7$$

$$= 2(11 + (-1)7) + (-1)7$$

$$40 * 2 + 11
11 * 3 + 7
7 * 1 + 4$$

$$1 = 4 + (-1)3 = 4 + (-1)(7 + (-1)4)
= 2 * 4 + (-1)7
= 2(11 + (-1)7) + (-1)7$$

$$7 = 2 * 4 + (-1)7$$

$$= 2(11 + (-1)7) + (-1)7$$

$$= \cdots = (-277) * 131 + 36 * 1008.$$

11 = 7 * 1 + 4

$$= 2(11 + (-1)7) + (-1)7$$

= \cdots = (-277) * 131 + 36 * 1008.

$$= 2(11 + (-1)t) + (-1)t$$

$$= \dots = (-277) * 131 + 36 * 1008.$$

$$= \dots = (-277) * 131 + 36 * 1008.$$

7 = 4 * 1 + 3

$$= \dots = (-277) * 131 + 36 * 1008.$$

$$7 = 4 * 1 + 3$$
 $= \cdots = (-277) * 131 + 36 * 1008.$

$$7 = 4 * 1 + 3$$
 = ... = $(-211) * 131 + 30 * 1008$.
 $4 = 3 * 1 + 1$

Example: Find a solution to $x^{131} \equiv 758 \pmod{1073}$. We have gcd(x, 1073)|gcd(758, 1073) = 1

1. Compute $\phi(n)$: Factor n to get $1073 = 29 \cdot 37$. So $\phi(1073) = (29 - 1)(37 - 1) = 1008.$

2. Find pos. integers u and v satisfying $ku - \phi(n)v = 1$, so that

$$ku \equiv 1 \pmod{\phi(n)}$$
, i.e. $u = k^{-1} \pmod{\phi(n)}$:
Using the Fulidean algorithm, we get

Using the Eulidean algorithm, we get

$$1008 = 131 * 7 + 91$$

$$131 = 91 * 1 + 40$$

$$91 = 40 * 2 + 11$$

$$40 = 11 * 3 + 7$$

$$11 = 7 * 1 + 4$$

$$7 = 4 * 1 + 3$$

$$4 = 3 * 1 + 1$$
so that
$$1 = 4 + (-1)3 = 4 + (-1)(7 + (-1)4)$$

$$= 2 * 4 + (-1)7$$

$$= 2(11 + (-1)7) + (-1)7$$

$$= \cdots = (-277) * 131 + 36 * 1008.$$

Another solution:

$$1 = (-277 + 1008) * 131 + (36 - 131) * 1008 = 731 * 131 - 95 * 1008.$$

Example: Find a solution to $x^{131} \equiv 758 \pmod{1073}$. We have $gcd(x, 1073)|gcd(758, 1073) = 1 \checkmark$

1. Compute $\phi(n)$: Factor n to get $1073 = 29 \cdot 37$. So

- $\phi(1073) = (29 1)(37 1) = 1008.$

2. Find pos. integers
$$u$$
 and v satisfying $ku-\phi(n)v=1$, so that $ku\equiv 1\pmod{\phi(n)},$ i.e. $u=k^{-1}\pmod{\phi(n)}$:
$$1=731*131-95*1008$$

- 3. Compute $b^u \pmod{n}$ by the method of successive squaring:

Example: Find a solution to $x^{131} \equiv 758 \pmod{1073}$. We have gcd(x, 1073)|gcd(758, 1073) = 1

- 1. Compute $\phi(n)$: Factor n to get $1073 = 29 \cdot 37$. So $\phi(1073) = (29 - 1)(37 - 1) = 1008.$

- 2. Find pos. integers u and v satisfying $ku \phi(n)v = 1$, so that $ku \equiv 1 \pmod{\phi(n)}$, i.e. $u = k^{-1} \pmod{\phi(n)}$:

We have $731 = 2^9 + 2^7 + 2^6 + 2^4 + 2^3 + 2^1 + 1$.

1 = 731 * 131 - 95 * 10083. Compute $b^u \pmod{n}$ by the method of successive squaring:

Example: Find a solution to $x^{131} \equiv 758 \pmod{1073}$. We have gcd(x, 1073)|gcd(758, 1073) = 1

1. Compute $\phi(n)$: Factor n to get $1073 = 29 \cdot 37$. So

$$\phi(1073) = (29 - 1)(37 - 1) = 1008.$$

2. Find pos. integers u and v satisfying $ku - \phi(n)v = 1$, so that $ku \equiv 1 \pmod{\phi(n)}$, i.e. $u = k^{-1} \pmod{\phi(n)}$:

$$1 = \frac{1}{1} (\text{mod } \psi(n)), \quad \text{i.e. } u = n \quad \text{(mod } \psi(n)).$$

$$1 = \frac{731 * 131 - 95 * 1008}{1008}$$
3. Compute $b^u \pmod{n}$ by the method of successive squaring:

			-	.01 / 101
3.	Co	mpute b^u	(mod	n) by the method of successive squaring:
			$1 = 2^9$	$+2^7+2^6+2^4+2^3+2^1+1$. So using
	a	$\frac{1}{758^{2^{a-1}}}^2$	$\overline{758^{2^a}}$	
	1	574564	509	-
	2	259081	488	
	3	238144	1011	
	4	1022121	625	
	5	200625	59	

Э

We have $\gcd(x, 1073)|\gcd(758, 1073) = 1$ 1. Compute $\phi(n)$: Factor n to get $1073 = 29 \cdot 37$. So

 $\phi(1073) = (29 - 1)(37 - 1) = 1008.$

2. Find pos. integers
$$u$$
 and v satisfying $ku - \phi(n)v = 1$, so that $ku \equiv 1 \pmod{\phi(n)}$, i.e. $u = k^{-1} \pmod{\phi(n)}$:

1 = 731 * 131 - 95 * 10083. Compute $b^u \pmod{n}$ by the method of successive squaring:

3. Compute $b^u \pmod{n}$ by the method of successive squaring We have $731 = 2^9 + 2^7 + 2^6 + 2^4 + 2^3 + 2^1 + 1$. So using

We have $731 = 2^{\circ} + 2^{\circ} + 2^{\circ} + 2^{\circ} + 2^{\circ} + 2^{\circ} + 1$. So using							
a	$\frac{1}{758^{2^{a-1}}}^2$	$\overline{758^{2^a}}$	we have				
1	574564	509	7312 ⁹ 2 ⁷ 2 ⁶				
2	259081	488	$758^{731} \equiv_{1073} 758^{2^9} * 758^{2^7} * 758^{2^6}$				
3	238144	1011	$*758^{2^4}*758^{2^3}*758^2*758$				
4	1022121	625	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
5	390625	53	$\equiv_{1073} (1011 * 712 * 663)$				
6	2809	663	*(625*1011)*(509*758)				
7	439569	712	$\equiv_{1073} 749 * 951 * 615$				
8	506944	488					
9	238144	1011	$\equiv_{1073} 905.$				

Example: Find a solution to $x^{131} \equiv 758 \pmod{1073}$. We have $gcd(x, 1073) | gcd(758, 1073) = 1 \checkmark$

1. Compute $\phi(n)$: Factor n to get $1073 = 29 \cdot 37$. So

$$\phi(1073) = (29 - 1)(37 - 1) = 1008.$$

2. Find pos. integers u and v satisfying $ku - \phi(n)v = 1$, so that $ku \equiv 1 \pmod{\phi(n)}$, i.e. $u = k^{-1} \pmod{\phi(n)}$:

$$ku \equiv 1 \pmod{\phi(n)},$$
 i.e. $u = k^{-1} \pmod{\phi(n)}$:
$$1 = 731 * 131 - 95 * 1008$$

3. Compute $b^u \pmod{n}$ by the method of successive squaring:

5. Compute
$$b^{\omega} \pmod{n}$$
 by the method of successive squaring
$$758^{731} \equiv_{1073} 905.$$

We have $gcd(x, 1073)|gcd(758, 1073) = 1 \checkmark$

1. Compute $\phi(n)$: Factor n to get $1073 = 29 \cdot 37$. So

$$\phi(1073) = (29 - 1)(37 - 1) = 1008.$$

2. Find pos. integers u and v satisfying $ku-\phi(n)v=1$, so that

$$ku \equiv 1 \pmod{\phi(n)}$$
, i.e. $u = k^{-1} \pmod{\phi(n)}$: $1 = 731 * 131 - 95 * 1008$

3. Compute $b^u \pmod n$ by the method of successive squaring:

$$758^{731} \equiv_{1073} 905.$$

Then setting x = 905, we have $905^{131} \equiv_{1073} (758^{731})^{131}$

We have $gcd(x, 1073)|gcd(758, 1073) = 1 \checkmark$

1. Compute $\phi(n)$: Factor n to get $1073 = 29 \cdot 37$. So

$$\phi(1073) = (29 - 1)(37 - 1) = 1008.$$

2. Find pos. integers u and v satisfying $ku-\phi(n)v=1,$ so that

$$ku \equiv 1 \pmod{\phi(n)}$$
, i.e. $u = k^{-1} \pmod{\phi(n)}$: $1 = 731 * 131 - 95 * 1008$

3. Compute $b^u \pmod n$ by the method of successive squaring:

$$758^{731} \equiv_{1073} 905.$$

Then setting x = 905, we have

$$905^{131} \equiv_{1073} (758^{731})^{131} = 758^{731*131}$$

We have $gcd(x, 1073)|gcd(758, 1073) = 1 \checkmark$

1. Compute $\phi(n)$: Factor n to get $1073 = 29 \cdot 37$. So

$$\phi(1073) = (29 - 1)(37 - 1) = 1008.$$

2. Find pos. integers u and v satisfying $ku-\phi(n)v=1$, so that

$$ku \equiv 1 \pmod{\phi(n)}$$
, i.e. $u = k^{-1} \pmod{\phi(n)}$: $1 = 731 * 131 - 95 * 1008$

3. Compute $b^u \pmod n$ by the method of successive squaring:

$$758^{731} \equiv_{1073} 905.$$

Then setting x = 905, we have

$$905^{131} \equiv_{1073} (758^{731})^{131} = 758^{731*131} = 758^{1+95*1008}$$

We have $gcd(x, 1073) | gcd(758, 1073) = 1 \checkmark$

1. Compute $\phi(n)$: Factor n to get $1073 = 29 \cdot 37$. So

$$\phi(1073) = (29 - 1)(37 - 1) = 1008.$$

2. Find pos. integers u and v satisfying $ku-\phi(n)v=1$, so that

$$ku \equiv 1 \pmod{\phi(n)}$$
, i.e. $u = k^{-1} \pmod{\phi(n)}$: $1 = 731 * 131 - 95 * 1008$

3. Compute $b^u \pmod n$ by the method of successive squaring:

$$758^{731} \equiv_{1073} 905.$$

Then setting x = 905, we have

$$905^{131} \equiv_{1073} (758^{731})^{131} = 758^{731*131} = 758^{1+95*1008}$$
$$= 758 \cdot (758^{1008})^{95}$$

We have $gcd(x, 1073)|gcd(758, 1073) = 1 \checkmark$

1. Compute $\phi(n)$: Factor n to get $1073 = 29 \cdot 37$. So

$$\phi(1073) = (29 - 1)(37 - 1) = 1008.$$

2. Find pos. integers u and v satisfying $ku-\phi(n)v=1$, so that

$$ku \equiv 1 \pmod{\phi(n)}$$
, i.e. $u = k^{-1} \pmod{\phi(n)}$:
$$1 = 731 * 131 - 95 * 1008$$

3. Compute $b^u \pmod{n}$ by the method of successive squaring:

$$758^{731} \equiv_{1073} 905.$$

Then setting x = 905, we have

$$905^{131} \equiv_{1073} (758^{731})^{131} = 758^{731*131} = 758^{1+95*1008}$$
$$= 758 \cdot (758^{1008})^{95} \equiv_{1073} 758,$$

as desired.

We have $gcd(x, 1073)|gcd(758, 1073) = 1 \checkmark$

1. Compute $\phi(n)$: Factor n to get $1073 = 29 \cdot 37$. So

$$\phi(1073) = (29 - 1)(37 - 1) = 1008.$$

2. Find pos. integers u and v satisfying $ku-\phi(n)v=1,$ so that

$$ku \equiv 1 \pmod{\phi(n)}$$
, i.e. $u = k^{-1} \pmod{\phi(n)}$: $1 = 731 * 131 - 95 * 1008$

3. Compute $b^u \pmod n$ by the method of successive squaring:

$$758^{731} \equiv_{1073} 905.$$

Then setting x = 905, we have

$$905^{131} \equiv_{1073} (758^{731})^{131} = 758^{731*131} = 758^{1+95*1008}$$
$$= 758 \cdot (758^{1008})^{95} \equiv_{1073} 758,$$

as desired. So x = 905 is a solution to $x^{131} \equiv 758 \pmod{1073}$.

Process: Assume $gcd(b, n) = 1 = gcd(k, \phi(n))$.

- 1. Compute $\phi(n)$: If $n=p_1^{r_1}\cdots p_\ell^{r_\ell}$, then $\phi(n)=p_1^{r_1-1}(p_1-1)\cdots p_\ell^{r_\ell-1}(p_\ell-1).$
- 2. Find pos. integers u and v satisfying $ku-\phi(n)v=1$, so that $ku\equiv 1\pmod{\phi(n)}, \qquad \text{i.e. } u=k^{-1}\pmod{\phi(n)}.$
- 3. Compute $b^u \pmod{n}$ by the method of successive squaring.

Then setting $x=\overline{b^u}$, we have $x^k=(\overline{b^u})^k\equiv_n b^{uk}\equiv_n b^{1+v\phi(n)}=b\cdot(b^{\phi(n)})^v\equiv_n b,$ as desired.

Process: Assume $gcd(b, n) = 1 = gcd(k, \phi(n))$.

- 1. Compute $\phi(n)$: If $n=p_1^{r_1}\cdots p_\ell^{r_\ell}$, then $\phi(n)=p_1^{r_1-1}(p_1-1)\cdots p_\ell^{r_\ell-1}(p_\ell-1).$
- 2. Find pos. integers u and v satisfying $ku-\phi(n)v=1$, so that $ku\equiv 1\pmod{\phi(n)},$ i.e. $u=k^{-1}\pmod{\phi(n)}.$
- 3. Compute $b^u \pmod{n}$ by the method of successive squaring.

Then setting $x=\overline{b^u}$, we have $x^k=(\overline{b^u})^k\equiv_n b^{uk}\equiv_n b^{1+v\phi(n)}=b\cdot(b^{\phi(n)})^v\equiv_n b,$ as desired. How computationally difficult for large n?

Process: Assume $gcd(b, n) = 1 = gcd(k, \phi(n))$.

- 1. Compute $\phi(n)$: If $n=p_1^{r_1}\cdots p_\ell^{r_\ell}$, then $\phi(n)=p_1^{r_1-1}(p_1-1)\cdots p_\ell^{r_\ell-1}(p_\ell-1).$
- 2. Find pos. integers u and v satisfying $ku \phi(n)v = 1$, so that $ku \equiv 1 \pmod{\phi(n)}$, i.e. $u = k^{-1} \pmod{\phi(n)}$.
- 3. Compute $b^u \pmod{n}$ by the method of successive squaring. (By method of successive squaring, which is "fast".)

Then setting $x = \overline{b^u}$, we have

$$x^k = (\overline{b^u})^k \equiv_n b^{uk} \equiv_n b^{1+v\phi(n)} = b \cdot (b^{\phi(n)})^v \equiv_n b,$$

as desired.

How computationally difficult for large n?

Process: Assume $gcd(b, n) = 1 = gcd(k, \phi(n))$.

- 1. Compute $\phi(n)$: If $n=p_1^{r_1}\cdots p_\ell^{r_\ell}$, then $\phi(n)=p_1^{r_1-1}(p_1-1)\cdots p_\ell^{r_\ell-1}(p_\ell-1).$
- 2. Find pos. integers u and v satisfying $ku-\phi(n)v=1$, so that $ku\equiv 1\pmod{\phi(n)}, \qquad \text{i.e. } u=k^{-1}\pmod{\phi(n)}.$ (By Euclidean algorithm, which is "fast".)
- 3. Compute $b^u \pmod{n}$ by the method of successive squaring. (By method of successive squaring, which is "fast".)

Then setting $x = \overline{b^u}$, we have

$$x^k = (\overline{b^u})^k \equiv_n b^{uk} \equiv_n b^{1+v\phi(n)} = b \cdot (b^{\phi(n)})^v \equiv_n b,$$

as desired.

How computationally difficult for large n?

Process: Assume $gcd(b, n) = 1 = gcd(k, \phi(n))$.

1. Compute $\phi(n)$: If $n=p_1^{r_1}\cdots p_\ell^{r_\ell}$, then

$$\phi(n) = p_1^{r_1-1}(p_1-1)\cdots p_\ell^{r_\ell-1}(p_\ell-1).$$
(By prime factorization, which is "slow"!!)

2. Find pos. integers u and v satisfying $ku - \phi(n)v = 1$, so that

$$ku \equiv 1 \pmod{\phi(n)}$$
, i.e. $u = k^{-1} \pmod{\phi(n)}$.
(By Euclidean algorithm, which is "fast".)

3. Compute $b^u \pmod{n}$ by the method of successive squaring. (By method of successive squaring, which is "fast".)

Then setting $x = \overline{b^u}$, we have

$$x^k = (\overline{b^u})^k \equiv_n b^{uk} \equiv_n b^{1+v\phi(n)} = b \cdot (b^{\phi(n)})^v \equiv_n b,$$

as desired.

How computationally difficult for large n?

Process: Assume $gcd(b, n) = 1 = gcd(k, \phi(n))$.

1. Compute $\phi(n)$: If $n=p_1^{r_1}\cdots p_\ell^{r_\ell}$, then

$$\phi(n) = p_1^{r_1-1}(p_1-1)\cdots p_\ell^{r_\ell-1}(p_\ell-1).$$
(By prime factorization, which is "slow"!!)

2. Find pos. integers u and v satisfying $ku - \phi(n)v = 1$, so that $ku \equiv 1 \pmod{\phi(n)}$, i.e. $u = k^{-1} \pmod{\phi(n)}$.

(By Euclidean algorithm, which is "fast".)
3. Compute
$$b^u \pmod{n}$$
 by the method of successive squaring.

3. Compute $b^a \pmod{n}$ by the method of successive squaring. (By method of successive squaring, which is "fast".)

Then setting
$$x=\overline{b^u}$$
, we have
$$x^k=(\overline{b^u})^k\equiv_n b^{uk}\equiv_n b^{1+v\phi(n)}=b\cdot(b^{\phi(n)})^v\equiv_n b,$$

as desired. How computationally difficult for large n?

Punchline: If you know the prime factorization of n, this computation is fast ("polynomial time"); if you don't, this computation is slow (for now–see "P versus NP").